Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 285-302.DOI: 10.13745/j.esf.sf.2021.7.33
• A spacial section on The India-Eurasia Collision and Its Long-Range Effect • Previous Articles Next Articles
TANG Yu1(), WANG Genhou1,*(), FENG Yipeng1, CI Dan2, LI Dian3, FAN Zhengzhe1, GAO Xi4, WEI Yufei1, HU Jixin1, ZHANG Peilie1
Received:
2021-05-06
Revised:
2021-07-20
Online:
2022-01-25
Published:
2022-02-22
Contact:
WANG Genhou
CLC Number:
TANG Yu, WANG Genhou, FENG Yipeng, CI Dan, LI Dian, FAN Zhengzhe, GAO Xi, WEI Yufei, HU Jixin, ZHANG Peilie. Tectonostratigraphic properties and evolution of the Yeba volcanic arc in South Gangdese, Tibet[J]. Earth Science Frontiers, 2022, 29(1): 285-302.
T/℃ | 40Ar/39Ar | 1σ | 37Ar/39Ar | 1σ | 36Ar/39Ar | 1σ | 40Ar*/39ArK±2σ | (Age± 2σ)/Ma |
---|---|---|---|---|---|---|---|---|
QY0807-1 | ||||||||
650 | 47.875 9 | 0.098 9 | 0.000 0 | 0.036 5 | 0.133 2 | 0.001 4 | 8.525 9±0.82 | 56.98±5.38 |
720 | 32.631 2 | 0.052 4 | 0.037 7 | 0.005 2 | 0.080 1 | 0.000 6 | 8.953 6±0.33 | 59.79±2.16 |
760 | 12.105 4 | 0.019 6 | 0.026 2 | 0.004 0 | 0.006 3 | 0.000 1 | 10.253 2±0.07 | 68.31±0.48 |
800 | 12.077 8 | 0.019 7 | 0.005 6 | 0.003 5 | 0.003 8 | 0.000 1 | 10.962 2±0.08 | 72.94±0.55 |
840 | 12.462 5 | 0.020 1 | 0.004 8 | 0.002 1 | 0.002 9 | 0.000 1 | 11.600 4±0.07 | 77.09±0.44 |
880 | 12.908 0 | 0.021 1 | 0.014 5 | 0.001 9 | 0.003 0 | 0.000 1 | 12.025 4±0.06 | 79.86±0.36 |
920 | 12.985 2 | 0.021 0 | 0.007 7 | 0.002 8 | 0.003 4 | 0.000 1 | 11.971 5±0.07 | 79.51±0.49 |
960 | 13.082 5 | 0.021 6 | 0.000 0 | 0.005 7 | 0.004 2 | 0.000 2 | 11.837 2±0.13 | 78.63±0.81 |
1 010 | 13.285 7 | 0.021 7 | 0.000 0 | 0.004 4 | 0.005 1 | 0.000 2 | 11.783 6±0.13 | 78.28±0.86 |
1 060 | 13.529 4 | 0.022 9 | 0.000 0 | 0.005 7 | 0.006 8 | 0.000 2 | 11.532 0±0.14 | 76.65±0.91 |
1 120 | 13.416 2 | 0.022 0 | 0.000 0 | 0.005 5 | 0.007 3 | 0.000 2 | 11.249 4±0.14 | 74.81±0.92 |
1 180 | 15.543 8 | 0.026 7 | 0.000 0 | 0.005 1 | 0.014 2 | 0.000 5 | 11.340 5±0.28 | 75.40±1.80 |
1 400 | 74.011 0 | 0.161 5 | 0.082 7 | 0.028 8 | 0.191 8 | 0.001 8 | 17.328 8±1.05 | 113.98±6.70 |
T/℃ | 40Ar/39Ar | 1σ | 37Ar/39Ar | 1σ | 36Ar/39Ar | 1σ | 40Ar*/39ArK±2σ | (Age± 2σ)/Ma |
QY0807-4 | ||||||||
600 | 102.673 1 | 0.303 8 | 0.000 0 | 0.035 7 | 0.337 2 | 0.002 9 | 3.028 8±1.61 | 20.24±10.70 |
680 | 21.169 5 | 0.035 1 | 0.006 9 | 0.007 4 | 0.045 1 | 0.000 5 | 7.856 0±0.32 | 52.03±2.07 |
720 | 32.079 7 | 0.054 3 | 0.000 0 | 0.012 3 | 0.076 1 | 0.000 7 | 9.599 6±0.38 | 63.37±2.46 |
760 | 15.509 9 | 0.025 1 | 0.000 0 | 0.004 0 | 0.015 4 | 0.000 2 | 10.956 8±0.13 | 72.16±0.81 |
800 | 13.057 1 | 0.021 0 | 0.019 7 | 0.004 2 | 0.005 7 | 0.000 2 | 11.362 4±0.12 | 74.77±0.75 |
840 | 13.417 1 | 0.021 6 | 0.000 0 | 0.002 0 | 0.004 6 | 0.000 1 | 12.043 0±0.08 | 79.16±0.52 |
880 | 13.375 6 | 0.022 0 | 0.000 0 | 0.004 4 | 0.004 5 | 0.000 2 | 12.044 9±0.10 | 79.17±0.65 |
920 | 13.717 8 | 0.022 0 | 0.000 9 | 0.001 5 | 0.004 7 | 0.000 1 | 12.318 1±0.07 | 80.92±0.45 |
960 | 13.928 1 | 0.022 5 | 0.000 0 | 0.005 3 | 0.006 6 | 0.000 2 | 11.990 6±0.13 | 78.82±0.81 |
1 020 | 14.341 9 | 0.024 5 | 0.000 0 | 0.012 4 | 0.007 2 | 0.000 3 | 12.217 3±0.21 | 80.28±1.35 |
1 100 | 15.310 1 | 0.025 1 | 0.000 3 | 0.003 1 | 0.010 8 | 0.000 1 | 12.110 3±0.09 | 79.59±0.59 |
1 180 | 16.814 2 | 0.027 3 | 0.008 0 | 0.003 5 | 0.014 5 | 0.000 2 | 12.520 3±0.11 | 82.22±0.68 |
1 260 | 29.340 9 | 0.061 4 | 0.000 0 | 0.032 9 | 0.043 3 | 0.001 2 | 16.539 7±0.72 | 107.84±4.57 |
1 400 | 57.797 3 | 0.181 3 | 0.000 0 | 0.058 4 | 0.125 3 | 0.001 9 | 20.763 2±1.10 | 134.38±6.84 |
Table 1 40Ar-39Ar dating results
T/℃ | 40Ar/39Ar | 1σ | 37Ar/39Ar | 1σ | 36Ar/39Ar | 1σ | 40Ar*/39ArK±2σ | (Age± 2σ)/Ma |
---|---|---|---|---|---|---|---|---|
QY0807-1 | ||||||||
650 | 47.875 9 | 0.098 9 | 0.000 0 | 0.036 5 | 0.133 2 | 0.001 4 | 8.525 9±0.82 | 56.98±5.38 |
720 | 32.631 2 | 0.052 4 | 0.037 7 | 0.005 2 | 0.080 1 | 0.000 6 | 8.953 6±0.33 | 59.79±2.16 |
760 | 12.105 4 | 0.019 6 | 0.026 2 | 0.004 0 | 0.006 3 | 0.000 1 | 10.253 2±0.07 | 68.31±0.48 |
800 | 12.077 8 | 0.019 7 | 0.005 6 | 0.003 5 | 0.003 8 | 0.000 1 | 10.962 2±0.08 | 72.94±0.55 |
840 | 12.462 5 | 0.020 1 | 0.004 8 | 0.002 1 | 0.002 9 | 0.000 1 | 11.600 4±0.07 | 77.09±0.44 |
880 | 12.908 0 | 0.021 1 | 0.014 5 | 0.001 9 | 0.003 0 | 0.000 1 | 12.025 4±0.06 | 79.86±0.36 |
920 | 12.985 2 | 0.021 0 | 0.007 7 | 0.002 8 | 0.003 4 | 0.000 1 | 11.971 5±0.07 | 79.51±0.49 |
960 | 13.082 5 | 0.021 6 | 0.000 0 | 0.005 7 | 0.004 2 | 0.000 2 | 11.837 2±0.13 | 78.63±0.81 |
1 010 | 13.285 7 | 0.021 7 | 0.000 0 | 0.004 4 | 0.005 1 | 0.000 2 | 11.783 6±0.13 | 78.28±0.86 |
1 060 | 13.529 4 | 0.022 9 | 0.000 0 | 0.005 7 | 0.006 8 | 0.000 2 | 11.532 0±0.14 | 76.65±0.91 |
1 120 | 13.416 2 | 0.022 0 | 0.000 0 | 0.005 5 | 0.007 3 | 0.000 2 | 11.249 4±0.14 | 74.81±0.92 |
1 180 | 15.543 8 | 0.026 7 | 0.000 0 | 0.005 1 | 0.014 2 | 0.000 5 | 11.340 5±0.28 | 75.40±1.80 |
1 400 | 74.011 0 | 0.161 5 | 0.082 7 | 0.028 8 | 0.191 8 | 0.001 8 | 17.328 8±1.05 | 113.98±6.70 |
T/℃ | 40Ar/39Ar | 1σ | 37Ar/39Ar | 1σ | 36Ar/39Ar | 1σ | 40Ar*/39ArK±2σ | (Age± 2σ)/Ma |
QY0807-4 | ||||||||
600 | 102.673 1 | 0.303 8 | 0.000 0 | 0.035 7 | 0.337 2 | 0.002 9 | 3.028 8±1.61 | 20.24±10.70 |
680 | 21.169 5 | 0.035 1 | 0.006 9 | 0.007 4 | 0.045 1 | 0.000 5 | 7.856 0±0.32 | 52.03±2.07 |
720 | 32.079 7 | 0.054 3 | 0.000 0 | 0.012 3 | 0.076 1 | 0.000 7 | 9.599 6±0.38 | 63.37±2.46 |
760 | 15.509 9 | 0.025 1 | 0.000 0 | 0.004 0 | 0.015 4 | 0.000 2 | 10.956 8±0.13 | 72.16±0.81 |
800 | 13.057 1 | 0.021 0 | 0.019 7 | 0.004 2 | 0.005 7 | 0.000 2 | 11.362 4±0.12 | 74.77±0.75 |
840 | 13.417 1 | 0.021 6 | 0.000 0 | 0.002 0 | 0.004 6 | 0.000 1 | 12.043 0±0.08 | 79.16±0.52 |
880 | 13.375 6 | 0.022 0 | 0.000 0 | 0.004 4 | 0.004 5 | 0.000 2 | 12.044 9±0.10 | 79.17±0.65 |
920 | 13.717 8 | 0.022 0 | 0.000 9 | 0.001 5 | 0.004 7 | 0.000 1 | 12.318 1±0.07 | 80.92±0.45 |
960 | 13.928 1 | 0.022 5 | 0.000 0 | 0.005 3 | 0.006 6 | 0.000 2 | 11.990 6±0.13 | 78.82±0.81 |
1 020 | 14.341 9 | 0.024 5 | 0.000 0 | 0.012 4 | 0.007 2 | 0.000 3 | 12.217 3±0.21 | 80.28±1.35 |
1 100 | 15.310 1 | 0.025 1 | 0.000 3 | 0.003 1 | 0.010 8 | 0.000 1 | 12.110 3±0.09 | 79.59±0.59 |
1 180 | 16.814 2 | 0.027 3 | 0.008 0 | 0.003 5 | 0.014 5 | 0.000 2 | 12.520 3±0.11 | 82.22±0.68 |
1 260 | 29.340 9 | 0.061 4 | 0.000 0 | 0.032 9 | 0.043 3 | 0.001 2 | 16.539 7±0.72 | 107.84±4.57 |
1 400 | 57.797 3 | 0.181 3 | 0.000 0 | 0.058 4 | 0.125 3 | 0.001 9 | 20.763 2±1.10 | 134.38±6.84 |
[1] | 吴根耀. 初论造山带地层学: 以三江地区特提斯造山带为例[J]. 地层学杂志, 1998, 22(3):161-169. |
[2] | 王根厚, 唐菊兴, 李典, 等. 造山带野外工作方法: 以班公湖—怒江·龙木错—双湖增生造山带为例[M]. 北京: 地质出版社, 2019: 1-203. |
[3] | 张克信, 何卫红, JIN J S, 等. 洋板块地层在造山带构造-地层区划中的应用[J]. 地球科学, 2020(7):2305-2325. |
[4] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
DOI URL |
[5] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294:1671-1677.
DOI URL |
[6] | DING L, KAPP P, WAN X Q. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3):1-18. |
[7] |
MO X X, HOU Z Q, NIU Y L, et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1):225-242.
DOI URL |
[8] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1):49-67.
DOI URL |
[9] | 董彦辉, 许继峰, 曾庆高, 等. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J]. 岩石学报, 2006, 22(3):661-668. |
[10] | 黄丰, 许继峰, 陈建林, 等. 早侏罗世叶巴组与桑日群火山岩: 特提斯洋俯冲过程中的陆缘弧与洋内弧?[J]. 岩石学报, 2015, 31(7):2089-2100. |
[11] | 耿全如, 潘桂棠, 王立全, 等. 西藏冈底斯带叶巴组火山岩同位素地质年代[J]. 沉积与特提斯地质, 2006, 26(1):1-7. |
[12] |
ZHU D C, ZHAO Z D, NIU Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8):727-730.
DOI URL |
[13] |
ZHU D C, ZHAO Z D, NIU Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454.
DOI URL |
[14] |
JI W Q, WU F Y, CHUNG S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3):229-245.
DOI URL |
[15] | 陈炜, 马昌前, 边秋娟, 等. 西藏得明顶地区叶巴组火山岩地球化学特征和同位素U-Pb年龄证据[J]. 地质科技情报, 2009, 28(3) : 31-40. |
[16] | 曾忠诚, 刘德民, 泽仁扎西, 等. 西藏冈底斯东段叶巴组火山岩地球化学特征及其地质构造意义[J]. 吉林大学学报(地球科学版), 2009, 39(3):435-445. |
[17] |
PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.
DOI URL |
[18] | 钟康惠, 李磊, 周慧文, 等. 西藏甲玛—卡军果推-滑覆构造系特征[J]. 地球学报, 2012, 33(4):411-423. |
[19] | 钟康惠, 姚丹, 多吉, 等. 西藏甲玛—驱龙地区叶巴岩组构造学特征[J]. 地球学报, 2013, 34(1):75-86. |
[20] | 段志明, 李光明, 李应栩, 等. 中冈底斯成矿带龙根铅锌矿床含矿斑岩年代学与地球化学特征[J]. 矿床地质, 2014, 33(3):625-638. |
[21] | KANG Z Q, XU J F, WILDE S A, et al. Geochronology and geochemistry of the Sangri Group volcanic rocks, southern Lhasa Terrane: implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc[J]. Lithos, 2014, 200:157-168. |
[22] | 熊秋伟, 陈建林, 许继峰, 等. 拉萨地块南部得明顶地区叶巴组火山岩LA-ICP-MS锆石U-Pb年龄、 地球化学特征及其成因[J]. 地质通报, 2015, 34(9):1645-1655. |
[23] | 黄丰, 许继峰, 王保弟, 等. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运[J]. 地球科学, 2020, 45(8):2785-2804. |
[24] | 马士委, 许志琴, 张忠坤, 等. 藏南甲玛铜多金属矿床构造变形及其对成矿的制约[J]. 岩石学报, 2016, 2(12):3781-3799. |
[25] | 马元, 许志琴, 李广伟, 等. 藏南冈底斯白垩纪弧后盆地的地壳变形及初始高原的形成[J]. 岩石学报, 2017, 33(12):3861-3872. |
[26] | WEI Y Q, ZHAO Z D, NIU Y L, et al. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane[J]. Lithos, 2017, 278/279/280/281:477-490. |
[27] | 宋宇航, 解超明, 范建军, 等. 西藏甲鲁朗地区叶巴组火山岩成因及其对新特提斯洋俯冲的约束[J]. 地球科学, 2019, 44(7):2319-2338. |
[28] |
MA X X, XU Z Q, CHEN X J, et al. The origin and tectonic significance of the volcanic rocks of the Yeba Formation in the Gangdese magmatic belt, South Tibet[J]. Journal of Earth Science, 2017, 28(2):265-282.
DOI URL |
[29] | 韩奎, 周斌, 王辉, 等. 拉萨地块南缘日多地区叶巴组火山岩地球化学、 年代学、 锆石Lu-Hf同位素特征及其地质意义[J]. 地质通报, 2018, 37(8):1554-1570. |
[30] |
LIU Z C, DING L, ZHANG L Y, et al. Sequence and petrogenesis of the Jurassic volcanic rocks(Yeba Formation) in the Gangdese arc, southern Tibet: implications for the Neo-Tethyan subduction[J]. Lithos, 2018, 312/313:72-88.
DOI URL |
[31] | 苟金. 对拉萨地区叶巴组时代归属的新认识[J]. 西藏地质, 1994, 52:1-6. |
[32] | 阴家润, 苟金. 拉萨地块叶巴组内中侏罗世双壳类动物群及其古地理意义[J]. 中国区域地质, 1998, 17(2):132-136. |
[33] | 毛国政, 胡敬仁, 谢尧武. 拉萨地区叶巴组的特征及形成环境[J]. 西藏地质, 2002(1):12-18. |
[34] | 裴树文. 拉萨地块火山岩系内早—中侏罗世双壳类动物群及其古生物地理[J]. 现代地质, 1999(3):219-297. |
[35] | 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J]. 地质通报, 2008, 27(4):458-468. |
[36] | 江宇, 刘明明, 孙春卫, 等. 西藏拉萨达孜侏罗统叶巴组火山角砾凝灰岩中波痕的发现及意义[J]. 西藏大学学报(自然科学版), 2012, 27(5):43-46. |
[37] | 毛景文, 罗茂澄, 谢桂青, 等. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 2014, 88(12):2153-2175. |
[38] | 杨志明, 侯增谦, 江迎飞, 等. 西藏驱龙矿区早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素研究[J]. 岩石学报, 2011, 27(7):2003-2010. |
[39] | 董昕, 张泽明. 拉萨地体南部早侏罗世岩浆岩的成因和构造意义[J]. 岩石学报, 2013, 29(6):1933-1948. |
[40] | 邱检生, 王睿强, 赵姣龙, 等. 冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示: 以日喀则东嘎岩体为例[J]. 岩石学报, 2015, 31(12):3569-3580. |
[41] |
CHUANG S L, CHU M F, JI J, et al. The nature and timing of crustal thickening in southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites[J]. Tectonophysics, 2009, 477:36-48.
DOI URL |
[42] |
XU Z Q, DILEK Y, CAO H, et al. Paleo Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathay sides[J]. Journal of Asian Earth Sciences, 2015, 105:320-337.
DOI URL |
[43] | 董国臣, 莫宣学, 赵志丹, 等. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据[J]. 岩石学报, 2006, 22(4):835-844. |
[44] |
ZHU D C, PAN G T, CHUNG S L. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese,South Tibet[J]. International Geology Review, 2008, 50(5) : 442-471.
DOI URL |
[45] |
ZHU D C, ZHAO Z D, PAN G T, et al. Early Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences, 2009, 34(3):298-309.
DOI URL |
[46] |
HE S, KAPP P, DECELLES P G, et al. Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet[J]. Tectonophysics, 2014, 433(1):15-37.
DOI URL |
[47] | HUANG F, ZHANG Z, XU J F, et al. Fluid flux in the lithosphere beneath southern Tibet during Neo-Tethyan slab breakoff: evidence from an appinite-granite suite[J]. Lithos, 2015, 344:324-338. |
[48] | 张彦, 陈文, 陈克龙, 等. 成岩混层(I/S)Ar-Ar年龄谱型及39Ar核反冲丢失机理研究: 以浙江长兴地区P-T界线粘土岩为例[J]. 地质论评, 2006, 52(4):556-561. |
[49] |
DUTTA D, MUKHERJEE S. Opposite shear senses: geneses, global occurrences, numerical simulations and a case study from the Indian western Himalaya[J]. Journal of Structural Geology, 2019, 126:357-392.
DOI URL |
[50] | 高曦. 西藏甲玛地区构造变形及其控矿规律研究[D]. 北京: 中国地质大学(北京), 2019: 1-157. |
[51] |
WEN D R, CHUNG S L, SONG B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications[J]. Lithos, 2008, 105(1/2):1-11.
DOI URL |
[52] | FRISCH W, MESCHEDE M, BLAKEY R. Plate tectonics[M]. Berlin, Heidelberg: Springer, 2011: 1-212. |
[53] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76:1-131.
DOI URL |
[54] | 丁林, 岳雅慧, 蔡福龙, 等. 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 2006, 80:1252-1261. |
[55] | 蒋光武, 郭建慈. 西藏谢通门—拉萨—沃卡韧脆性剪切带特征及其地质意义[J]. 西藏地质, 2002(2):64-70. |
[56] | 孟元库, 许志琴, 马士委, 等. 藏南冈底斯地体谢通门—曲水韧性剪切带40Ar/39Ar年代学约束[J]. 地质论评, 2017, 62(4):795-806. |
[57] |
FENG Y P, WANG G H, MENG Y, et al. Kinematics, strain patterns, rheology, and geochronology of Woka ductile shear zone: product of uplift of Gangdese batholith and Great Counter Thrust activity[J]. Geological Journal, 2020, 55:7251-7271.
DOI URL |
[58] |
LI G W, KOHN B, SANDIFORD M, et al. Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet: insights from low-temperature thermochronology[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(1):101-112
DOI URL |
[59] | 孟元库, 许志琴. 藏南冈底斯地体中段南缘构造演化[J]. 地球学报, 2017, 38(1):15-18. |
[60] | KHANAL G P, WANG J M, LARSON K P, et al. Eocene metamorphism and anatexis in the Kathmandu klippe, central Nepal: implications for early crustal thickening and initial rise of the Himalaya[J]. Tectonics, 2021, 40:1-25. |
[61] |
CHEN M, NIU F, TROMP J, et al. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nature Communications, 2017, 8:1-10.
DOI URL |
[1] | ZHOU Qijie, LIU Yongjiang, WANG Deying, GUAN Qingbin, WANG Guangzeng, WANG Yu, LI Zunting, LI Sanzhong. Mesozoic-Cenozoic tectonic evolution and buried hill formation in central Bohai Bay [J]. Earth Science Frontiers, 2022, 29(5): 147-160. |
[2] | GU Xuexiang, ZHANG Yongmei, GE Zhanlin, CHEN Weizhi, XU Jingchi, HUANG Gang, TAO Wei. The orogenic Au mineralization system and regional tectonic evolution in the Kalamaili area, East Junggar, Xinjiang [J]. Earth Science Frontiers, 2020, 27(2): 254-275. |
[3] |
LIU Demin, YANG Weiran, GUO Tieying, RU Jiangtao, XIONG Aimin .
Discussion on the Cenozoic tectonic evolution and dynamics of southern Tibet
[J]. Earth Science Frontiers, 2020, 27(1): 275-286.
|
[4] | LIU Demin, YANG Weiran, GUO Tieying. Discussion on Cenozoic tectonic development and dynamics in South Tibet [J]. Earth Science Frontiers, 2020, 27(1): 194-203. |
[5] | CHEN Guochao,PEI Xianzhi,LI Ruibao,LI Zuochen,PEI Lei,LIU Chengjun,CHEN Youxin,WANG Meng,GAO Feng,LI Xiaobing. Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons [J]. Earth Science Frontiers, 2019, 26(4): 191-208. |
[6] | LI Jianghai,LIU Chiheng,HAN Xiqiu. Tectonic characteristics and kinematic significance for the global mid-ocean ridge system [J]. Earth Science Frontiers, 2019, 26(3): 154-162. |
[7] | FENG Zhiqiang,LIU Yongjiang,JIN Wei,JIANG Liwei,LI Weimin,WEN Quanbo, LI Xiaoyu,ZHANG Tie'an,DU Bingying,MA Yongfei,ZHANG Li. Spatiotemporal distribution of ophiolites in the northern Great Xing'an Range and its relationship with the geotectonic evolution of NE China [J]. Earth Science Frontiers, 2019, 26(2): 120-136. |
[8] | ZHANG Guangya,YU Zhaohua,CHEN Zhongmin,ZHANG Diqiu,WEN Zhixin,HUANG Tongfei,WANG Yanqi,LIU Xiaobing,MA Feng,ZHAO Jian. Tectonic evolution and hydrocarbon distribution in African basins. [J]. Earth Science Frontiers, 2018, 25(2): 1-14. |
[9] | WU Zhiping,LIU Yuqing,ZHANG Jie,JIA Bo,LIU Yiming,DUAN Liang,ZHANG Daojun,PEI Jianxiang. [J]. Earth Science Frontiers, 2018, 25(2): 221-231. |
[10] | ZHANG Kexin,HE Weihong,XU Yadong,LUO Mansheng,SONG Bowen,KOU Xiaohu. Palaeogeographic distribution and tectonic evolution of OPS in China. [J]. Earth Science Frontiers, 2016, 23(6): 24-30. |
[11] | QIAO Xiufu,JIANG Mei,LI Haibing,GUO Xianpu,SU Dechen,XU Lehong. Softsediment deformation structures and their implications for tectonic evolution from Mesozoic to Cenozoic in the Longmen Shan. [J]. Earth Science Frontiers, 2016, 23(6): 80-106. |
[12] | CHENG Rong, XIAO Yong-Jun, LIN Hui-Chi, LIU Zhong-Quan, WANG Da-Hua. A study of Carboniferous stratigraphic distribution and controlling factors in the eastern section of North Qaidam. [J]. Earth Science Frontiers, 2016, 23(5): 75-85. |
[13] | CHAO Hui-Xia, HAN Xiao-Hui, YANG Zhi-Hua, TUN Xu, LV Yan. New exploration of geotectonic characteristics of Hainan Island. [J]. Earth Science Frontiers, 2016, 23(4): 200-211. |
[14] | MAO Fengjun,LIU Ruohan,LIU Bang. Palaeogeographic evolution of the Upper Cretaceous in Termit Basin and its adjacent areas, Niger [J]. Earth Science Frontiers, 2016, 23(3): 186-197. |
[15] | . Main controlling factors of Paleogene hydrocarbon accumulation of Termit Basin, West African rift system. [J]. Earth Science Frontiers, 2015, 22(6): 207-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||