Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 111-126.DOI: 10.13745/j.esf.sf.2023.11.8
Previous Articles Next Articles
Received:
2023-10-20
Revised:
2023-11-06
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
WANG Ruimin, SHEN Bing. The disappearance of banded iron formations: Research progress and perspectives on the origin of rhythmic Fe-rich/Si-rich laminae[J]. Earth Science Frontiers, 2024, 31(1): 111-126.
Fig.1 BIF abundances and in correlation with influencing factors through geological history. The grey shadow represents the disappearance of BIF. (a) Distribution of marine iron-rich deposits (modified from [3]). (b) Evolution of the atmospheric pO2 level (modified from [23]). (c) Distribution of mantle superplumes (modified from [3]). (d) Ocean redox structure through time (modified from [23]). (e) The evolutionary history of major clades of life.
地区 | 国家 | 组名 | 时代 | 含铁矿物类型 | 含铁量 |
---|---|---|---|---|---|
华北燕辽地区 | 中国 | 下马岭组 | 约1.4 Ga | 层状菱铁矿、铁白云石结核等 | 520 Gt? |
华北燕辽地区 | 中国 | 串岭沟组 | 约1.6 Ga | 鲕状、肾状、块状、叠层石状铁岩 | 未知 |
祁连山地区 | 中国 | 镜铁山组 | 约1.3 Ga | 层状镜铁矿 | 未知 |
黛眉山地区 | 中国 | 云梦山组 | 约1.7 Ga | 赤铁矿 | 未知 |
神农架地区 | 中国 | 矿石山组 | 约1.3 Ga | 菱铁矿 | 未知 |
神农架地区 | 中国 | 送子园组 | 约1.1 Ga | 磁铁矿 | 未知 |
柴达木地区 | 中国 | 红藻山组 | 1.6~0.7 Ga? | 赤铁矿 | 未知 |
Northern Territory | 澳大利亚 | Roper组 | 约1.5 Ga | 薄层鲕状铁岩 | 未知 |
Queensland | 澳大利亚 | South Nicholson群 | 约1.5 Ga | 富铁层 | 未知 |
Eastern Botswana | 博茨瓦纳 | Shoshong组 | 约1.6 Ga | 层状铁岩 | 1 Gt |
Table 1 Non-BIF ironstones in the Mesoproterozoic
地区 | 国家 | 组名 | 时代 | 含铁矿物类型 | 含铁量 |
---|---|---|---|---|---|
华北燕辽地区 | 中国 | 下马岭组 | 约1.4 Ga | 层状菱铁矿、铁白云石结核等 | 520 Gt? |
华北燕辽地区 | 中国 | 串岭沟组 | 约1.6 Ga | 鲕状、肾状、块状、叠层石状铁岩 | 未知 |
祁连山地区 | 中国 | 镜铁山组 | 约1.3 Ga | 层状镜铁矿 | 未知 |
黛眉山地区 | 中国 | 云梦山组 | 约1.7 Ga | 赤铁矿 | 未知 |
神农架地区 | 中国 | 矿石山组 | 约1.3 Ga | 菱铁矿 | 未知 |
神农架地区 | 中国 | 送子园组 | 约1.1 Ga | 磁铁矿 | 未知 |
柴达木地区 | 中国 | 红藻山组 | 1.6~0.7 Ga? | 赤铁矿 | 未知 |
Northern Territory | 澳大利亚 | Roper组 | 约1.5 Ga | 薄层鲕状铁岩 | 未知 |
Queensland | 澳大利亚 | South Nicholson群 | 约1.5 Ga | 富铁层 | 未知 |
Eastern Botswana | 博茨瓦纳 | Shoshong组 | 约1.6 Ga | 层状铁岩 | 1 Gt |
Fig.2 Field photos of typical Precambrian BIFs and mid-Proterozoic iron formations in China. (a) BIFs (~2.5 Ga), Sijiaying Section. (b-c) BIFs (~0.7 Ga), basal Fulu Formation. (d) Siderite (~1.4 Ga), Xiamaling Formation. (e) Oolite ironstones (~1.6 Ga), Chuanlinggou Formation. (f) Specularite (~1.3 Ga), Jingtieshan Formation. (g) Ironstone (~1.1 Ga), Songziyuan Formation. (h) Ironstone (~1.3 Ga), Kuangshishan Formation. (i) Ironstone, top of the Hongzaoshan Formation.
Fig.3 Isotopic characteristics of Precambrian BIFs and BIF formation model. (a) Distribution of Si isotopic compositions in Precambrian cherts and BIFs (data from from [43] and references therein). (b) Formation of BIFs through co-precipitation of silica and Fe(OOH)-silica gels during iron cycling.
Fig.4 Hypotheses on the origin of rhythmic Fe-rich/Si-rich laminae in BIFs, focusing on hydrothermal origin of Fe(II). Emphases are place on (a) periodical seafloor hydrothermal eruption ( modified from [85]), (b) mixing of hydrothermal fluids and seawater during single eruption (modified from [84]), or (c) self organization resulted by co-enrichment of Fe/Si in hydrothermal fluids.
铁的差异性 | 假说 | 评估 | |||
---|---|---|---|---|---|
铁-硅来源 | 时间尺度 | 沉积环境 | 地史分布 | ||
铁的供给差异 | 热液周期性喷发 | A | B | C | B |
单次热液喷发 | A | A | C | B | |
自组织反应(pH控制) | A | A | C | A | |
铁的氧化差异 | 周期性上升流活动 | A | A | A | C |
海水温度变化 | B | A | A | C | |
微生物光合作用变化 | B | A | A | C | |
海平面变化 | B | B | A | C | |
铁的保存差异 | 表层生产力/输入有机物变化 | B | A | A | B |
Table 2 Evaluation of different hypotheses on the origin of rhythmic Fe-rich/Si-rich laminae in BIFs
铁的差异性 | 假说 | 评估 | |||
---|---|---|---|---|---|
铁-硅来源 | 时间尺度 | 沉积环境 | 地史分布 | ||
铁的供给差异 | 热液周期性喷发 | A | B | C | B |
单次热液喷发 | A | A | C | B | |
自组织反应(pH控制) | A | A | C | A | |
铁的氧化差异 | 周期性上升流活动 | A | A | A | C |
海水温度变化 | B | A | A | C | |
微生物光合作用变化 | B | A | A | C | |
海平面变化 | B | B | A | C | |
铁的保存差异 | 表层生产力/输入有机物变化 | B | A | A | B |
Fig.5 Hypotheses on the origin of rhythmic Fe-rich/Si-rich laminae in BIFs, focusing on the mechanisms of Fe(II) oxidation. Emphases are placed on (a) periodic upwelling of hydrothermal fluids (modified from [83]), (b) temperature variation in the euphotic zone, (c) effect of nutrient input on photosynthesis, or (d) sea level change.
[1] |
JAMES H L. Sedimentary facies of iron-formation[J]. Economic Geology, 1954, 49(3): 235-293.
DOI URL |
[2] |
KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10): 1473-1499.
DOI URL |
[3] | BEKKER A, PLANAVSKY N J, KRAPEŽ B, et al. Iron Formations: their origins and implications for ancient seawater chemistry[J]. Treatise on Geochemistry, 2014, 9: 561-628. |
[4] |
WANG C, ROBBINS L J, PLANAVSKY N J, et al. Archean to early Paleoproterozoic iron formations document a transition in iron oxidation mechanisms[J]. Geochimica et Cosmochimica Acta, 2023, 343: 286-303.
DOI URL |
[5] | GROSS G A. A classification of iron formations based on depositional environments[J]. The Canadian Mineralogist, 1980, 18(2): 215-222. |
[6] | BEUKES N, GUTZMER J. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic Boundary[J]. Reviews in Economic Geology, 2008, 15: 5-47. |
[7] |
LYONS T W, DIAMOND C W, PLANAVSKY N J, et al. Oxygenation, life, and the planetary system during Earth's middle history: an overview[J]. Astrobiology, 2021, 21(8): 906-923.
DOI PMID |
[8] |
JICKELLS T D, AN Z S, ANDERSEN K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5718): 67-71.
DOI PMID |
[9] |
TRéGUER P J, ROCHA C L D L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5(1): 477-501.
DOI URL |
[10] |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
DOI |
[11] | ISLEY A E, ABBOTT D H. Plume-related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research: Solid Earth, 1999, 104: 15461. |
[12] |
BARLEY M E, PICKARD A L, SYLVESTER P J. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago[J]. Nature, 1997, 385(6611): 55-58.
DOI |
[13] |
RASMUSSEN B, FLETCHER I R, BEKKER A, et al. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth[J]. Nature, 2012, 484(7395): 498-501.
DOI |
[14] | HOLLAND H D. The Chemical Evolution of the Atmosphere and Oceans[M]. Princeton: Princeton University Press, 1984. |
[15] |
CLOUD P E. A working model of the primitive Earth[J]. American Journal of Science, 1972, 272: 537-548.
DOI URL |
[16] |
CANFIELD D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453.
DOI |
[17] |
POULTON S W, FRALICK P W, CANFIELD D E. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3(7): 486-490.
DOI |
[18] | WANG C, LECHTE M A, REINHARD C T, et al. Strong evidence for a weakly oxygenated ocean-atmosphere system during the Proterozoic[J]. Proceedings of the National Academy of Sciences, 2022, 119(6): e2116101119. |
[19] |
SHANG M, TANG D, SHI X, et al. A pulse of oxygen increases in the early Mesoproterozoic ocean at ca. 1.57-1.56 Ga[J]. Earth and Planetary Science Letters, 2019, 527: 115797.
DOI URL |
[20] | 张水昌, 王华建, 王晓梅, 等. 中元古代增氧事件[J]. 中国科学: 地球科学, 2022, 52(1): 26-52. |
[21] |
PLANAVSKY N J, MCGOLDRICK P, SCOTT C T, et al. Widespread iron-rich conditions in the mid-Proterozoic ocean[J]. Nature, 2011, 477(7365): 448-451.
DOI |
[22] |
PLANAVSKY N J, REINHARD C T, WANG X, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635-638.
DOI URL |
[23] |
GUILBAUD R, POULTON S W, BUTTERFIELD N J, et al. A global transition to ferruginous conditions in the early Neoproterozoic oceans[J]. Nature Geoscience, 2015, 8(6): 466-470.
DOI |
[24] | 朱祥坤, 张衎, 张飞飞, 等. 蓟县中元古界下马岭组中菱铁矿的发现及其意义[J]. 地质论评, 2013, 59(5): 816-822. |
[25] | CANFIELD D E, ZHANG S, WANG H, et al. A Mesoproterozoic iron formation[J]. Proceedings of the National Academy of Sciences, 2018, 115(17): E3895-E904. |
[26] |
TANG D, SHI X, JIANG G, et al. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications[J]. Gondwana Research, 2018, 58: 1-15.
DOI URL |
[27] |
SU W, ZHANG S, HUFF W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(3): 543-53.
DOI URL |
[28] | 李志红, 朱祥坤. 河北省宣龙式铁矿的地球化学特征及其地质意义[J]. 岩石学报, 2012, 28(9): 2903-11. |
[29] | 汤冬杰, 史晓颖, 刘典波, 等. 华北古元古代末鲕铁岩: Columbia超大陆裂解初期的沉积响应[J]. 地球科学: 中国地质大学学报, 2015, 24(2): 290-304. |
[30] | 杨合群, 赵东宏. 甘肃镜铁山含铜条带状铁建造的年龄[J]. 西北地质科学, 1999, 20 (1): 1-3. |
[31] |
YANG X, ZHANG Z, GUO S, et al. Geochronological and geochemical studies of the metasedimentary rocks and diabase from the Jingtieshan deposit, North Qilian, NW China: constraints on the associated banded iron formations[J]. Ore Geology Reviews, 2016, 73: 42-58.
DOI URL |
[32] |
QIU Y, ZHAO T, LI Y. The Yunmengshan iron formation at the end of the Paleoproterozoic era[J]. Applied Clay Science, 2020, 199: 105888.
DOI URL |
[33] | QIU Y, QIN L, HUANG F, et al. Early prosperity of iron bacteria at the end of the Paleoproterozoic Era[J]. Geophysical Research Letters, 2022, 49(9): e2022GL097877. |
[34] |
KENDALL B, CREASER R A, GORDON G W, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2534-2558.
DOI URL |
[35] |
LI D, LUO G, YANG H, et al. Characteristics of the carbon cycle in late Mesoproterozoic: evidence from carbon isotope composition of paired carbonate and organic matter of the Shennongjia Group in South China[J]. Precambrian Research, 2022, 377: 106726.
DOI URL |
[36] |
MCDOUGALL I, DUNN P R, COMPSTON W, et al. Isotopic age determinations on precambrian rocks of the carpentaria region, northern territory, Australia[J]. Journal of the Geological Society of Australia, 1965, 12(1): 67-90.
DOI URL |
[37] |
TRENDALL A F. Precambrian Iron-Formations of Australia[J]. Economic Geology, 1973, 68(7): 1023-1034.
DOI URL |
[38] | FROESE E, GOETZ P A. Geology of the Sherridon Group in the vicinity of Sherridon, Manitoba[M]. Ottawa: Geological Survey of Canada, 1981. |
[39] | JARRETT A, HALL L, CARR L, et al. Source rock geochemistry of the Isa Superbasin and South Nicholson Basin, Northern Australia: baseline regional hydrocarbon prospectivity[M]. Canberra: Geoscience Australia, 2019. |
[40] | CARSON C J, KOSITCIN N, ANDERSON J R, et al. A revised Proterozoic tectono-stratigraphy of the South Nicholson region, Northern Territory, Australia: insights from SHRIMP U-Pb detrital zircon geochronology[J/OL]. Australian Journal of Earth Sciences, 2023: 1-25 [2023-10-21]. DOI: 10.1080/08120099.2023.2264355. |
[41] | ERMANOVICS M T, JONES R M. The Palapye Group, central-eastern Botswana[J]. South African Journal of Geology, 1978, 81: 61-73. |
[42] | KENDALL B, ANBAR A D, KAPPLER A, et al. The global iron cycle. Fundamentals of geobiology[M]. Hoboken: Wiley Online Library, 2012: 65-92. |
[43] |
KONHAUSER K O, PLANAVSKY N J, HARDISTY D S, et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172: 140-177.
DOI URL |
[44] |
CONDIE K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/2/3/4): 1-37.
DOI URL |
[45] |
HOLLAND H D. The oceans: a possible source of iron in iron-formations[J]. Economic Geology, 1973, 68(7): 1169-1172.
DOI URL |
[46] |
CHU N C, JOHNSON C M, BEARD B L, et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 202-217.
DOI URL |
[47] |
SEVERMANN S, JOHNSON C M, BEARD B L, et al. The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 14' N[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 63-76.
DOI URL |
[48] |
FITZSIMMONS J N, JOHN S G, MARSAY C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange[J]. Nature Geoscience, 2017, 10(3): 195-201.
DOI |
[49] | 姚通, 李厚民, 杨秀清, 等. 辽冀地区条带状铁建造地球化学特征: Ⅱ.稀土元素特征[J]. 岩石学报, 2014, 30(5): 1239-1252. |
[50] |
KUMP L R, SEYFRIED W E. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J]. Earth and Planetary Science Letters, 2005, 235(3): 654-662.
DOI URL |
[51] |
LI W, BEARD B L, JOHNSON C M. Biologically recycled continental iron is a major component in banded iron formations[J]. Proceedings of the National Academy of Sciences, 2015, 112(27): 8193-8198.
DOI URL |
[52] |
BEKKER A, SLACK J F, PLANAVSKY N, et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508.
DOI URL |
[53] |
KAPPLER A, PASQUERO C, KONHAUSER K, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33: 865-868.
DOI URL |
[54] |
KONHAUSER K O, HAMADE T, RAISWELL R, et al. Could bacteria have formed the Precambrian banded iron formations?[J]. Geology, 2002, 30(12): 1079-1082.
DOI URL |
[55] |
黄柳琴, 李林鑫, 蒋宏忱. BIFs的形成及其铁氧化机制研究进展与展望[J]. 地学前缘, 2023, 30(2): 333-346.
DOI |
[56] |
POSTH N R, KONHAUSER K O, KAPPLER A. Microbiological processes in banded iron formation deposition[J]. Sedimentology, 2013, 60(7): 1733-1754.
DOI URL |
[57] |
CAIRNS-SMITH A G. Precambrian solution photochemistry, inverse segregation, and banded iron formations[J]. Nature, 1978, 276(5690): 807-808.
DOI |
[58] |
KONHAUSER K O, AMSKOLD L, LALONDE S V, et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 87-100.
DOI URL |
[59] |
RASMUSSEN B, MUHLING J R, SUVOROVA A, et al. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform[J]. Precambrian Research, 2017, 290: 49-62.
DOI URL |
[60] |
TOSCA N J, GUGGENHEIM S, PUFAHL P K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater[J]. GSA Bulletin, 2016, 128(3/4): 511-530.
DOI URL |
[61] |
ROBBINS L J, FUNK S P, FLYNN S L, et al. Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations[J]. Nature Geoscience, 2019, 12(7): 558-563.
DOI |
[62] |
PLANAVSKY N J, ASAEL D, HOFMANN A, et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event[J]. Nature Geoscience, 2014, 7(4): 283-286.
DOI |
[63] |
LALONDE S V, KONHAUSER K O. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis[J]. Proceedings of the National Academy of Sciences, 2015, 112(4): 995-1000.
DOI URL |
[64] |
DUAN Y, ANBAR A D, ARNOLD G L, et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6655-6668.
DOI URL |
[65] |
SIEVER R. The silica cycle in the Precambrian[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3265-3272.
DOI URL |
[66] |
TRéGUER P, NELSON D M, VAN BENNEKOM A J, et al. The silica balance in the world ocean: a reestimate[J]. Science, 1995, 268(5209): 375-379.
PMID |
[67] | PERRY E C, LEFTICARIU L. Formation and geochemistry of Precambrian Cherts[M]//Treatise on geochemistry. Amsterdam: Elsevier, 2014: 113-139. |
[68] |
PERCAK-DENNETT E M, BEARD B L, XU H, et al. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater[J]. Geobiology, 2011, 9(3): 205-220.
DOI URL |
[69] |
MORRIS R C. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia[J]. Precambrian Research, 1993, 60(1): 243-286.
DOI URL |
[70] | FISCHER W W, KNOLL A H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation[J]. GSA Bulletin, 2009, 121(1/2): 222-235. |
[71] |
ZEGEYE A, BONNEVILLE S, BENNING L G, et al. Green rust formation controls nutrient availability in a ferruginous water column[J]. Geology, 2012, 40(7): 599-602.
DOI URL |
[72] |
REDDY T R, ZHENG X Y, RODEN E E, et al. Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis[J]. Geochimica et Cosmochimica Acta, 2016, 190: 85-99.
DOI URL |
[73] |
ZHENG X-Y, BEARD B L, REDDY T R, et al. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 2016, 187: 102-122.
DOI URL |
[74] |
MARIN-CARBONNE J, ROBERT F, CHAUSSIDON M. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures?[J]. Precambrian Research, 2014, 247: 223-234.
DOI URL |
[75] |
DELSTANCHE S, OPFERGELT S, CARDINAL D, et al. Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide[J]. Geochimica et Cosmochimica Acta, 2009, 73(4): 923-934.
DOI URL |
[76] |
THOMPSON K J, KENWARD P A, BAUER K W, et al. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans[J]. Science Advances, 2019, 5(11): eaav2869.
DOI URL |
[77] |
WU L L, PERCAK-DENNETT E M, BEARD B L, et al. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record[J]. Geochimica et Cosmochimica Acta, 2012, 84: 14-28.
DOI URL |
[78] |
LANTINK M L, DAVIES J H F L, MASON P R D, et al. Climate control on banded iron formations linked to orbital eccentricity[J]. Nature Geoscience, 2019, 12(5): 369-374.
DOI PMID |
[79] |
LI Y L. Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions[J]. Earth and Planetary Science Letters, 2014, 391: 160-170.
DOI URL |
[80] |
SUN Z, ZHOU H, GLASBY G P, et al. Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents[J]. American Mineralogist, 2013, 98(1): 85-97.
DOI URL |
[81] | 刘洪波. 鞍-本地区条带状铁建造中硅铁矿物分异反馈及生长动力学演化[J]. 矿产与地质, 1996, 10(1): 1-5. |
[82] |
BAU M, DULSKI P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1): 37-55.
DOI URL |
[83] |
HAMADE T, KONHAUSER K O, RAISWELL R, et al. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations[J]. Geology, 2003, 31(1): 35-38.
DOI URL |
[84] |
LI Y, HOU K, WAN D, et al. Precambrian banded iron formations in the North China Craton: silicon and oxygen isotopes and genetic implications[J]. Ore Geology Reviews, 2014, 57: 299-307.
DOI URL |
[85] |
STEINHOEFEL G, HORN I, VON BLANCKENBURG F. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation[J]. Geochimica et Cosmochimica Acta, 2009, 73(18): 5343-5360.
DOI URL |
[86] |
WANG C, WU H, LI W, et al. Changes of Ge/Si, REE+Y and SmNd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the -2.54 Ga Sijiaying banded iron formation in Eastern Hebei, China[J]. Ore Geology Reviews, 2017, 80: 363-376.
DOI URL |
[87] |
KATSUTA N, SHIMIZU I, HELMSTAEDT H, et al. Major element distribution in Archean banded iron formation (BIF): influence of metamorphic differentiation[J]. Journal of Metamorphic Geology, 2012, 30(5): 457-472.
DOI URL |
[88] | 代堰锫, 朱玉娣, 张连昌, 等. 国内外前寒武纪条带状铁建造研究现状[J]. 地质论评, 2016, 62(3): 735-757. |
[89] | 李厚民, 李延河, 李立兴, 等. 沉积变质型铁矿成矿条件及富铁矿形成机制[J]. 地质学报, 2022, 96(9): 3211-3233. |
[90] |
WANG Y, XU H, MERINO E, et al. Generation of banded iron formations by internal dynamics and leaching of oceanic crust[J]. Nature Geoscience, 2009, 2(11): 781-784.
DOI |
[91] |
DREVER J I. Geochemical model for the origin of Precambrian banded iron formations[J]. GSA Bulletin, 1974, 85(7): 1099-1106.
DOI URL |
[92] |
GARRELS R M. A model for the deposition of the microbanded Precambrian iron formations[J]. American Journal of Science, 1987, 287(2): 81-106.
DOI URL |
[93] | MILLER A R, READING K L. Iron - formation, evaporite, and possible metallogenetic implications for the Lower Proterozoic Hurwitz Group, District of Keewatin, Northwest Territories[C]// Canada-Northwest Territories Mineral Initiatives, 1991-1996. Ottawa: Geological Survey of Canada, 1993. |
[94] |
POSTH N R, HEGLER F, KONHAUSER K O, et al. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans[J]. Nature Geoscience, 2008, 1(10): 703-708.
DOI |
[95] |
SCHAD M, HALAMA M, BISHOP B, et al. Temperature fluctuations in the Archean ocean as trigger for varve-like deposition of iron and silica minerals in banded iron formations[J]. Geochimica et Cosmochimica Acta, 2019, 265: 386-412.
DOI URL |
[96] |
CLOUD P. Paleoecological significance of the banded Iron-formation[J]. Economic Geology, 1973, 68(7): 1135-1143.
DOI URL |
[97] |
HASHIZUME K, PINTI D L, ORBERGER B, et al. A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation[J]. Earth and Planetary Science Letters, 2016, 446: 27-36.
DOI URL |
[98] | 李陛, 吴文芳, 李金华, 等. 温度和电子传递体AQDS对铁还原细菌Shewanella putrefaciens CN32矿化产物的影响[J]. 地球物理学报, 2011, 54(10): 2631-2638. |
[99] |
LASCELLES D F. Plate tectonics caused the demise of banded iron formations[J]. Applied Earth Science, 2013, 122(4): 230-241.
DOI URL |
[100] |
HUMPHRIS S E, KLEIN F. Progress in deciphering the controls on the geochemistry of fluids in seafloor hydrothermal systems[J]. Annual Review of Marine Science, 2018, 10(1): 315-343.
DOI URL |
[101] |
JAVAUX E J, LEPOT K. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth's middle-age[J]. Earth-Science Reviews, 2018, 176: 68-86.
DOI URL |
[102] | 尹磊明, 袁训来, 边立曾, 等. 东秦岭北坡中元古代晚期微体生物群: 一个早期生命的新窗口[J]. 古生物学报, 2004, 43(1): 1-13. |
[1] | XU Daliang, DENG Xin, PENG Lianhong, TIAN Yang, JIN Wei, JIN Xinbiao. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes [J]. Earth Science Frontiers, 2023, 30(4): 299-316. |
[2] | HUANG Liuqin, LI Linxin, JIANG Hongchen. Formation and iron oxidation mechanisms of BIFs: Research progress review and outlook [J]. Earth Science Frontiers, 2023, 30(2): 333-346. |
[3] | HAN Jian, GUO Junfeng, OU Qiang, SONG Zuchen, LIU Ping, HAO Wenjing, SUN Jie, WANG Xing. Evolutionary framework of early Cambrian cnidarians from South China [J]. Earth Science Frontiers, 2020, 27(6): 67-78. |
[4] | ZHANG Jiawei, CHEN Jianshu, WU Tao, YE Taiping, CHEN Minghua, DAI Yaran, DENG Xiaojie, MU Jun. Comparison of the geochronological frameworks and preliminary study on key geological events during the Neoproterozoic Late Tonian period in the Hunan-Guizhou-Guangxi area [J]. Earth Science Frontiers, 2020, 27(4): 1-16. |
[5] | HU Ruizhong, CHEN Wei, BI Xianwu, FU Shanling, YIN Runsheng, XIAO Jiafei. Control of the Precambrian basement on the formation of the Mesozoic large-scale low-temperature mineralization in the Yangtze Craton [J]. Earth Science Frontiers, 2020, 27(2): 137-150. |
[6] | LI Sanzhong,SUO Yanhui,LIU Bo,LIU Yongjiang,LI Xiyao,ZHAO Shujuan,ZHU Junjiang,WANG Guangzeng,ZHANG Guowei. Microplate tectonics theory: insights from microblocks in the global oceans and continental margins [J]. Earth Science Frontiers, 2018, 25(5): 323-356. |
[7] | GUO Yunpeng,LIU Jianming,ZENG Qingdong,GAO Shuai,WANG Luming. The ~2.5 Ga monzogranite in the Shaolanghe area of the northern margin of the North China Craton and its geological significance. [J]. Earth Science Frontiers, 2018, 25(4): 11-22. |
[8] | LU Songnian,HAO Guojie,XIANG Zhenqun. Precambrian major geological events. [J]. Earth Science Frontiers, 2016, 23(6): 140-155. |
[9] | . Precambrian geodynamics (Ⅷ): Late Archean crustal growth models recorded in the North China Craton. [J]. Earth Science Frontiers, 2015, 22(6): 109-124. |
[10] | . Precambrian geodynamics (Ⅵ): Formation of North China Craton. [J]. Earth Science Frontiers, 2015, 22(6): 77-96. |
[11] | . Precambrian geodynamics (Ⅴ): Origin of plate tectonics. [J]. Earth Science Frontiers, 2015, 22(6): 65-76. |
[12] | LI San-Zhong, ZHANG Zhen, SUN Wen-Jun, DAI Li-Meng, ZHANG Guo-Wei. Precambrian geodynamics (Ⅰ): From universal environment to protoEarth. [J]. Earth Science Frontiers, 2015, 22(6): 1-9. |
[13] | ZHOU Xiao-Bei, LI Jiang-Hai, WANG Hong-Gao, LI Wen-Shan, CHENG Ya-Lin. The type of prototypic basin and tectonic setting of Tarim Basin formation from Nanhua to Sinian. [J]. Earth Science Frontiers, 2015, 22(3): 290-298. |
[14] | . The impact of highgrade metamorphism on the UThPb system of zircons:A case study of zircon dating of metadiorite in Qixia Area, eastern Shandong. [J]. Earth Science Frontiers, 2011, 18(2): 17-25. |
[15] | DIAO Zhen-Hua. Banded iron formation and related great oxidation event. [J]. Earth Science Frontiers, 2010, 17(2): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||