Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 181-198.DOI: 10.13745/j.esf.sf.2023.2.11
Previous Articles Next Articles
ZHANG Liyu1,2(), CHEN Qianglu1,2, LI Maowen2,3, YUAN Kun1,2, MA Xiaoxiao3, XI Binbin1,2, YUE Yong4, HUANG Taiyu5
Received:
2023-01-04
Revised:
2023-02-05
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
ZHANG Liyu, CHEN Qianglu, LI Maowen, YUAN Kun, MA Xiaoxiao, XI Binbin, YUE Yong, HUANG Taiyu. Comparative study on the organic enrichment mechanisms between western Hubei and northeastern Guizhou during the Early Cambrian[J]. Earth Science Frontiers, 2023, 30(6): 181-198.
Fig.1 (a) Paleogeography of the Yangtze Block during the Ediacaran-Cambrian transition and the locations of the studied section/well, (b) The tectono-depositional configuration of the studied section/well. a modified after [32];b modified after [36].
序号 | 样品 编号 | 深度/ m | 井号或 剖面 | 岩石地层 | TOC含量/ % | S1/ (mg·g-1) | S2/ (mg·g-1) | S1+S2/ (mg·g-1) | Tmax/ ℃ | S3/ (mg·g-1) | δ13C干酪根/ ‰ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | YZK-1 | 0.3 | 鸭子口 | 水井沱组 | 2.18 | 0 | 0.01 | 0.01 | 499 | 0.91 | |||||||||||
2 | YZK-2 | 2.1 | 鸭子口 | 水井沱组 | 10.17 | 0.01 | 0 | 0.01 | — | 1.08 | |||||||||||
3 | YZK-3 | 2.7 | 鸭子口 | 水井沱组 | 16.02 | 0 | 0.03 | 0.03 | 497 | 4.65 | -32.0 | ||||||||||
4 | YZK-3-1 | 5.0 | 鸭子口 | 水井沱组 | 3.44 | 0 | 0.01 | 0.01 | 520 | 3.16 | |||||||||||
5 | YZK-4 | 8.5 | 鸭子口 | 水井沱组 | 4.89 | 0 | 0.01 | 0.01 | 512 | 2.61 | |||||||||||
6 | YZK-5 | 9.8 | 鸭子口 | 水井沱组 | 6.24 | 0 | 0.03 | 0.03 | 504 | 3.14 | |||||||||||
7 | YZK-6 | 11.3 | 鸭子口 | 水井沱组 | 6.58 | 0 | 0.01 | 0.01 | 520 | 3.15 | |||||||||||
8 | YZK-7 | 12.6 | 鸭子口 | 水井沱组 | 9.11 | 0.01 | 0 | 0.01 | 456 | 0.95 | |||||||||||
9 | YZK-8 | 14.1 | 鸭子口 | 水井沱组 | 7.82 | 0.01 | 0 | 0.01 | 433 | 0.53 | -32.1 | ||||||||||
10 | YZK-9 | 16.1 | 鸭子口 | 水井沱组 | 3.86 | 0 | 0.01 | 0.01 | 499 | 1.4 | |||||||||||
11 | YZK-10 | 20.4 | 鸭子口 | 水井沱组 | 3.72 | 0.01 | 0 | 0.01 | 455 | 0.04 | |||||||||||
12 | YZK-11 | 21.3 | 鸭子口 | 水井沱组 | 3.74 | 0.01 | 0 | 0.01 | — | 0.1 | |||||||||||
13 | YZK-12 | 22.4 | 鸭子口 | 水井沱组 | 4.10 | 0.01 | 0 | 0.01 | — | 0.07 | |||||||||||
14 | YZK-13 | 24.4 | 鸭子口 | 水井沱组 | 3.70 | 0.01 | 0.02 | 0.03 | 419 | 0.23 | |||||||||||
15 | YZK-14 | 25.6 | 鸭子口 | 水井沱组 | 3.21 | 0.01 | 0 | 0.01 | — | 0.02 | |||||||||||
16 | YZK-15 | 26.6 | 鸭子口 | 水井沱组 | 3.49 | 0.01 | 0 | 0.01 | — | 0.1 | |||||||||||
17 | YZK-16 | 28.1 | 鸭子口 | 水井沱组 | 3.34 | 0 | 0 | 0 | — | 0.04 | -31.0 | ||||||||||
18 | YZK-17 | 29.2 | 鸭子口 | 水井沱组 | 3.94 | 0 | 0 | 0 | — | 0.35 | |||||||||||
19 | YZK-18 | 30.4 | 鸭子口 | 水井沱组 | 2.09 | 0 | 0 | 0 | — | 0.14 | |||||||||||
20 | YZK-19 | 32.5 | 鸭子口 | 水井沱组 | 3.18 | 0 | 0 | 0 | — | 0.03 | |||||||||||
21 | YZK-20 | 34.0 | 鸭子口 | 水井沱组 | 2.87 | 0 | 0 | 0 | — | 0.11 | |||||||||||
22 | YZK-21 | 36.8 | 鸭子口 | 水井沱组 | 1.60 | 0 | 0 | 0 | — | 0.13 | |||||||||||
23 | YZK-22 | 38.2 | 鸭子口 | 水井沱组 | 3.59 | 0 | 0 | 0 | — | 0.21 | |||||||||||
24 | YZK-23 | 40.0 | 鸭子口 | 水井沱组 | 2.87 | 0.01 | 0 | 0.01 | — | 0.29 | |||||||||||
25 | YZK-24 | 41.4 | 鸭子口 | 水井沱组 | 2.52 | 0 | 0.03 | 0.03 | 523 | 1.87 | |||||||||||
26 | YZK-26 | 43.4 | 鸭子口 | 水井沱组 | 1.02 | 0 | 0 | 0 | 431 | 0.41 | |||||||||||
27 | YZK-27 | 44.6 | 鸭子口 | 水井沱组 | 1.39 | 0 | 0 | 0 | — | 0.2 | |||||||||||
28 | YZK-28 | 46.2 | 鸭子口 | 水井沱组 | 1.46 | 0.01 | 0 | 0.01 | — | 0.08 | |||||||||||
29 | YZK-29 | 46.9 | 鸭子口 | 水井沱组 | 1.38 | 0.01 | 0.01 | 0.02 | 430 | 0.55 | |||||||||||
30 | YZK-30 | 48.5 | 鸭子口 | 水井沱组 | 2.68 | 0.01 | 0 | 0.01 | — | 0.17 | |||||||||||
31 | YZK-31 | 50.1 | 鸭子口 | 水井沱组 | 1.07 | 0 | 0 | 0 | — | 0.06 | |||||||||||
32 | YZK-32 | 51.3 | 鸭子口 | 水井沱组 | 1.16 | 0 | 0 | 0 | — | 0.06 | |||||||||||
33 | YZK-33 | 53.0 | 鸭子口 | 水井沱组 | 1.17 | 0 | 0 | 0 | — | 0.4 | |||||||||||
34 | YZK-34 | 54.4 | 鸭子口 | 水井沱组 | 1.40 | 0 | 0 | 0 | — | 0.25 | -29.8 | ||||||||||
35 | YZK-35 | 56.0 | 鸭子口 | 水井沱组 | 1.47 | 0 | 0 | 0 | — | 0.11 | |||||||||||
36 | YZK-36 | 57.1 | 鸭子口 | 水井沱组 | 1.60 | 0 | 0 | 0 | — | 0.12 | |||||||||||
37 | YZK-38 | 61.6 | 鸭子口 | 水井沱组 | 1.06 | 0 | 0 | 0 | — | 0.18 | |||||||||||
38 | YZK-39 | 63.4 | 鸭子口 | 水井沱组 | 0.76 | 0 | 0 | 0 | — | 0.04 | |||||||||||
39 | YZK-40 | 65.1 | 鸭子口 | 水井沱组 | 0.81 | 0 | 0 | 0 | — | 0.1 | |||||||||||
40 | YZK-41 | 68.1 | 鸭子口 | 水井沱组 | 1.04 | 0 | 0 | 0 | — | 0.07 | |||||||||||
41 | YZK-42 | 71.6 | 鸭子口 | 水井沱组 | 1.03 | 0 | 0 | 0 | — | 0.13 | |||||||||||
42 | YZK-43 | 76.1 | 鸭子口 | 水井沱组 | 1.09 | 0 | 0 | 0 | — | 0.25 | |||||||||||
43 | YZK-44 | 77.9 | 鸭子口 | 水井沱组 | 0.63 | 0 | 0 | 0 | — | 0.05 | |||||||||||
44 | YZK-45 | 80.5 | 鸭子口 | 水井沱组 | 0.97 | 0 | 0.02 | 0.02 | 427 | 0.21 | |||||||||||
45 | YZK-46 | 84.1 | 鸭子口 | 水井沱组 | 0.58 | 0 | 0 | 0 | — | 0.01 | |||||||||||
46 | YZK-47 | 87.2 | 鸭子口 | 水井沱组 | 1.53 | 0 | 0 | 0 | — | 0.15 | |||||||||||
47 | YZK-48 | 89.5 | 鸭子口 | 水井沱组 | 1.46 | 0 | 0 | 0 | — | 0.17 | |||||||||||
48 | YZK-49 | 91.8 | 鸭子口 | 水井沱组 | 0.97 | 0.01 | 0 | 0.01 | — | 0.27 | |||||||||||
49 | YZK-50 | 93.4 | 鸭子口 | 水井沱组 | 0.88 | 0 | 0 | 0 | — | 0.22 | |||||||||||
50 | YZK-52 | 96.4 | 鸭子口 | 水井沱组 | 0.81 | 0.01 | 0 | 0.01 | — | 0.11 | |||||||||||
51 | YZK-54 | 100.9 | 鸭子口 | 水井沱组 | 0.89 | 0 | 0.01 | 0.01 | 432 | 0.32 | |||||||||||
52 | YZK-55 | 103.1 | 鸭子口 | 水井沱组 | 0.64 | 0 | 0 | 0 | — | 0.12 | |||||||||||
53 | YZK-56 | 104.9 | 鸭子口 | 水井沱组 | 0.67 | 0 | 0 | 0 | — | 0.13 | |||||||||||
54 | YZK-57 | 106.2 | 鸭子口 | 水井沱组 | 1.32 | 0 | 0 | 0 | — | 0.09 | |||||||||||
55 | YZK-58 | 107.95 | 鸭子口 | 水井沱组 | 1.59 | 0 | 0 | 0 | — | 0.21 | |||||||||||
56 | YZK-59 | 108.8 | 鸭子口 | 水井沱组 | 0.97 | 0.02 | 0.05 | 0.07 | 413 | 0.07 | |||||||||||
57 | YZK-60 | 110.95 | 鸭子口 | 水井沱组 | 1.31 | 0 | 0 | 0 | 614 | 0.1 | |||||||||||
58 | YZK-60-1 | 112.55 | 鸭子口 | 水井沱组 | 1.33 | 0.01 | 0.03 | 0.04 | 433 | 0.26 | -31.3 | ||||||||||
59 | YZK-61 | 114.55 | 鸭子口 | 水井沱组 | 1.22 | 0 | 0.01 | 0.01 | 611 | 0.14 | |||||||||||
60 | YZK-63 | 121.05 | 鸭子口 | 水井沱组 | 0.91 | 0 | 0.01 | 0.01 | 450 | 0.09 | |||||||||||
61 | YZK-64 | 122.15 | 鸭子口 | 水井沱组 | 1.16 | 0 | 0 | 0 | — | 0.08 | |||||||||||
62 | YZK-65 | 123.25 | 鸭子口 | 水井沱组 | 0.97 | 0 | 0 | 0 | — | 0.11 | |||||||||||
63 | YZK-66 | 126.25 | 鸭子口 | 水井沱组 | 0.81 | 0 | 0 | 0 | 434 | 0.19 | |||||||||||
64 | YZK-67 | 128.75 | 鸭子口 | 水井沱组 | 0.87 | 0 | 0 | 0 | — | 0.05 | |||||||||||
65 | YZK-68 | 132.75 | 鸭子口 | 水井沱组 | 0.55 | 0 | 0 | 0 | 420 | 0.1 | |||||||||||
66 | ZK513-1 | 270.95 | ZK513井 | 灯影组 | 0.21 | 0 | 0 | 0 | — | 0.03 | |||||||||||
67 | ZK513-2 | 269.7 | ZK513井 | 灯影组 | 11.50 | 0.01 | 0 | 0.01 | — | 0.09 | |||||||||||
68 | ZK513-4 | 267.6 | ZK513井 | 灯影组 | 0.15 | 0 | 0 | 0 | — | 0.02 | |||||||||||
69 | ZK513-5 | 266.42 | ZK513井 | 灯影组 | 0.16 | 0 | 0 | 0 | — | 0.04 | |||||||||||
70 | ZK513-6 | 265.3 | ZK513井 | 留茶坡组 | 1.82 | 0 | 0 | 0 | — | 0 | |||||||||||
71 | ZK513-7 | 263.57 | ZK513井 | 留茶坡组 | 1.21 | 0.01 | 0 | 0.01 | — | 0 | |||||||||||
72 | ZK513-8 | 262.97 | ZK513井 | 留茶坡组 | 0.51 | 0 | 0 | 0 | — | 0 | |||||||||||
73 | ZK513-9 | 262.25 | ZK513井 | 留茶坡组 | 0.13 | 0 | 0 | 0 | — | 0.05 | |||||||||||
74 | ZK513-10 | 261.15 | ZK513井 | 留茶坡组 | 0.15 | 0 | 0 | 0 | — | 0.16 | |||||||||||
75 | ZK513-11 | 259.1 | ZK513井 | 牛蹄塘组 | 4.94 | 0.01 | 0 | 0.01 | — | 0.07 | |||||||||||
76 | ZK513-11-1 | 258.34 | ZK513井 | 牛蹄塘组 | 1.10 | 0.01 | 0 | 0.01 | — | 0.03 | -32.8 | ||||||||||
77 | ZK513-11-2 | 257.79 | ZK513井 | 牛蹄塘组 | 1.73 | 0 | 0 | 0 | — | 0.04 | |||||||||||
78 | ZK513-11-4 | 257.29 | ZK513井 | 牛蹄塘组 | 2.05 | 0 | 0 | 0 | — | 0.06 | |||||||||||
79 | ZK513-11-5 | 257.02 | ZK513井 | 牛蹄塘组 | 4.47 | 0.01 | 0 | 0.01 | — | 0.1 | |||||||||||
80 | ZK513-11-6 | 256.67 | ZK513井 | 牛蹄塘组 | 10.60 | 0 | 0 | 0 | — | 0.17 | |||||||||||
81 | ZK513-11-7 | 256.15 | ZK513井 | 牛蹄塘组 | 15.01 | 0.01 | 0 | 0.01 | 437 | 0.27 | |||||||||||
82 | ZK513-11-8 | 255.56 | ZK513井 | 牛蹄塘组 | 11.76 | 0.01 | 0 | 0.01 | 431 | 0.11 | |||||||||||
83 | ZK513-11-9 | 254.76 | ZK513井 | 牛蹄塘组 | 12.92 | 0.01 | 0.11 | 0.12 | 407 | 0.33 | -33.0 | ||||||||||
84 | ZK513-11-10 | 253.53 | ZK513井 | 牛蹄塘组 | 6.71 | 0 | 0 | 0 | — | 0.02 | |||||||||||
85 | ZK513-11-11 | 252.72 | ZK513井 | 牛蹄塘组 | 6.20 | 0 | |||||||||||||||
86 | ZK513-11-12 | 251.62 | ZK513井 | 牛蹄塘组 | 6.89 | 0 | 0 | 0 | — | 0.06 | |||||||||||
87 | ZK513-11-14 | 250.34 | ZK513井 | 牛蹄塘组 | 5.31 | 0 | 0 | 0 | — | 0.02 | -32.2 | ||||||||||
88 | ZK513-11-15 | 249.81 | ZK513井 | 牛蹄塘组 | 2.89 | 0 | 0 | 0 | — | 0.02 | |||||||||||
89 | ZK513-11-16 | 248.76 | ZK513井 | 牛蹄塘组 | 3.01 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
90 | ZK513-11-17 | 248.04 | ZK513井 | 牛蹄塘组 | 3.82 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
91 | ZK513-11-18 | 247.21 | ZK513井 | 牛蹄塘组 | 0.99 | 0 | 0 | 0 | — | 0.06 | |||||||||||
92 | ZK513-11-19 | 246.36 | ZK513井 | 牛蹄塘组 | 0.78 | 0 | 0 | 0 | — | 0.03 | |||||||||||
93 | ZK513-11-20 | 245.54 | ZK513井 | 牛蹄塘组 | 0.30 | 0 | 0 | 0 | 412 | 0.03 | |||||||||||
94 | ZK513-12 | 244.92 | ZK513井 | 九门冲组 | 0.38 | 0 | 0 | 0 | — | 0.02 | |||||||||||
95 | ZK513-13 | 243.62 | ZK513井 | 九门冲组 | 0.51 | 0 | 0 | 0 | — | 0.04 | |||||||||||
96 | ZK513-15 | 241.56 | ZK513井 | 九门冲组 | 0.39 | 0 | 0 | 0 | — | 0.03 | |||||||||||
97 | ZK513-16 | 240.38 | ZK513井 | 九门冲组 | 1.75 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
98 | ZK513-17 | 239.38 | ZK513井 | 九门冲组 | 0.39 | 0 | 0 | 0 | — | 0.02 | |||||||||||
99 | ZK513-19 | 237.15 | ZK513井 | 九门冲组 | 0.81 | 0 | 0 | 0 | — | 0.04 | |||||||||||
100 | ZK513-20 | 236.09 | ZK513井 | 九门冲组 | 0.25 | 0 | 0 | 0 | — | 0.01 | |||||||||||
101 | ZK513-21 | 234.45 | ZK513井 | 九门冲组 | 0.87 | 0.01 | 0 | 0.01 | — | 0.01 | |||||||||||
102 | ZK513-22 | 233.19 | ZK513井 | 九门冲组 | 0.30 | 0 | 0 | 0 | — | 0.03 | |||||||||||
103 | ZK513-23 | 232.42 | ZK513井 | 九门冲组 | 2.07 | 0.01 | 0 | 0.01 | — | 0.02 | |||||||||||
104 | ZK513-24 | 231.27 | ZK513井 | 九门冲组 | 1.74 | 0 | 0 | 0 | — | 0.05 | |||||||||||
105 | ZK513-25 | 229.54 | ZK513井 | 九门冲组 | 0.33 | 0 | 0 | 0 | — | 0.02 | |||||||||||
106 | ZK513-26 | 228.62 | ZK513井 | 九门冲组 | 0.55 | 0 | 0 | 0 | 434 | 0.05 | |||||||||||
107 | ZK513-27 | 226.81 | ZK513井 | 九门冲组 | 2.04 | 0 | 0 | 0 | — | 0.11 | |||||||||||
108 | ZK513-29 | 224.86 | ZK513井 | 九门冲组 | 2.78 | 0.01 | 0 | 0.01 | — | 0.16 | |||||||||||
109 | ZK513-30 | 223.95 | ZK513井 | 九门冲组 | 4.43 | 0.01 | 0 | 0.01 | — | 0.07 | -28.9 | ||||||||||
110 | ZK513-31 | 222.85 | ZK513井 | 九门冲组 | 0.41 | 0 | 0 | 0 | — | 0.04 | |||||||||||
111 | ZK513-32 | 222.34 | ZK513井 | 九门冲组 | 3.92 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
112 | ZK513-34 | 220.61 | ZK513井 | 九门冲组 | 1.85 | 0 | 0 | 0 | — | 0.05 | |||||||||||
113 | ZK513-35 | 219.96 | ZK513井 | 九门冲组 | 1.63 | 0 | 0 | 0 | — | 0.04 | |||||||||||
114 | ZK513-37 | 219.12 | ZK513井 | 九门冲组 | 1.17 | 0 | 0 | 0 | — | 0.01 | |||||||||||
115 | ZK513-39 | 218.86 | ZK513井 | 九门冲组 | 1.06 | 0 | 0 | 0 | — | 0.02 | |||||||||||
116 | ZK513-40 | 216.43 | ZK513井 | 九门冲组 | 2.97 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
117 | ZK513-41 | 215.9 | ZK513井 | 九门冲组 | 1.24 | 0 | 0 | 0 | — | 0.02 | |||||||||||
118 | ZK513-43 | 214.66 | ZK513井 | 九门冲组 | 2.26 | 0 | 0 | 0 | — | 0.05 | |||||||||||
119 | ZK513-44 | 213.71 | ZK513井 | 九门冲组 | 3.76 | 0.01 | 0 | 0.01 | — | 0.03 | |||||||||||
120 | ZK513-45 | 212.63 | ZK513井 | 九门冲组 | 1.14 | 0 | 0 | 0 | — | 0.03 | |||||||||||
121 | ZK513-47 | 211.81 | ZK513井 | 九门冲组 | 0.70 | 0 | 0 | 0 | — | 0.02 | |||||||||||
122 | ZK513-48 | 210.91 | ZK513井 | 九门冲组 | 0.62 | 0 | 0 | 0 | — | 0.01 | |||||||||||
123 | ZK513-49 | 208.95 | ZK513井 | 九门冲组 | 0.83 | 0 | 0 | 0 | — | 0.01 | |||||||||||
124 | ZK513-50 | 208.55 | ZK513井 | 九门冲组 | 0.63 | 0 | 0 | 0 | — | 0.01 | |||||||||||
125 | ZK513-52 | 207.33 | ZK513井 | 九门冲组 | 1.61 | 0 | 0 | 0 | — | 0.02 | |||||||||||
126 | ZK513-53 | 206.4 | ZK513井 | 九门冲组 | 1.74 | 0 | 0 | 0 | — | 0.11 | |||||||||||
127 | ZK513-54 | 204.27 | ZK513井 | 变马冲组 | 2.53 | 0 | 0 | 0 | — | 0.04 | |||||||||||
128 | ZK513-55 | 203.84 | ZK513井 | 变马冲组 | 2.93 | 0.01 | 0 | 0.01 | — | 0.06 | |||||||||||
129 | ZK513-56 | 203.55 | ZK513井 | 变马冲组 | 2.82 | 0.02 | 0 | 0.02 | — | 0.04 | |||||||||||
130 | ZK513-57 | 202.97 | ZK513井 | 变马冲组 | 0.90 | 0 | 0 | 0 | — | 0.01 | -30.7 | ||||||||||
131 | ZK513-59 | 201.41 | ZK513井 | 变马冲组 | 1.13 | 0 | 0 | 0 | — | 0.01 | |||||||||||
132 | ZK513-60 | 199.85 | ZK513井 | 变马冲组 | 1.72 | 0 | 0 | 0 | — | 0 | |||||||||||
133 | ZK513-61 | 197.89 | ZK513井 | 变马冲组 | 3.32 | 0.09 | 0.47 | 0.56 | — | 0 | |||||||||||
134 | ZK513-62 | 196.99 | ZK513井 | 变马冲组 | 2.15 | 0.14 | 0.56 | 0.7 | — | 0.01 |
Table 1 Organic geochemistry (TOC,rock pyrolysis,δ13Ckerogen) data
序号 | 样品 编号 | 深度/ m | 井号或 剖面 | 岩石地层 | TOC含量/ % | S1/ (mg·g-1) | S2/ (mg·g-1) | S1+S2/ (mg·g-1) | Tmax/ ℃ | S3/ (mg·g-1) | δ13C干酪根/ ‰ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | YZK-1 | 0.3 | 鸭子口 | 水井沱组 | 2.18 | 0 | 0.01 | 0.01 | 499 | 0.91 | |||||||||||
2 | YZK-2 | 2.1 | 鸭子口 | 水井沱组 | 10.17 | 0.01 | 0 | 0.01 | — | 1.08 | |||||||||||
3 | YZK-3 | 2.7 | 鸭子口 | 水井沱组 | 16.02 | 0 | 0.03 | 0.03 | 497 | 4.65 | -32.0 | ||||||||||
4 | YZK-3-1 | 5.0 | 鸭子口 | 水井沱组 | 3.44 | 0 | 0.01 | 0.01 | 520 | 3.16 | |||||||||||
5 | YZK-4 | 8.5 | 鸭子口 | 水井沱组 | 4.89 | 0 | 0.01 | 0.01 | 512 | 2.61 | |||||||||||
6 | YZK-5 | 9.8 | 鸭子口 | 水井沱组 | 6.24 | 0 | 0.03 | 0.03 | 504 | 3.14 | |||||||||||
7 | YZK-6 | 11.3 | 鸭子口 | 水井沱组 | 6.58 | 0 | 0.01 | 0.01 | 520 | 3.15 | |||||||||||
8 | YZK-7 | 12.6 | 鸭子口 | 水井沱组 | 9.11 | 0.01 | 0 | 0.01 | 456 | 0.95 | |||||||||||
9 | YZK-8 | 14.1 | 鸭子口 | 水井沱组 | 7.82 | 0.01 | 0 | 0.01 | 433 | 0.53 | -32.1 | ||||||||||
10 | YZK-9 | 16.1 | 鸭子口 | 水井沱组 | 3.86 | 0 | 0.01 | 0.01 | 499 | 1.4 | |||||||||||
11 | YZK-10 | 20.4 | 鸭子口 | 水井沱组 | 3.72 | 0.01 | 0 | 0.01 | 455 | 0.04 | |||||||||||
12 | YZK-11 | 21.3 | 鸭子口 | 水井沱组 | 3.74 | 0.01 | 0 | 0.01 | — | 0.1 | |||||||||||
13 | YZK-12 | 22.4 | 鸭子口 | 水井沱组 | 4.10 | 0.01 | 0 | 0.01 | — | 0.07 | |||||||||||
14 | YZK-13 | 24.4 | 鸭子口 | 水井沱组 | 3.70 | 0.01 | 0.02 | 0.03 | 419 | 0.23 | |||||||||||
15 | YZK-14 | 25.6 | 鸭子口 | 水井沱组 | 3.21 | 0.01 | 0 | 0.01 | — | 0.02 | |||||||||||
16 | YZK-15 | 26.6 | 鸭子口 | 水井沱组 | 3.49 | 0.01 | 0 | 0.01 | — | 0.1 | |||||||||||
17 | YZK-16 | 28.1 | 鸭子口 | 水井沱组 | 3.34 | 0 | 0 | 0 | — | 0.04 | -31.0 | ||||||||||
18 | YZK-17 | 29.2 | 鸭子口 | 水井沱组 | 3.94 | 0 | 0 | 0 | — | 0.35 | |||||||||||
19 | YZK-18 | 30.4 | 鸭子口 | 水井沱组 | 2.09 | 0 | 0 | 0 | — | 0.14 | |||||||||||
20 | YZK-19 | 32.5 | 鸭子口 | 水井沱组 | 3.18 | 0 | 0 | 0 | — | 0.03 | |||||||||||
21 | YZK-20 | 34.0 | 鸭子口 | 水井沱组 | 2.87 | 0 | 0 | 0 | — | 0.11 | |||||||||||
22 | YZK-21 | 36.8 | 鸭子口 | 水井沱组 | 1.60 | 0 | 0 | 0 | — | 0.13 | |||||||||||
23 | YZK-22 | 38.2 | 鸭子口 | 水井沱组 | 3.59 | 0 | 0 | 0 | — | 0.21 | |||||||||||
24 | YZK-23 | 40.0 | 鸭子口 | 水井沱组 | 2.87 | 0.01 | 0 | 0.01 | — | 0.29 | |||||||||||
25 | YZK-24 | 41.4 | 鸭子口 | 水井沱组 | 2.52 | 0 | 0.03 | 0.03 | 523 | 1.87 | |||||||||||
26 | YZK-26 | 43.4 | 鸭子口 | 水井沱组 | 1.02 | 0 | 0 | 0 | 431 | 0.41 | |||||||||||
27 | YZK-27 | 44.6 | 鸭子口 | 水井沱组 | 1.39 | 0 | 0 | 0 | — | 0.2 | |||||||||||
28 | YZK-28 | 46.2 | 鸭子口 | 水井沱组 | 1.46 | 0.01 | 0 | 0.01 | — | 0.08 | |||||||||||
29 | YZK-29 | 46.9 | 鸭子口 | 水井沱组 | 1.38 | 0.01 | 0.01 | 0.02 | 430 | 0.55 | |||||||||||
30 | YZK-30 | 48.5 | 鸭子口 | 水井沱组 | 2.68 | 0.01 | 0 | 0.01 | — | 0.17 | |||||||||||
31 | YZK-31 | 50.1 | 鸭子口 | 水井沱组 | 1.07 | 0 | 0 | 0 | — | 0.06 | |||||||||||
32 | YZK-32 | 51.3 | 鸭子口 | 水井沱组 | 1.16 | 0 | 0 | 0 | — | 0.06 | |||||||||||
33 | YZK-33 | 53.0 | 鸭子口 | 水井沱组 | 1.17 | 0 | 0 | 0 | — | 0.4 | |||||||||||
34 | YZK-34 | 54.4 | 鸭子口 | 水井沱组 | 1.40 | 0 | 0 | 0 | — | 0.25 | -29.8 | ||||||||||
35 | YZK-35 | 56.0 | 鸭子口 | 水井沱组 | 1.47 | 0 | 0 | 0 | — | 0.11 | |||||||||||
36 | YZK-36 | 57.1 | 鸭子口 | 水井沱组 | 1.60 | 0 | 0 | 0 | — | 0.12 | |||||||||||
37 | YZK-38 | 61.6 | 鸭子口 | 水井沱组 | 1.06 | 0 | 0 | 0 | — | 0.18 | |||||||||||
38 | YZK-39 | 63.4 | 鸭子口 | 水井沱组 | 0.76 | 0 | 0 | 0 | — | 0.04 | |||||||||||
39 | YZK-40 | 65.1 | 鸭子口 | 水井沱组 | 0.81 | 0 | 0 | 0 | — | 0.1 | |||||||||||
40 | YZK-41 | 68.1 | 鸭子口 | 水井沱组 | 1.04 | 0 | 0 | 0 | — | 0.07 | |||||||||||
41 | YZK-42 | 71.6 | 鸭子口 | 水井沱组 | 1.03 | 0 | 0 | 0 | — | 0.13 | |||||||||||
42 | YZK-43 | 76.1 | 鸭子口 | 水井沱组 | 1.09 | 0 | 0 | 0 | — | 0.25 | |||||||||||
43 | YZK-44 | 77.9 | 鸭子口 | 水井沱组 | 0.63 | 0 | 0 | 0 | — | 0.05 | |||||||||||
44 | YZK-45 | 80.5 | 鸭子口 | 水井沱组 | 0.97 | 0 | 0.02 | 0.02 | 427 | 0.21 | |||||||||||
45 | YZK-46 | 84.1 | 鸭子口 | 水井沱组 | 0.58 | 0 | 0 | 0 | — | 0.01 | |||||||||||
46 | YZK-47 | 87.2 | 鸭子口 | 水井沱组 | 1.53 | 0 | 0 | 0 | — | 0.15 | |||||||||||
47 | YZK-48 | 89.5 | 鸭子口 | 水井沱组 | 1.46 | 0 | 0 | 0 | — | 0.17 | |||||||||||
48 | YZK-49 | 91.8 | 鸭子口 | 水井沱组 | 0.97 | 0.01 | 0 | 0.01 | — | 0.27 | |||||||||||
49 | YZK-50 | 93.4 | 鸭子口 | 水井沱组 | 0.88 | 0 | 0 | 0 | — | 0.22 | |||||||||||
50 | YZK-52 | 96.4 | 鸭子口 | 水井沱组 | 0.81 | 0.01 | 0 | 0.01 | — | 0.11 | |||||||||||
51 | YZK-54 | 100.9 | 鸭子口 | 水井沱组 | 0.89 | 0 | 0.01 | 0.01 | 432 | 0.32 | |||||||||||
52 | YZK-55 | 103.1 | 鸭子口 | 水井沱组 | 0.64 | 0 | 0 | 0 | — | 0.12 | |||||||||||
53 | YZK-56 | 104.9 | 鸭子口 | 水井沱组 | 0.67 | 0 | 0 | 0 | — | 0.13 | |||||||||||
54 | YZK-57 | 106.2 | 鸭子口 | 水井沱组 | 1.32 | 0 | 0 | 0 | — | 0.09 | |||||||||||
55 | YZK-58 | 107.95 | 鸭子口 | 水井沱组 | 1.59 | 0 | 0 | 0 | — | 0.21 | |||||||||||
56 | YZK-59 | 108.8 | 鸭子口 | 水井沱组 | 0.97 | 0.02 | 0.05 | 0.07 | 413 | 0.07 | |||||||||||
57 | YZK-60 | 110.95 | 鸭子口 | 水井沱组 | 1.31 | 0 | 0 | 0 | 614 | 0.1 | |||||||||||
58 | YZK-60-1 | 112.55 | 鸭子口 | 水井沱组 | 1.33 | 0.01 | 0.03 | 0.04 | 433 | 0.26 | -31.3 | ||||||||||
59 | YZK-61 | 114.55 | 鸭子口 | 水井沱组 | 1.22 | 0 | 0.01 | 0.01 | 611 | 0.14 | |||||||||||
60 | YZK-63 | 121.05 | 鸭子口 | 水井沱组 | 0.91 | 0 | 0.01 | 0.01 | 450 | 0.09 | |||||||||||
61 | YZK-64 | 122.15 | 鸭子口 | 水井沱组 | 1.16 | 0 | 0 | 0 | — | 0.08 | |||||||||||
62 | YZK-65 | 123.25 | 鸭子口 | 水井沱组 | 0.97 | 0 | 0 | 0 | — | 0.11 | |||||||||||
63 | YZK-66 | 126.25 | 鸭子口 | 水井沱组 | 0.81 | 0 | 0 | 0 | 434 | 0.19 | |||||||||||
64 | YZK-67 | 128.75 | 鸭子口 | 水井沱组 | 0.87 | 0 | 0 | 0 | — | 0.05 | |||||||||||
65 | YZK-68 | 132.75 | 鸭子口 | 水井沱组 | 0.55 | 0 | 0 | 0 | 420 | 0.1 | |||||||||||
66 | ZK513-1 | 270.95 | ZK513井 | 灯影组 | 0.21 | 0 | 0 | 0 | — | 0.03 | |||||||||||
67 | ZK513-2 | 269.7 | ZK513井 | 灯影组 | 11.50 | 0.01 | 0 | 0.01 | — | 0.09 | |||||||||||
68 | ZK513-4 | 267.6 | ZK513井 | 灯影组 | 0.15 | 0 | 0 | 0 | — | 0.02 | |||||||||||
69 | ZK513-5 | 266.42 | ZK513井 | 灯影组 | 0.16 | 0 | 0 | 0 | — | 0.04 | |||||||||||
70 | ZK513-6 | 265.3 | ZK513井 | 留茶坡组 | 1.82 | 0 | 0 | 0 | — | 0 | |||||||||||
71 | ZK513-7 | 263.57 | ZK513井 | 留茶坡组 | 1.21 | 0.01 | 0 | 0.01 | — | 0 | |||||||||||
72 | ZK513-8 | 262.97 | ZK513井 | 留茶坡组 | 0.51 | 0 | 0 | 0 | — | 0 | |||||||||||
73 | ZK513-9 | 262.25 | ZK513井 | 留茶坡组 | 0.13 | 0 | 0 | 0 | — | 0.05 | |||||||||||
74 | ZK513-10 | 261.15 | ZK513井 | 留茶坡组 | 0.15 | 0 | 0 | 0 | — | 0.16 | |||||||||||
75 | ZK513-11 | 259.1 | ZK513井 | 牛蹄塘组 | 4.94 | 0.01 | 0 | 0.01 | — | 0.07 | |||||||||||
76 | ZK513-11-1 | 258.34 | ZK513井 | 牛蹄塘组 | 1.10 | 0.01 | 0 | 0.01 | — | 0.03 | -32.8 | ||||||||||
77 | ZK513-11-2 | 257.79 | ZK513井 | 牛蹄塘组 | 1.73 | 0 | 0 | 0 | — | 0.04 | |||||||||||
78 | ZK513-11-4 | 257.29 | ZK513井 | 牛蹄塘组 | 2.05 | 0 | 0 | 0 | — | 0.06 | |||||||||||
79 | ZK513-11-5 | 257.02 | ZK513井 | 牛蹄塘组 | 4.47 | 0.01 | 0 | 0.01 | — | 0.1 | |||||||||||
80 | ZK513-11-6 | 256.67 | ZK513井 | 牛蹄塘组 | 10.60 | 0 | 0 | 0 | — | 0.17 | |||||||||||
81 | ZK513-11-7 | 256.15 | ZK513井 | 牛蹄塘组 | 15.01 | 0.01 | 0 | 0.01 | 437 | 0.27 | |||||||||||
82 | ZK513-11-8 | 255.56 | ZK513井 | 牛蹄塘组 | 11.76 | 0.01 | 0 | 0.01 | 431 | 0.11 | |||||||||||
83 | ZK513-11-9 | 254.76 | ZK513井 | 牛蹄塘组 | 12.92 | 0.01 | 0.11 | 0.12 | 407 | 0.33 | -33.0 | ||||||||||
84 | ZK513-11-10 | 253.53 | ZK513井 | 牛蹄塘组 | 6.71 | 0 | 0 | 0 | — | 0.02 | |||||||||||
85 | ZK513-11-11 | 252.72 | ZK513井 | 牛蹄塘组 | 6.20 | 0 | |||||||||||||||
86 | ZK513-11-12 | 251.62 | ZK513井 | 牛蹄塘组 | 6.89 | 0 | 0 | 0 | — | 0.06 | |||||||||||
87 | ZK513-11-14 | 250.34 | ZK513井 | 牛蹄塘组 | 5.31 | 0 | 0 | 0 | — | 0.02 | -32.2 | ||||||||||
88 | ZK513-11-15 | 249.81 | ZK513井 | 牛蹄塘组 | 2.89 | 0 | 0 | 0 | — | 0.02 | |||||||||||
89 | ZK513-11-16 | 248.76 | ZK513井 | 牛蹄塘组 | 3.01 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
90 | ZK513-11-17 | 248.04 | ZK513井 | 牛蹄塘组 | 3.82 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
91 | ZK513-11-18 | 247.21 | ZK513井 | 牛蹄塘组 | 0.99 | 0 | 0 | 0 | — | 0.06 | |||||||||||
92 | ZK513-11-19 | 246.36 | ZK513井 | 牛蹄塘组 | 0.78 | 0 | 0 | 0 | — | 0.03 | |||||||||||
93 | ZK513-11-20 | 245.54 | ZK513井 | 牛蹄塘组 | 0.30 | 0 | 0 | 0 | 412 | 0.03 | |||||||||||
94 | ZK513-12 | 244.92 | ZK513井 | 九门冲组 | 0.38 | 0 | 0 | 0 | — | 0.02 | |||||||||||
95 | ZK513-13 | 243.62 | ZK513井 | 九门冲组 | 0.51 | 0 | 0 | 0 | — | 0.04 | |||||||||||
96 | ZK513-15 | 241.56 | ZK513井 | 九门冲组 | 0.39 | 0 | 0 | 0 | — | 0.03 | |||||||||||
97 | ZK513-16 | 240.38 | ZK513井 | 九门冲组 | 1.75 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
98 | ZK513-17 | 239.38 | ZK513井 | 九门冲组 | 0.39 | 0 | 0 | 0 | — | 0.02 | |||||||||||
99 | ZK513-19 | 237.15 | ZK513井 | 九门冲组 | 0.81 | 0 | 0 | 0 | — | 0.04 | |||||||||||
100 | ZK513-20 | 236.09 | ZK513井 | 九门冲组 | 0.25 | 0 | 0 | 0 | — | 0.01 | |||||||||||
101 | ZK513-21 | 234.45 | ZK513井 | 九门冲组 | 0.87 | 0.01 | 0 | 0.01 | — | 0.01 | |||||||||||
102 | ZK513-22 | 233.19 | ZK513井 | 九门冲组 | 0.30 | 0 | 0 | 0 | — | 0.03 | |||||||||||
103 | ZK513-23 | 232.42 | ZK513井 | 九门冲组 | 2.07 | 0.01 | 0 | 0.01 | — | 0.02 | |||||||||||
104 | ZK513-24 | 231.27 | ZK513井 | 九门冲组 | 1.74 | 0 | 0 | 0 | — | 0.05 | |||||||||||
105 | ZK513-25 | 229.54 | ZK513井 | 九门冲组 | 0.33 | 0 | 0 | 0 | — | 0.02 | |||||||||||
106 | ZK513-26 | 228.62 | ZK513井 | 九门冲组 | 0.55 | 0 | 0 | 0 | 434 | 0.05 | |||||||||||
107 | ZK513-27 | 226.81 | ZK513井 | 九门冲组 | 2.04 | 0 | 0 | 0 | — | 0.11 | |||||||||||
108 | ZK513-29 | 224.86 | ZK513井 | 九门冲组 | 2.78 | 0.01 | 0 | 0.01 | — | 0.16 | |||||||||||
109 | ZK513-30 | 223.95 | ZK513井 | 九门冲组 | 4.43 | 0.01 | 0 | 0.01 | — | 0.07 | -28.9 | ||||||||||
110 | ZK513-31 | 222.85 | ZK513井 | 九门冲组 | 0.41 | 0 | 0 | 0 | — | 0.04 | |||||||||||
111 | ZK513-32 | 222.34 | ZK513井 | 九门冲组 | 3.92 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
112 | ZK513-34 | 220.61 | ZK513井 | 九门冲组 | 1.85 | 0 | 0 | 0 | — | 0.05 | |||||||||||
113 | ZK513-35 | 219.96 | ZK513井 | 九门冲组 | 1.63 | 0 | 0 | 0 | — | 0.04 | |||||||||||
114 | ZK513-37 | 219.12 | ZK513井 | 九门冲组 | 1.17 | 0 | 0 | 0 | — | 0.01 | |||||||||||
115 | ZK513-39 | 218.86 | ZK513井 | 九门冲组 | 1.06 | 0 | 0 | 0 | — | 0.02 | |||||||||||
116 | ZK513-40 | 216.43 | ZK513井 | 九门冲组 | 2.97 | 0.01 | 0 | 0.01 | — | 0.05 | |||||||||||
117 | ZK513-41 | 215.9 | ZK513井 | 九门冲组 | 1.24 | 0 | 0 | 0 | — | 0.02 | |||||||||||
118 | ZK513-43 | 214.66 | ZK513井 | 九门冲组 | 2.26 | 0 | 0 | 0 | — | 0.05 | |||||||||||
119 | ZK513-44 | 213.71 | ZK513井 | 九门冲组 | 3.76 | 0.01 | 0 | 0.01 | — | 0.03 | |||||||||||
120 | ZK513-45 | 212.63 | ZK513井 | 九门冲组 | 1.14 | 0 | 0 | 0 | — | 0.03 | |||||||||||
121 | ZK513-47 | 211.81 | ZK513井 | 九门冲组 | 0.70 | 0 | 0 | 0 | — | 0.02 | |||||||||||
122 | ZK513-48 | 210.91 | ZK513井 | 九门冲组 | 0.62 | 0 | 0 | 0 | — | 0.01 | |||||||||||
123 | ZK513-49 | 208.95 | ZK513井 | 九门冲组 | 0.83 | 0 | 0 | 0 | — | 0.01 | |||||||||||
124 | ZK513-50 | 208.55 | ZK513井 | 九门冲组 | 0.63 | 0 | 0 | 0 | — | 0.01 | |||||||||||
125 | ZK513-52 | 207.33 | ZK513井 | 九门冲组 | 1.61 | 0 | 0 | 0 | — | 0.02 | |||||||||||
126 | ZK513-53 | 206.4 | ZK513井 | 九门冲组 | 1.74 | 0 | 0 | 0 | — | 0.11 | |||||||||||
127 | ZK513-54 | 204.27 | ZK513井 | 变马冲组 | 2.53 | 0 | 0 | 0 | — | 0.04 | |||||||||||
128 | ZK513-55 | 203.84 | ZK513井 | 变马冲组 | 2.93 | 0.01 | 0 | 0.01 | — | 0.06 | |||||||||||
129 | ZK513-56 | 203.55 | ZK513井 | 变马冲组 | 2.82 | 0.02 | 0 | 0.02 | — | 0.04 | |||||||||||
130 | ZK513-57 | 202.97 | ZK513井 | 变马冲组 | 0.90 | 0 | 0 | 0 | — | 0.01 | -30.7 | ||||||||||
131 | ZK513-59 | 201.41 | ZK513井 | 变马冲组 | 1.13 | 0 | 0 | 0 | — | 0.01 | |||||||||||
132 | ZK513-60 | 199.85 | ZK513井 | 变马冲组 | 1.72 | 0 | 0 | 0 | — | 0 | |||||||||||
133 | ZK513-61 | 197.89 | ZK513井 | 变马冲组 | 3.32 | 0.09 | 0.47 | 0.56 | — | 0 | |||||||||||
134 | ZK513-62 | 196.99 | ZK513井 | 变马冲组 | 2.15 | 0.14 | 0.56 | 0.7 | — | 0.01 |
序号 | 样品编号 | wB/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na | Mg | Al | Si | Mn | K | Ca | Ti | P | Fe | ||
鸭子口剖面 | |||||||||||
1 | YZK-1 | 0.17 | 1.38 | 8.37 | 28.62 | <0.01 | 6.76 | 0.18 | 0.76 | 0.03 | 0.86 |
2 | YZK-3 | 0.12 | 0.32 | 3.53 | 29.62 | <0.01 | 2.58 | 0.06 | 0.33 | 0.02 | 0.31 |
3 | YZK-4 | 0.31 | 0.39 | 3.99 | 35.27 | <0.01 | 1.96 | 0.08 | 0.29 | 0.02 | 0.38 |
4 | YZK-5 | 0.17 | 0.57 | 5.45 | 32.72 | <0.01 | 2.61 | 0.10 | 0.27 | 0.02 | 0.64 |
5 | YZK-7 | 0.59 | 0.41 | 4.61 | 33.88 | <0.01 | 1.98 | 0.02 | 0.29 | <0.01 | 0.38 |
6 | YZK-8 | 0.60 | 0.58 | 5.51 | 32.77 | <0.01 | 2.24 | 0.03 | 0.32 | 0.02 | 0.77 |
7 | YZK-10 | 0.67 | 0.78 | 5.34 | 31.86 | 0.02 | 1.89 | 1.82 | 0.29 | 0.05 | 2.43 |
8 | YZK-12 | 0.75 | 0.98 | 5.70 | 29.45 | 0.03 | 2.09 | 2.18 | 0.30 | 0.06 | 3.10 |
9 | YZK-14 | 0.49 | 1.37 | 3.53 | 18.99 | 0.05 | 1.19 | 13.97 | 0.19 | 0.06 | 2.61 |
10 | YZK-16 | 0.61 | 0.98 | 4.94 | 28.74 | 0.02 | 1.70 | 4.78 | 0.28 | 0.05 | 2.51 |
11 | YZK-18 | 0.68 | 1.16 | 5.78 | 21.70 | 0.03 | 1.98 | 9.19 | 0.31 | 0.04 | 2.66 |
12 | YZK-21 | 0.33 | 2.06 | 5.37 | 17.48 | 0.06 | 1.97 | 12.78 | 0.26 | 0.08 | 3.60 |
13 | YZK-23 | 0.66 | 0.87 | 6.20 | 27.45 | 0.02 | 2.13 | 4.23 | 0.34 | 0.06 | 2.75 |
14 | YZK-26 | 0.52 | 0.74 | 4.32 | 16.89 | 0.06 | 1.34 | 16.75 | 0.23 | 0.04 | 2.84 |
15 | YZK-28 | 0.59 | 0.68 | 4.78 | 16.72 | 0.03 | 1.65 | 16.13 | 0.26 | 0.07 | 2.84 |
16 | YZK-30 | 0.75 | 0.93 | 5.80 | 28.32 | 0.02 | 1.78 | 4.02 | 0.32 | 0.05 | 3.40 |
17 | YZK-32 | 0.60 | 1.03 | 6.40 | 21.82 | 0.07 | 2.03 | 9.92 | 0.35 | 0.06 | 3.66 |
18 | YZK-34 | 0.65 | 1.01 | 6.50 | 25.35 | 0.03 | 2.17 | 6.59 | 0.40 | 0.05 | 3.22 |
19 | YZK-36 | 0.85 | 1.12 | 6.42 | 26.52 | 0.04 | 1.98 | 5.87 | 0.40 | 0.05 | 3.36 |
20 | YZK-38 | 0.63 | 1.06 | 6.24 | 22.45 | 0.04 | 2.08 | 9.78 | 0.34 | 0.06 | 3.39 |
21 | YZK-40 | 0.60 | 1.00 | 6.32 | 20.85 | 0.05 | 2.17 | 11.14 | 0.37 | 0.06 | 3.32 |
22 | YZK-42 | 0.74 | 0.86 | 5.92 | 21.15 | 0.05 | 1.87 | 11.98 | 0.37 | 0.06 | 3.06 |
23 | YZK-44 | 0.50 | 0.85 | 4.86 | 15.87 | 0.06 | 1.64 | 17.57 | 0.29 | 0.05 | 2.74 |
24 | YZK-46 | 1.04 | 1.30 | 8.19 | 29.38 | 0.02 | 2.44 | 1.12 | 0.50 | 0.05 | 4.33 |
25 | YZK-48 | 0.51 | 1.83 | 3.16 | 14.94 | 0.04 | 1.09 | 19.16 | 0.18 | 0.06 | 2.12 |
26 | YZK-50 | 0.41 | 2.40 | 2.34 | 9.98 | 0.02 | 0.83 | 24.42 | 0.13 | 0.04 | 1.21 |
27 | YZK-53 | 0.44 | 0.76 | 1.18 | 5.98 | 0.01 | 0.31 | 31.75 | 0.06 | 0.03 | 0.53 |
28 | YZK-55 | 0.47 | 0.92 | 1.78 | 9.75 | 0.02 | 0.47 | 27.34 | 0.10 | 0.04 | 1.09 |
29 | YZK-57 | 0.97 | 1.62 | 6.34 | 26.67 | 0.02 | 2.00 | 5.04 | 0.42 | 0.07 | 3.00 |
30 | YZK-60 | 0.37 | 5.06 | 3.58 | 13.68 | 0.02 | 1.36 | 15.17 | 0.24 | 0.06 | 2.09 |
31 | YZK-61 | 0.41 | 4.58 | 3.17 | 13.22 | 0.02 | 1.15 | 17.17 | 0.22 | 0.04 | 1.80 |
32 | YZK-65 | 0.40 | 3.21 | 2.68 | 11.82 | 0.02 | 0.94 | 21.35 | 0.18 | 0.04 | 1.30 |
33 | YZK-67 | 0.37 | 2.33 | 1.80 | 8.39 | 0.01 | 0.61 | 26.97 | 0.09 | 0.04 | 0.75 |
ZK513井 | |||||||||||
34 | ZK513-2 | 0.55 | 1.46 | 5.67 | 26.55 | 0.02 | 2.71 | 1.89 | 0.30 | 0.13 | 2.58 |
35 | ZK513-6 | 0.10 | 0.15 | 1.67 | 41.52 | 0.02 | 0.70 | 0.03 | 0.08 | <0.01 | 0.36 |
36 | ZK513-8 | 0.19 | 0.18 | 1.72 | 43.40 | 0.03 | 0.74 | 0.05 | 0.08 | <0.01 | 0.51 |
37 | ZK513-11 | 0.16 | 1.93 | 1.23 | 35.48 | <0.01 | 0.51 | 3.22 | 0.07 | 0.02 | 0.46 |
38 | ZK513-11-1 | 0.20 | 2.97 | 4.93 | 28.61 | 0.03 | 2.02 | 4.28 | 0.29 | 0.02 | 1.00 |
39 | ZK513-11-4 | 0.17 | 0.41 | 0.94 | 7.64 | 0.02 | 0.39 | 27.61 | 0.03 | 12.45 | 1.28 |
40 | ZK513-11-5 | 0.17 | 2.41 | 5.89 | 25.19 | 0.05 | 2.81 | 5.60 | 0.30 | 0.31 | 1.92 |
41 | ZK513-11-7 | 0.80 | 1.09 | 6.87 | 24.90 | 0.01 | 2.64 | 0.80 | 0.42 | 0.15 | 3.46 |
42 | ZK513-11-8 | 0.82 | 1.22 | 5.96 | 24.34 | 0.03 | 2.14 | 0.94 | 0.36 | 0.12 | 5.14 |
43 | ZK513-11-10 | 1.28 | 0.99 | 7.31 | 27.08 | 0.02 | 2.53 | 0.98 | 0.45 | 0.15 | 3.54 |
44 | ZK513-11-12 | 1.65 | 0.95 | 7.59 | 27.25 | 0.02 | 2.27 | 0.85 | 0.48 | 0.10 | 3.22 |
45 | ZK513-11-15 | 1.01 | 1.23 | 7.36 | 30.12 | 0.02 | 2.35 | 0.60 | 0.34 | 0.05 | 3.20 |
46 | ZK513-11-17 | 1.15 | 1.24 | 7.51 | 29.00 | 0.03 | 2.38 | 0.66 | 0.37 | 0.04 | 4.04 |
47 | ZK513-11-19 | 0.89 | 1.45 | 8.76 | 27.37 | 0.03 | 2.81 | 0.88 | 0.49 | 0.05 | 4.41 |
48 | ZK513-13 | 0.53 | 0.57 | 1.96 | 10.67 | 0.06 | 0.50 | 26.30 | 0.20 | 0.04 | 1.59 |
49 | ZK513-16 | 0.72 | 1.48 | 9.17 | 24.76 | 0.04 | 3.12 | 3.56 | 0.50 | 0.04 | 4.75 |
50 | ZK513-19 | 0.54 | 1.54 | 9.03 | 23.80 | 0.05 | 3.10 | 4.97 | 0.48 | 0.05 | 4.70 |
51 | ZK513-21 | 0.79 | 1.42 | 9.64 | 26.88 | 0.03 | 3.30 | 1.60 | 0.48 | 0.04 | 4.45 |
52 | ZK513-23 | 0.76 | 1.29 | 7.60 | 25.03 | 0.04 | 2.57 | 5.09 | 0.47 | 0.06 | 3.88 |
53 | ZK513-25 | 0.51 | 0.72 | 3.85 | 15.94 | 0.02 | 1.34 | 18.80 | 0.22 | 0.04 | 1.95 |
54 | ZK513-29 | 0.15 | 0.37 | 0.48 | 3.22 | <0.01 | 0.13 | 35.04 | 0.02 | <0.01 | 0.29 |
55 | ZK513-32 | 0.63 | 1.24 | 7.06 | 25.53 | <0.01 | 2.53 | 5.13 | 0.39 | 0.05 | 2.74 |
56 | ZK513-35 | 0.20 | 0.42 | 1.86 | 16.44 | 0.01 | 0.65 | 21.49 | 0.10 | 0.04 | 0.97 |
57 | ZK513-39 | 0.12 | 0.32 | 0.23 | 2.28 | <0.01 | 0.05 | 36.11 | <0.01 | 0.01 | 0.16 |
58 | ZK513-41 | 0.15 | 0.58 | 0.90 | 3.42 | <0.01 | 0.28 | 34.26 | 0.04 | <0.01 | 0.40 |
59 | ZK513-45 | 0.26 | 0.71 | 3.61 | 25.31 | 0.01 | 1.28 | 11.46 | 0.20 | 0.03 | 1.64 |
60 | ZK513-49 | 0.56 | 1.07 | 7.44 | 27.25 | 0.01 | 2.73 | 3.32 | 0.38 | 0.06 | 3.50 |
61 | ZK513-50 | 0.20 | 0.24 | 1.15 | 16.12 | <0.01 | 0.41 | 23.56 | 0.05 | 0.03 | 0.50 |
62 | ZK513-54 | 0.62 | 1.60 | 10.02 | 27.41 | 0.04 | 3.82 | 0.34 | 0.30 | 0.05 | 4.73 |
63 | ZK513-56 | 0.72 | 1.44 | 8.11 | 27.82 | 0.05 | 2.90 | 2.30 | 0.26 | 0.04 | 3.95 |
64 | ZK513-60 | 0.61 | 1.62 | 10.03 | 27.58 | 0.04 | 3.82 | 0.31 | 0.31 | 0.04 | 4.64 |
65 | ZK513-63 | 0.66 | 1.64 | 9.94 | 27.75 | 0.04 | 3.72 | 0.27 | 0.31 | 0.03 | 4.69 |
66 | ZK513-66 | 0.66 | 0.76 | 3.71 | 36.11 | 0.10 | 0.87 | 2.77 | 0.13 | 0.08 | 2.24 |
67 | ZK513-68 | 0.71 | 1.59 | 8.90 | 27.80 | 0.04 | 3.24 | 0.31 | 0.34 | 0.05 | 5.27 |
68 | ZK513-70 | 0.59 | 1.76 | 9.68 | 27.28 | 0.04 | 3.66 | 0.32 | 0.37 | 0.04 | 5.54 |
Table 2 Major elements data
序号 | 样品编号 | wB/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na | Mg | Al | Si | Mn | K | Ca | Ti | P | Fe | ||
鸭子口剖面 | |||||||||||
1 | YZK-1 | 0.17 | 1.38 | 8.37 | 28.62 | <0.01 | 6.76 | 0.18 | 0.76 | 0.03 | 0.86 |
2 | YZK-3 | 0.12 | 0.32 | 3.53 | 29.62 | <0.01 | 2.58 | 0.06 | 0.33 | 0.02 | 0.31 |
3 | YZK-4 | 0.31 | 0.39 | 3.99 | 35.27 | <0.01 | 1.96 | 0.08 | 0.29 | 0.02 | 0.38 |
4 | YZK-5 | 0.17 | 0.57 | 5.45 | 32.72 | <0.01 | 2.61 | 0.10 | 0.27 | 0.02 | 0.64 |
5 | YZK-7 | 0.59 | 0.41 | 4.61 | 33.88 | <0.01 | 1.98 | 0.02 | 0.29 | <0.01 | 0.38 |
6 | YZK-8 | 0.60 | 0.58 | 5.51 | 32.77 | <0.01 | 2.24 | 0.03 | 0.32 | 0.02 | 0.77 |
7 | YZK-10 | 0.67 | 0.78 | 5.34 | 31.86 | 0.02 | 1.89 | 1.82 | 0.29 | 0.05 | 2.43 |
8 | YZK-12 | 0.75 | 0.98 | 5.70 | 29.45 | 0.03 | 2.09 | 2.18 | 0.30 | 0.06 | 3.10 |
9 | YZK-14 | 0.49 | 1.37 | 3.53 | 18.99 | 0.05 | 1.19 | 13.97 | 0.19 | 0.06 | 2.61 |
10 | YZK-16 | 0.61 | 0.98 | 4.94 | 28.74 | 0.02 | 1.70 | 4.78 | 0.28 | 0.05 | 2.51 |
11 | YZK-18 | 0.68 | 1.16 | 5.78 | 21.70 | 0.03 | 1.98 | 9.19 | 0.31 | 0.04 | 2.66 |
12 | YZK-21 | 0.33 | 2.06 | 5.37 | 17.48 | 0.06 | 1.97 | 12.78 | 0.26 | 0.08 | 3.60 |
13 | YZK-23 | 0.66 | 0.87 | 6.20 | 27.45 | 0.02 | 2.13 | 4.23 | 0.34 | 0.06 | 2.75 |
14 | YZK-26 | 0.52 | 0.74 | 4.32 | 16.89 | 0.06 | 1.34 | 16.75 | 0.23 | 0.04 | 2.84 |
15 | YZK-28 | 0.59 | 0.68 | 4.78 | 16.72 | 0.03 | 1.65 | 16.13 | 0.26 | 0.07 | 2.84 |
16 | YZK-30 | 0.75 | 0.93 | 5.80 | 28.32 | 0.02 | 1.78 | 4.02 | 0.32 | 0.05 | 3.40 |
17 | YZK-32 | 0.60 | 1.03 | 6.40 | 21.82 | 0.07 | 2.03 | 9.92 | 0.35 | 0.06 | 3.66 |
18 | YZK-34 | 0.65 | 1.01 | 6.50 | 25.35 | 0.03 | 2.17 | 6.59 | 0.40 | 0.05 | 3.22 |
19 | YZK-36 | 0.85 | 1.12 | 6.42 | 26.52 | 0.04 | 1.98 | 5.87 | 0.40 | 0.05 | 3.36 |
20 | YZK-38 | 0.63 | 1.06 | 6.24 | 22.45 | 0.04 | 2.08 | 9.78 | 0.34 | 0.06 | 3.39 |
21 | YZK-40 | 0.60 | 1.00 | 6.32 | 20.85 | 0.05 | 2.17 | 11.14 | 0.37 | 0.06 | 3.32 |
22 | YZK-42 | 0.74 | 0.86 | 5.92 | 21.15 | 0.05 | 1.87 | 11.98 | 0.37 | 0.06 | 3.06 |
23 | YZK-44 | 0.50 | 0.85 | 4.86 | 15.87 | 0.06 | 1.64 | 17.57 | 0.29 | 0.05 | 2.74 |
24 | YZK-46 | 1.04 | 1.30 | 8.19 | 29.38 | 0.02 | 2.44 | 1.12 | 0.50 | 0.05 | 4.33 |
25 | YZK-48 | 0.51 | 1.83 | 3.16 | 14.94 | 0.04 | 1.09 | 19.16 | 0.18 | 0.06 | 2.12 |
26 | YZK-50 | 0.41 | 2.40 | 2.34 | 9.98 | 0.02 | 0.83 | 24.42 | 0.13 | 0.04 | 1.21 |
27 | YZK-53 | 0.44 | 0.76 | 1.18 | 5.98 | 0.01 | 0.31 | 31.75 | 0.06 | 0.03 | 0.53 |
28 | YZK-55 | 0.47 | 0.92 | 1.78 | 9.75 | 0.02 | 0.47 | 27.34 | 0.10 | 0.04 | 1.09 |
29 | YZK-57 | 0.97 | 1.62 | 6.34 | 26.67 | 0.02 | 2.00 | 5.04 | 0.42 | 0.07 | 3.00 |
30 | YZK-60 | 0.37 | 5.06 | 3.58 | 13.68 | 0.02 | 1.36 | 15.17 | 0.24 | 0.06 | 2.09 |
31 | YZK-61 | 0.41 | 4.58 | 3.17 | 13.22 | 0.02 | 1.15 | 17.17 | 0.22 | 0.04 | 1.80 |
32 | YZK-65 | 0.40 | 3.21 | 2.68 | 11.82 | 0.02 | 0.94 | 21.35 | 0.18 | 0.04 | 1.30 |
33 | YZK-67 | 0.37 | 2.33 | 1.80 | 8.39 | 0.01 | 0.61 | 26.97 | 0.09 | 0.04 | 0.75 |
ZK513井 | |||||||||||
34 | ZK513-2 | 0.55 | 1.46 | 5.67 | 26.55 | 0.02 | 2.71 | 1.89 | 0.30 | 0.13 | 2.58 |
35 | ZK513-6 | 0.10 | 0.15 | 1.67 | 41.52 | 0.02 | 0.70 | 0.03 | 0.08 | <0.01 | 0.36 |
36 | ZK513-8 | 0.19 | 0.18 | 1.72 | 43.40 | 0.03 | 0.74 | 0.05 | 0.08 | <0.01 | 0.51 |
37 | ZK513-11 | 0.16 | 1.93 | 1.23 | 35.48 | <0.01 | 0.51 | 3.22 | 0.07 | 0.02 | 0.46 |
38 | ZK513-11-1 | 0.20 | 2.97 | 4.93 | 28.61 | 0.03 | 2.02 | 4.28 | 0.29 | 0.02 | 1.00 |
39 | ZK513-11-4 | 0.17 | 0.41 | 0.94 | 7.64 | 0.02 | 0.39 | 27.61 | 0.03 | 12.45 | 1.28 |
40 | ZK513-11-5 | 0.17 | 2.41 | 5.89 | 25.19 | 0.05 | 2.81 | 5.60 | 0.30 | 0.31 | 1.92 |
41 | ZK513-11-7 | 0.80 | 1.09 | 6.87 | 24.90 | 0.01 | 2.64 | 0.80 | 0.42 | 0.15 | 3.46 |
42 | ZK513-11-8 | 0.82 | 1.22 | 5.96 | 24.34 | 0.03 | 2.14 | 0.94 | 0.36 | 0.12 | 5.14 |
43 | ZK513-11-10 | 1.28 | 0.99 | 7.31 | 27.08 | 0.02 | 2.53 | 0.98 | 0.45 | 0.15 | 3.54 |
44 | ZK513-11-12 | 1.65 | 0.95 | 7.59 | 27.25 | 0.02 | 2.27 | 0.85 | 0.48 | 0.10 | 3.22 |
45 | ZK513-11-15 | 1.01 | 1.23 | 7.36 | 30.12 | 0.02 | 2.35 | 0.60 | 0.34 | 0.05 | 3.20 |
46 | ZK513-11-17 | 1.15 | 1.24 | 7.51 | 29.00 | 0.03 | 2.38 | 0.66 | 0.37 | 0.04 | 4.04 |
47 | ZK513-11-19 | 0.89 | 1.45 | 8.76 | 27.37 | 0.03 | 2.81 | 0.88 | 0.49 | 0.05 | 4.41 |
48 | ZK513-13 | 0.53 | 0.57 | 1.96 | 10.67 | 0.06 | 0.50 | 26.30 | 0.20 | 0.04 | 1.59 |
49 | ZK513-16 | 0.72 | 1.48 | 9.17 | 24.76 | 0.04 | 3.12 | 3.56 | 0.50 | 0.04 | 4.75 |
50 | ZK513-19 | 0.54 | 1.54 | 9.03 | 23.80 | 0.05 | 3.10 | 4.97 | 0.48 | 0.05 | 4.70 |
51 | ZK513-21 | 0.79 | 1.42 | 9.64 | 26.88 | 0.03 | 3.30 | 1.60 | 0.48 | 0.04 | 4.45 |
52 | ZK513-23 | 0.76 | 1.29 | 7.60 | 25.03 | 0.04 | 2.57 | 5.09 | 0.47 | 0.06 | 3.88 |
53 | ZK513-25 | 0.51 | 0.72 | 3.85 | 15.94 | 0.02 | 1.34 | 18.80 | 0.22 | 0.04 | 1.95 |
54 | ZK513-29 | 0.15 | 0.37 | 0.48 | 3.22 | <0.01 | 0.13 | 35.04 | 0.02 | <0.01 | 0.29 |
55 | ZK513-32 | 0.63 | 1.24 | 7.06 | 25.53 | <0.01 | 2.53 | 5.13 | 0.39 | 0.05 | 2.74 |
56 | ZK513-35 | 0.20 | 0.42 | 1.86 | 16.44 | 0.01 | 0.65 | 21.49 | 0.10 | 0.04 | 0.97 |
57 | ZK513-39 | 0.12 | 0.32 | 0.23 | 2.28 | <0.01 | 0.05 | 36.11 | <0.01 | 0.01 | 0.16 |
58 | ZK513-41 | 0.15 | 0.58 | 0.90 | 3.42 | <0.01 | 0.28 | 34.26 | 0.04 | <0.01 | 0.40 |
59 | ZK513-45 | 0.26 | 0.71 | 3.61 | 25.31 | 0.01 | 1.28 | 11.46 | 0.20 | 0.03 | 1.64 |
60 | ZK513-49 | 0.56 | 1.07 | 7.44 | 27.25 | 0.01 | 2.73 | 3.32 | 0.38 | 0.06 | 3.50 |
61 | ZK513-50 | 0.20 | 0.24 | 1.15 | 16.12 | <0.01 | 0.41 | 23.56 | 0.05 | 0.03 | 0.50 |
62 | ZK513-54 | 0.62 | 1.60 | 10.02 | 27.41 | 0.04 | 3.82 | 0.34 | 0.30 | 0.05 | 4.73 |
63 | ZK513-56 | 0.72 | 1.44 | 8.11 | 27.82 | 0.05 | 2.90 | 2.30 | 0.26 | 0.04 | 3.95 |
64 | ZK513-60 | 0.61 | 1.62 | 10.03 | 27.58 | 0.04 | 3.82 | 0.31 | 0.31 | 0.04 | 4.64 |
65 | ZK513-63 | 0.66 | 1.64 | 9.94 | 27.75 | 0.04 | 3.72 | 0.27 | 0.31 | 0.03 | 4.69 |
66 | ZK513-66 | 0.66 | 0.76 | 3.71 | 36.11 | 0.10 | 0.87 | 2.77 | 0.13 | 0.08 | 2.24 |
67 | ZK513-68 | 0.71 | 1.59 | 8.90 | 27.80 | 0.04 | 3.24 | 0.31 | 0.34 | 0.05 | 5.27 |
68 | ZK513-70 | 0.59 | 1.76 | 9.68 | 27.28 | 0.04 | 3.66 | 0.32 | 0.37 | 0.04 | 5.54 |
Fig.6 Schematic diagrams showing the organic matter enrichment pattern in the Yazikou section (intrashelf basin) and Well ZK513 (slope facies). The euxinic wedge was mainly localized within the slope-margin of outer open shelf due to the high productivity from upwelling.
[1] |
OCH L M, SHIELDS-ZHOU G A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57.
DOI URL |
[2] |
YAO W H, LI Z X, LI W X, et al. From Rodinia to Gondwanaland: a tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science, 2014, 314(1): 278-313.
DOI URL |
[3] |
LI Z X, EVANS D, HALVERSON G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294: 219-232.
DOI URL |
[4] |
LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
DOI URL |
[5] |
CANFIELD D E, POULTON S W, NARBONNE G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95.
PMID |
[6] |
SCOTT C, LYONS T W, BEKKER A, et al. Tracing the stepwise oxygenation of the Proterozoic Ocean[J]. Nature, 2008, 452(7186): 456-459.
DOI |
[7] |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
DOI |
[8] | LI C, JIN C S, PLANAVSKY N J, et al. Coupled oceanic oxygenation and metazoan diversification during the Early-Middle Cambrian?[J]. Geology, 2017, 45(8): 743-746. |
[9] |
CANFIELD D E, POULTON S W, KNOLL A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
DOI PMID |
[10] |
LI C, LOVE G D, LYONS T W, et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5974): 80-83.
DOI PMID |
[11] |
POULTON S W, CANFIELD D E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history[J]. Elements, 2011, 7(2): 107-112.
DOI URL |
[12] |
KNOLLA H, CARROLL S B. Early animal evolution: emerging views from comparative biology and geology[J]. Science, 1999, 284(5423): 2129-2137.
PMID |
[13] |
STEINER M, LI G, YI Q, et al. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.
DOI URL |
[14] |
FU D J, TONG G H, DAI T, et al. The Qingjiang biota: a Burgess Shale-type fossil Lagerstätte from the Early Cambrian of South China[J]. Science, 2019, 363(6433): 1338-1342.
DOI URL |
[15] | 朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究: 进展与展望[J]. 中国科学:地球科学, 2019, 49(10): 1455-1490. |
[16] |
CHEN D Z, WANG J G, QING H R, et al. Hydrothermal venting activities in the Early Cambrian, South China: petrological, geochronological and stable isotopic constraints[J]. Chemical Geology, 2009, 258(3/4): 168-181.
DOI URL |
[17] |
WANG J G, CHEN D Z, YAN D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306/307: 129-138.
DOI URL |
[18] |
ZHU M Y, LU M, ZHANG J M, et al. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China[J]. Precambrian Research, 2013, 225: 7-28.
DOI URL |
[19] | 汪建国, 陈代钊, 王清晨, 等. 中扬子地区晚震旦世—早寒武世转折期台-盆演化及烃源岩形成机理[J]. 地质学报, 2007, 81(8): 1102-1109. |
[20] | 康玉柱. 中扬子地区非常规天然气资源潜力及勘查方向[J]. 石油科学通报, 2020, 5(2): 141-147. |
[21] |
朱光有, 赵坤, 李婷婷, 等. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测[J]. 石油学报, 2020, 41(12): 1567-1586.
DOI |
[22] |
吴陈君, 刘新社, 文志刚, 等. 黔北地区牛蹄塘组页岩有机质富集及有机质孔隙发育机制研究[J]. 地学前缘, 2023, 30(3): 101-109.
DOI |
[23] |
TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia: an overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24.
DOI URL |
[24] | TYSON R V. The “productivity versus preservation” controversy: cause, flaws, and resolution[M]//HARRIS N B. Deposition of organic-carbon-rich sediments: models, mechanisms, and consequences. Claremore: Society for Sedimentary Geology, 2005: 17-33. |
[25] |
JIN C S, LI C, ALGEO T J, et al. Controls on organic matter accumulation on the early-Cambrian western Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2020, 111: 75-87.
DOI URL |
[26] |
WANG N, LI M J, TIAN X W, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in Lower Cambrian black shale in the Upper Yangtze Platform[J]. Marine and Petroleum Geology, 2020, 120: 104570.
DOI URL |
[27] |
CHEN L, ZHANG B M, CHEN X H, et al. Depositional environment and organic matter accumulation of the Lower Cambrian Shuijingtuo Formation in the Middle Yangtze area, China[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109339.
DOI URL |
[28] |
WU Y W, TIAN H, GONG D J, et al. Paleo-environmental variation and its control on organic matter enrichment of black shales from shallow shelf to slope regions on the Upper Yangtze Platform during Cambrian Stage 3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109653.
DOI URL |
[29] |
TAN J Q, WANG Z H, WANG W H, et al. Depositional environment and hydrothermal controls on organic matter enrichment in the Lower Cambrian Niutitang shale, southern China[J]. AAPG Bulletin, 2021, 105(7): 1329-1356.
DOI URL |
[30] |
李智武, 冉波, 肖斌, 等. 四川盆地北缘震旦纪—早寒武世隆-坳格局及其油气勘探意义[J]. 地学前缘, 2019, 26(1): 59-85.
DOI |
[31] | 陈代钊, 汪建国, 严德天, 等. 中扬子地区早寒武世构造-沉积样式与古地理格局[J]. 地质科学, 2012, 47(4):1052-1070. |
[32] |
CHEN D Z, ZHOU X Q, FU Y, et al. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J]. Terra Nova, 2015, 27(1): 62-68.
DOI URL |
[33] | 李忠雄, 陆永潮, 王剑, 等. 中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理[J]. 古地理学报, 2004, 6(2):151-162. |
[34] | 谷志东, 李宗银, 袁苗, 等. 四川盆地及其周缘晚震旦世—早寒武世早期区域抬升运动对岩溶储层发育的影响[J]. 天然气工业, 2014, 34(8):37-45. |
[35] | 汪建国, 陈代钊, 严德天, 等. 湘西地区前寒武纪—寒武纪转折期碳酸盐-硅泥质沉积体系的截然转换: 地层-沉积样式、 形成机理及意义[J]. 地质科学, 2011, 46(1):27-41. |
[36] |
DING Y, CHEN D Z, ZHOU X Q, et al. Tectono-depositional pattern and evolution of the Middle Yangtze Platform (South China) during the late Ediacaran[J]. Precambrian Research, 2019, 333: 105426.
DOI URL |
[37] | 腾格尔, 刘文汇, 徐永昌, 等. 高演化海相碳酸盐烃源岩地球化学综合判识: 以鄂尔多斯盆地为例[J]. 中国科学D辑, 2006, 36(2):167-176. |
[38] | 腾格尔, 秦建中, 付小东, 等. 川西北地区海相油气成藏物质基础: 优质烃源岩[J]. 石油实验地质, 2008, 30(5):478-483. |
[39] | 腾格尔, 高长林, 胡凯, 等. 上扬子北缘下组合优质烃源岩分布及生烃潜力评价[J]. 天然气地球科学, 2007, 18(2):254-259. |
[40] | BOYER C, KIESCHNICK J, SUAREZ-RIVERA R, et al. Producing gas from its source[J]. Oilfield Review, 2006, 18: 36-49. |
[41] | 谢增业, 魏国齐, 张健, 等. 四川盆地东南缘南华系大塘坡组烃源岩特征及其油气勘探意义[J]. 天然气工业, 2017, 37(6):1-11. |
[42] | 黄籍中. 用稳定碳同位素δ13C值识别干酪根类型的尝试[J]. 石油实验地质, 1980(2): 49-54. |
[43] | 黄第藩, 李晋超, 张大江. 干酪根的类型及其分类参数的有效性、局限性和相关性[J]. 沉积学报, 1984, 2(3): 18-33. |
[44] | 付小东, 秦建中, 腾格尔, 等. 四川盆地北缘上二叠统大隆组烃源岩评价[J]. 石油实验地质, 2010, 32(6):566-577. |
[45] | 胡广, 刘文汇, 罗厚勇, 等. 成烃生物组合对烃源岩干酪根碳同位素组成的影响: 以塔里木盆地下古生界烃源岩为例[J]. 矿物岩石地球化学通报, 2019, 38(5): 902-913. |
[46] | 韦恒叶. 古海洋生产力与氧化还原指标: 元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2): 76-88. |
[47] |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies:an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
DOI URL |
[48] | 李双建, 肖开华, 沃玉进, 等. 南方海相上奥陶统: 下志留统优质烃源岩发育的控制因素[J]. 沉积学报, 2008, 26(5): 872-880. |
[49] | DICKENS G R, FEWLESS T, THOMAS E, et al. Excess barite accumulation during the Paleocene-Eocene Thermal Maximum: massive input of dissolved barium from seafloor gas hydrate reservoirs[J]. Special Paper of the Geological Society of America, 2003, 369(8): 2504-2513. |
[50] |
YEASMIN R, CHEN D Z, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the Mid-Upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386.
DOI URL |
[51] | 周锡强, 遇昊, 黄泰誉, 等. 重晶石沉积类型及成因评述: 兼论扬子地区下寒武统重晶石的富集机制[J]. 沉积学报, 2016, 34(6):1044-1056. |
[52] |
BISHOP J K B. The barite-opal-organic carbon association in oceanic particulate matter[J]. Nature, 1988, 332(6162): 341-343.
DOI |
[53] |
STERNBERG E, TANG D G, HO T Y, et al. Barium uptake and adsorption in diatoms[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2745-2752.
DOI URL |
[54] |
SCHMITZ B. Barium, equatorial high productivity, and the northward wandering of the Indian continent[J]. Paleoceanography, 1987, 2(1): 63-77.
DOI URL |
[55] | 沈俊, 施张燕, 冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报, 2011, 30(2):69-77. |
[56] | 黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170. |
[57] |
SCHOEPFER S D, SHEN J, WEI H, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52.
DOI URL |
[58] |
ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
DOI URL |
[59] |
PIPER D Z, PERKINS R B. A modern vs. Permian black shale: the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
DOI URL |
[60] |
ADACHI M, YAMAMOTO K, SUGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
DOI URL |
[61] |
CAMICHAEL S K, WATERS J A, KONIGSHLF P, et al. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: a review of its sedimentological and geochemical expression[J]. Global and Planetary Change, 2019, 183: 102984.
DOI URL |
[62] | 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99. |
[63] | ZHANG S C, WANG X M, WANG H J, et al. Sufficient oxygen for animal respiration 1400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736. |
[64] |
SCOTT C, LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies[J]. Chemical Geology, 2012, 324/325: 19-27.
DOI URL |
[65] |
ALGEO T J, ROWE H. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology, 2012, 324/325: 6-18.
DOI URL |
[66] |
WIGNALL P B, TWITCHETT R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.
PMID |
[67] |
HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
DOI URL |
[68] |
RIQUIER L, TRIBOVILLARD N, AVERBUCH O, et al. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): two oxygen-deficient periods resulting from different mechanisms[J]. Chemical Geology, 2006, 233(1/2): 137-155.
DOI URL |
[69] |
SQUIRE R, CAMPBELL I H, ALLEN C M, et al. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 116-133.
DOI URL |
[70] |
PETERS S E, GAINES R R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion[J]. Nature, 2012, 484(7394): 363-366.
DOI |
[71] | 牟南, 吴朝东. 上扬子地区震旦—寒武纪磷块岩岩石学特征及成因分析[J]. 北京大学学报(自然科学版), 2005, 41(4): 551-562. |
[72] |
CHANG H J, CHU X L, FENG L J, et al. Marine redox stratification on the earliest Cambrian (ca. 542-529 Ma) Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 75-85.
DOI URL |
[73] |
LI C, CHENG M, ZHU M Y, et al. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution[J]. Emerging Topics in Life Sciences, 2018, 2(2): 279-288.
DOI PMID |
[74] |
HUANG T, CHEN D Z, FU Y, et al. Development and evolution of a euxinic wedge on the ferruginous outer shelf of the Early Cambrian Yangtze Sea[J]. Chemical Geology, 2019, 524: 259-271.
DOI URL |
[1] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[2] | ZHANG Jiazhi, JIANG Zaixing, XU Jie, WEI Siyuan, SONG Lizhou, LIU Tong, SHEN Zhihan, JIANG Xiaolong, LI Yongfei, ZHANG Xi. Volcanic sedimentation of Cretaceous Jiufotang Formation in the Chaoyang Basin and its impact on organic matter enrichment [J]. Earth Science Frontiers, 2024, 31(3): 284-297. |
[3] | SU Xin, CHEN Fang, YU Chonghan, GUO Ce. A PDO-like record documented by microfossils from the northern region of the California Current System since the Early Pleistocene [J]. Earth Science Frontiers, 2020, 27(6): 128-143. |
[4] | SHAO Ji'an, ZHOU Xinhua, ZHANG Lüqiao. Phanerozoic multiple underplatings beneath the north margin of the North China Craton and the implications for tectono-magmatism and deep dynamics [J]. Earth Science Frontiers, 2020, 27(4): 124-134. |
[5] | MAO Shengyi,ZHU Xiaowei,JIA Guodong,WU Nengyou. Application of longchain diol and its index as environmental indicators of coastal upwelling regions along eastern Guangdong in the northern South China Sea. [J]. Earth Science Frontiers, 2018, 25(4): 285-298. |
[6] | LI Xi-Guang YAN Xiao-Min LIANG Ji. Nanning Cenozoic asthenosphere upwelling plume and its influence on the shallow surface structure. [J]. Earth Science Frontiers, 2009, 16(4): 261-. |
[7] | GENG Ji-Shan YANG Wei-Ran GENG Zuo-Yun LIU Jian-Hua SHAO Jian-She. Mesozoic asthenosphere upwelling of Eastern China and its effects on structuremagma mineralizationconcentrated region. [J]. Earth Science Frontiers, 2009, 16(4): 225-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||