Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 412-430.DOI: 10.13745/j.esf.sf.2024.1.4
Previous Articles Next Articles
WANG Chengshan1,2(), GAO Yuan1,2, WANG Pujun3, WU Huaichun1,4, LÜ Qingtian5, ZHU Yongyi6, WAN Xiaoqiao1,2, ZOU Changchun7, HUANG Yongjian1,2, GAO Youfeng3, XI Dangpeng1,2, WANG Wenshi6, HE Huaiyu8, FENG Zihui9, YANG Guang10, DENG Chenglong8, ZHANG Laiming1,2, WANG Tiantian1,11, HU Bin1,2, CUI Liwei12, PENG Cheng7, YU Enxiao13, HUANG He14, YANG Liu2, WU Zhengxuan2
Received:
2023-12-10
Revised:
2023-12-29
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age[J]. Earth Science Frontiers, 2024, 31(1): 412-430.
Fig.9 Changes in the chronostratigraphic framework of Songliao Basin before and after the implementation of the International Continental Scientific Drilling Program
[1] | 汪品先. 从海底观察地球: 地球系统的第三个观测平台[J]. 自然杂志, 2007, 29(3): 125-131. |
[2] | ULRICH H, CHRISTIAN K, MARK D Z. Continental scientific drilling: a decade of progress, and challenges for the future[M]. Berlin, Heidelberg: Springer, 2007: 1-366. |
[3] | ICDP. ICDP science plan 2020-2030[M]. Potsdam: International Continental Scientific Drilling Program, 2020: 1-36. |
[4] | ICDP官方网站. The International Continental Scientific Drilling Program. https://www.icdp-online.org/2023-12-01. |
[5] |
高远, 王成善, 黄永建, 等. 大陆科学钻探开展古气候研究进展[J]. 地学前缘, 2017, 24(1): 1-17.
DOI |
[6] | PAGES IPO. Science and implementation plans: PANASH (Paleoclimates of the Northern and Southern Hemispheres)-the pole-equator-pole transects[M]. Bern: Pages Series, 1995: 1-99. |
[7] |
KERR R A. How hot will the greenhouse world be?[J]. Science, 2005, 309(5731): 100-100.
PMID |
[8] | TIERNEY J E, POULSEN C J, MONTANEZ I P, et al. Past climates inform our future[J]. Science, 2020, 370(6517): 1-9. |
[9] |
王成善, 王天天, 陈曦, 等. 深时古气候对未来气候变化的启示[J]. 地学前缘, 2017: 24(1): 1-17.
DOI |
[10] |
HAY W W. Can humans force a return to a ‘Cretaceous’ climate?[J]. Sedimentary Geology, 2011, 235(1/2): 5-26.
DOI URL |
[11] |
FOSTER G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
DOI PMID |
[12] |
MCINERNEY F A, WING S L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 489-516.
DOI URL |
[13] | NATIONAL RESEARCH COUNCIL. Understanding Earth's deep past: lessons for our climate future[M]. Washington: The National Academies Press, 2011: 1-177. |
[14] | IPCC. Climate change 2021: the physical science basis, contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK; New York, USA: Cambridge University Press, 2021: 1-2391. |
[15] | 王成善, 冯志强, 吴河勇, 等. 中国白垩纪大陆科学钻探工程: 松科一井科学钻探工程的实施与初步进展[J]. 地质学报, 2008, 82(1): 9-20. |
[16] |
O’BRIEN C L, ROBINSON S A, PANCOST R D, et al. Cretaceous sea-surface temperature evolution: constraints from tex86 and planktonic foraminiferal oxygen isotopes[J]. Earth-Science Reviews, 2017, 172: 224-247.
DOI URL |
[17] | GASKELL D E, HUBER M, O’BRIEN C L, et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years[J]. The Proceedings of the National Academy of Sciences, 2022, 119(11): e2111332119. |
[18] |
WANG Y D, HUANG C M, SUN B N, et al. Paleo-CO2 variation trends and the Cretaceous greenhouse climate[J]. Earth-Science Reviews, 2014, 129: 136-147.
DOI URL |
[19] | BICE K L, NORRIS R D. Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian)[J]. Paleoceanography, 2002, 17(4): 1-17. |
[20] |
MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
DOI PMID |
[21] |
MACLEOD K G, HUBER B T, BERROCOSOÁ J, et al. A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera[J]. Geology, 2013, 41(10): 1083-1086.
DOI URL |
[22] |
ANDO A, HUBER B T, MACLEOD K G, et al. Blake Nose stable isotopic evidence against the mid-Cenomanian glaciation hypothesis[J]. Geology, 2009, 37(5): 451-454.
DOI URL |
[23] |
WANG C S, SCOTT R W, WAN X Q, et al. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata[J]. Earth-Science Reviews, 2013, 126(1): 275-299.
DOI URL |
[24] |
WANG C S, FENG Z Q, ZHANG L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
DOI URL |
[25] |
FENG Z Q, JIA C Z, XIE X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, Northeast China[J]. Basin Research, 2010, 22(1): 79-95.
DOI URL |
[26] | 王璞珺, 赵然磊, 蒙启安, 等. 白垩纪松辽盆地: 从火山裂谷到陆内拗陷的动力学环境[J]. 地学前缘, 2015, 22(03): 99-117. |
[27] | GIERLOWSKI-KORDESCH E H, KELTS K R. Lake basins through space and time[M]. Tulsa: American Association of Petroleum Geologists, 2001: 1-636. |
[28] |
GAO Y, WANG C S, WANG P J, et al. Progress on Continental Scientific Drilling Project of Cretaceous Songliao Basin (SK-1 and SK-2)[J]. Science Bulletin, 2019, 64(2): 73-75.
DOI PMID |
[29] | 王成善, 冯志强, 王璞珺. 白垩纪松辽盆地松科1井大陆科学钻探工程[M]. 北京: 科学出版社, 2016: 1-752. |
[30] | 高有峰, 王璞珺, 王成善, 等. 松科1井南孔选址、 岩心剖面特征与特殊岩性层的分布[J]. 地质学报, 2008, 82(5): 669-675. |
[31] | 高有峰, 王成善, 王璞珺, 等. 松科1井北孔选址、 岩心剖面特征与特殊岩性层的分布[J]. 地学前缘, 2009, 16(6): 104-112. |
[32] | 王璞珺, 刘海波, 任延广, 等. 松辽盆地白垩系大陆科学钻探 “松科2井” 选址[J]. 地学前缘, 2017, 24(1): 216-228. |
[33] | 侯贺晟, 王成善, 张交东, 等. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质, 2018, 45(4): 641-657. |
[34] |
ZHU Y Y, WANG W S, WU X M, et al. Main technical innovations of Songke Well No.2 Drilling Project[J]. China Geology, 2018, 1(2): 187-201.
DOI URL |
[35] |
高航, 王璞珺, 高有峰, 等. 松辽盆地南部上、下白垩统界线研究: 以松辽盆地国际大陆科学钻探松科3井为例[J]. 地学前缘, 2023, 30(3): 425-440
DOI |
[36] | WANG T T, RAMEZANI J, YANG C, et al. High-resolution geochronology of sedimentary strata by U-Pb CA-ID-TIMS zircon geochronology: a review[J]. Earth-Science Reviews, 2023, 245.104550. |
[37] |
KUIPER K F, DEINO A, HILGEN F J, et al. Synchronizing rock clocks of Earth history[J]. Science, 2008, 320: 500-504.
DOI PMID |
[38] |
WANG T T, RAMEZANI J, WANG C S, et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China[J]. Earth and Planetary Science Letters, 2016, 446: 37-44.
DOI URL |
[39] |
WANG T T, WANG C S, RAMEZANI J, et al. High-precision geochronology of the Early Cretaceous Yingcheng Formation and its stratigraphic implications for Songliao Basin, China[J]. Geoscience Frontiers, 2022, 13(4): 101386.
DOI URL |
[40] |
LIU H B, WANG P J, GAO Y F, et al. New data from ICDP borehole SK2 and its constraint on the beginning of the Lower Cretaceous Shahezi Formation in the Songliao Basin, NE China[J]. Science Bulletin, 2021, 66: 411-413.
DOI PMID |
[41] |
WU H C, ZHANG S H, JIANG G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
DOI URL |
[42] |
WU H C, ZHANG S H, HINNOV L A, et al. Cyclostratigraphy and orbital tuning of the terrestrial Upper Santonian-Lower Danian in Songliao Basin, northeastern China[J]. Earth and Planetary Science Letters, 2014, 407: 82-95.
DOI URL |
[43] | ZHANG S J, WU H C, ZHANG S H, et al. Hierarchical Milankovitch and sub-Milankovitch cycles in the environmental magnetism of the lower Shahezi Formation, Lower Cretaceous, Songliao Basin, northeastern China[J]. Frontiers in Earth Science, 2023, 11. https://doi.org/10.3389feart.2023.1077787. |
[44] | HE H Y, DENG C L, WANG P J, et al. Toward age determination of the termination of the Cretaceous Normal Superchron[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2). https://doi.org/10.1029/2011GC003901. |
[45] |
DENG C L, HE H Y, PAN Y X, et al. Chronology of the terrestrial Upper Cretaceous in the Songliao Basin, Northeast Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385(1): 44-54.
DOI URL |
[46] | 王璞珺, 王俊, 王东坡, 等. 松辽盆地白垩纪年代地层研究及地层时代划分[J]. 地质学报, 1995, 69(4): 372-381. |
[47] | 黄清华, 谭伟, 杨会臣. 松辽盆地白垩纪地层序列与年代地层[J]. 大庆石油地质与开发, 1999, 18(6): 15-28. |
[48] |
SHA J G. Cretaceous stratigraphy of Northeast China: non-marine and marine correlation[J]. Cretaceous Research, 2007, 28(2): 146-170.
DOI URL |
[49] |
YU Z Q, HE H Y, DENG C L, et al. New geochronological constraints for the Upper Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Cretaceous Research, 2019, 102: 160-169.
DOI URL |
[50] |
YU Z Q, HE H Y, DENG C L, et al. New SIMS U-Pb geochronology for the Shahezi Formation from CCSD-SK-IIe borehole in the Songliao Basin, NE China[J]. Science Bulletin, 65: 1049-1051
DOI URL |
[51] |
YIN Y K, GAO Y F, WANG P J, et al. Discovery of Triassic volcanic-sedimentary strata in the basement of Songliao Basin[J]. Science Bulletin, 2019, 64(10): 644.
DOI PMID |
[52] |
WANG P J, MATTERN F, DIDENKO N A, et al. Tectonics and cycle system of the Cretaceous Songliao Basin: an inverted active continental margin basin[J]. Earth-Science Reviews, 2016, 159: 82-102.
DOI URL |
[53] |
SONG Y, REN J Y, STEPASHKO A A, et al. Post-rift geodynamics of the Songliao Basin, NE China: origin and significance of T11 (Coniacian) unconformity[J]. Tectonophysics, 2014, 634: 1-18.
DOI URL |
[54] |
FENG Z Q, GRAHAM S A. From foredeep to orogenic wedge-top: The Cretaceous Songliao retroforeland basin, China[J]. Geoscience Frontiers, 2023, 14(3): 101527.
DOI URL |
[55] |
WAN X Q, ZHAO J, SCOTT R W, et al. Late Cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 31-43.
DOI URL |
[56] |
WU H C, HINNOV L A, ZHANG S H, et al. Continental geological evidence for Solar System chaotic behavior in the Late Cretaceous[J]. GSA Bulletin, 2022, 135 (3/4): 712-724.
DOI URL |
[57] |
ZHANG Z F, HUANG Y J, LI M S, et al. Obliquity-forced aquifer-eustasy during the Late Cretaceous greenhouse world[J]. Earth and Planetary Science Letters, 2022, 596: 117800.
DOI URL |
[58] |
HUANG H, GAO Y, MA C, et al. Organic carbon burial is paced by a -173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): eabf9489.
DOI URL |
[59] |
MITCHELL J M. An overview of climatic variability and its causal mechanisms[J]. Quaternary Research, 1976, 6: 481-493.
DOI URL |
[60] |
CHAMBERLAIN C P, WAN X Q, GRAHAM S A, et al. Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 106-124.
DOI URL |
[61] | 高瑞祺. 松辽盆地白垩纪石油地层孢粉学[M]. 北京: 地质出版社, 1999: 1-94. |
[62] |
ZHANG L M, WANG C S, WIGNALL P B, et al. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018, 46(3): 271-274.
DOI URL |
[63] |
IBARRA D E, CHAMBERLAIN C P. Quantifying closed-basin lake temperature and hydrology by inversion of oxygen isotope and trace element paleoclimate records[J]. American Journal of Science, 2015: 315(9), 781-808.
DOI URL |
[64] |
FRIEDRICH O, NORRIS R D, ERBACHER J. Evolution of Middle to Late Cretaceous oceans: a 55 m.y. record of Earth's temperature and carbon cycle[J]. Geology, 2012, 40(2): 107-110.
DOI URL |
[65] | KELLER G. Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: coincidence? cause and effect?[J]. Special Paper of the Geological Society of America, 2014, 505: 57-89. |
[66] |
SCHULTE P, ALEGRET L, ARENILLAS I, et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary[J]. Science, 2010, 327(5970): 1214-1218.
DOI PMID |
[67] |
HULL P M, BORNEMANN A, PENMAN D E, et al. On impact and volcanism across the Cretaceous-Paleogene boundary[J]. Science, 2020, 367(6475): 266-272.
DOI PMID |
[68] |
GAO Y, IBARRA D E, WANG C S, et al. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous[J]. Geology, 2015, 43(4): 287-290.
DOI URL |
[69] |
GAO Y, IBARRA D E, CAVES RUGENSTEIN J K, et al. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: a multiproxy record from the Songliao Basin in northeastern China[J]. Earth-Science Reviews, 2021, 216: 103572.
DOI URL |
[70] |
GU X, ZHANG L M, YIN R S, et al. Deccan volcanic activity and its links to the end-Cretaceous extinction in northern China[J]. Global and Planetary Change, 2022, 210: 103772.
DOI URL |
[71] |
SANEI H, GRASBY S E, BEAUCHAMP B. Latest Permian mercury anomalies[J]. Geology, 2012, 40(1): 63-66.
DOI URL |
[72] |
MILLER K G, WRIGHT J D, BROWNING J V. Visions of ice sheets in a greenhouse world[J]. Marine Geology, 2005, 217(3/4): 215-231.
DOI URL |
[73] |
JACOBS D K, SAHAGIAN D L. Climate-induced fluctuations in sea level during non-glacial times[J]. Nature, 1993, 361(6414): 710-712.
DOI |
[74] | MICHAEL W, RICHARD L, BENJAMIN S. Eustasy, its controlling factors, and the limno-eustatic hypothesis: concepts inspired by Eduard Suess[J]. Austrian Journal of Earth Sciences, 2014, 107: 115-131. |
[75] | 张弥曼, 周家健. 松辽盆地似狼鳍鱼属的发现及骨舌鱼超目的起源: 东北白垩纪鱼化石之一[J]. 古脊椎动物与古人类, 1976, 14(3): 146-153. |
[76] | 黄福堂, 迟元林, 黄清华. 松辽盆地中白垩世海侵事件质疑[J]. 石油勘探与开发, 1999, 26(3): 104-107. |
[77] | 张顺. 松辽盆地晚白垩世 “海侵” 事件争论及其解决建议[J]. 大庆石油地质与开发, 2021, 40(3): 1-12. |
[78] |
XI D P, WAN X Q, FENG Z Q, et al. Discovery of Late Cretaceous foraminifera in the Songliao Basin: evidence from SK-1 and implications for identifying seawater incursions[J]. Chinese Science Bulletin, 2011, 56: 253-256.
DOI URL |
[79] |
HUANG Y J, YANG G S, GU J, et al. Marine incursion events in the Late Cretaceous Songliao Basin: constraints from sulfur geochemistry records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385(1): 152-161.
DOI URL |
[80] |
HU J F, PENG P A, LIU M Y, et al. Seawater incursion events in a Cretaceous paleo-lake revealed by specific marine biological markers[J]. Scientific Reports, 2015, 5(1): 9508.
DOI |
[81] |
XI D P, CAO W X, HUANG Q H, et al. Late Cretaceous marine fossils and seawater incursion events in the Songliao Basin, NE China[J]. Cretaceous Research, 2016, 62: 172-182.
DOI URL |
[82] |
XU Y L, LI D D, GAO Y, et al. Multiple S-isotopic evidence for seawater incursions during the deposition of the Upper Cretaceous source rocks in the Songliao Basin, northeastern China[J]. Chemical Geology, 2023, 642: 121790.
DOI URL |
[83] |
QIU J. A trip to dinosaur time[J]. Nature, 2010, 467: 150-151.
DOI |
[84] |
QIU J. Dinosaur climate probed[J]. Science, 2015, 348(6240): 1185-1185.
DOI URL |
[85] | WANG C S, GAO Y, IBARRA D E, et al. An unbroken record of climate during the age of dinosaurs[J]. Eos, Transactions American Geophysical Union, 2021, 102. https://doi.org/10.1029/2021EO158455. |
[1] | WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin [J]. Earth Science Frontiers, 2024, 31(1): 431-445. |
[2] | LI Ruilei, YANG Liying, ZHU Jianfeng, LIU Yuhu, XU Wen, LI Zhongbo, FAN Xuepei, LENG Qinglei, ZHANG Tingting. Volcanic reservoir characteristics and hydrocarbon accumulation control factors of rift depressions in southern Songliao Basin [J]. Earth Science Frontiers, 2023, 30(4): 100-111. |
[3] | DU Lintao, BI Wenjun, LI Yalin, ZHANG Jiawei, ZHANG Shaowen, YIN Xuwei, WANG Chengxiu. Sedimentary environment, provenance analysis and tectonic significance of the Upper-Cretaceous Abushan Formation in 114 Daoban, Anduo area, Qiangtang Basin [J]. Earth Science Frontiers, 2023, 30(4): 245-259. |
[4] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
[5] | HAN Haiying, GUO Rui, WANG Jun, QIN Guosheng, SUN Xiaowei, YU Yichang, SU Haiyang, GAO Yang. Sequence stratigraphic framework and sedimentary evolution of the Cretaceous in southern Iraq [J]. Earth Science Frontiers, 2023, 30(2): 122-138. |
[6] | WANG Lulin, LIU Xiaohong, ZHANG Zhiguang. Discovery of volcanic rocks in the Pingchau Formation in Tungpingchau, Hong Kong UNESCO Global Geopark: Zircon U-Pb geochronology, geochemistry and geological implications [J]. Earth Science Frontiers, 2023, 30(2): 239-258. |
[7] | LIU Yonggang, ZHANG Ming, LIN Qifan, LIU Peng, HU Yongyun. Variation of atmospheric dust loading and its climate impacts in different geological periods [J]. Earth Science Frontiers, 2022, 29(5): 285-299. |
[8] | SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies [J]. Earth Science Frontiers, 2022, 29(5): 342-354. |
[9] | WANG Genjiu, SONG Xinmin, LIU Bo, SHI Kaibo, LIU Hangyu. High permeability zone of Cretaceous porous carbonate reservoir of A Field, Iraq: Genesis and distribution characteristics [J]. Earth Science Frontiers, 2022, 29(5): 483-496. |
[10] | LEI Ziyan, GE Qian, CHEN Dong, ZHANG Yongcong, HAN Xibin, YE Liming, BIAN Yeping, XU Dong. Provenance of sediments in the Amundsen Sea, West Antarctic since the mid-Holocene and paleoclimate reconstruction [J]. Earth Science Frontiers, 2022, 29(4): 179-190. |
[11] | FU Shun, ZHAO Yingquan, WANG Jinjun, YU Yu, ZHU Yingtang, FU Xingzhe. Continent-continent collision at the southwestern margin of the Cretaceous Qiangtang terrane: Constraints from granite in the western Bangong-Nujiang Suture Zone [J]. Earth Science Frontiers, 2022, 29(2): 416-430. |
[12] | HAN Shuangbiao, TANG Zhiyuan, BAI Songtao, WAN Lei, RUI Yurun, GAO Yuan, HUANG Yongjian, WANG Chengshan. Application of elemental capture spectroscopy in deep tight reservoir evaluation: A case study of well SK-2 [J]. Earth Science Frontiers, 2022, 29(1): 449-458. |
[13] | YAN Maodu, ZHANG Dawen, LI Minghui. Research progress and new views on the potash deposits in the Simao and Khorat Basins [J]. Earth Science Frontiers, 2021, 28(6): 10-28. |
[14] | HUANG Haiyong, XU Yang, YIN Xuwei, YANG Kunguang, LIU Yu. Geochronology, petrogenesis and tectonic implications of the Qiaodian granite porphyry from the western Dabie Orogenic Belt, Central China [J]. Earth Science Frontiers, 2021, 28(5): 380-412. |
[15] | QU Xuejiao, GAO Youfeng, LIN Zhicheng, WANG Pujun, WU Kangjun. Discussion on the characteristics of the Jurassic-Cretaceous boundary correlation in the Songliao Basin and adjacent areas [J]. Earth Science Frontiers, 2021, 28(4): 299-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||