Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 179-190.DOI: 10.13745/j.esf.sf.2022.1.7
Previous Articles Next Articles
LEI Ziyan1,2(), GE Qian1,2,*(), CHEN Dong1,2, ZHANG Yongcong1,2, HAN Xibin1,2, YE Liming1,2, BIAN Yeping1,2, XU Dong1,2
Received:
2021-09-17
Revised:
2021-11-18
Online:
2022-07-25
Published:
2022-07-28
Contact:
GE Qian
CLC Number:
LEI Ziyan, GE Qian, CHEN Dong, ZHANG Yongcong, HAN Xibin, YE Liming, BIAN Yeping, XU Dong. Provenance of sediments in the Amundsen Sea, West Antarctic since the mid-Holocene and paleoclimate reconstruction[J]. Earth Science Frontiers, 2022, 29(4): 179-190.
Fig.1 Left: locations of cores A11-02, A11-04 and ANA08B/33 in the study area; Right: ocean current map and locations of the study area (red rectangle), the Ross Sea (red star) and the Antarctic Peninsula Sea (yellow star). Modified after [9].
深度/ cm | AMS 14C 年龄/a | 日历年龄范围 (1σ)/Cal a BP | 碳储库 年龄/a | 日历年龄/ Cal a BP | 沉积速率/ (cm·ka-1) |
---|---|---|---|---|---|
0~1 | 4 120±30 | 2 731~3 003 | 900 | 0 | |
15~16 | 4 590±30 | 3 303~3 592 | 900 | 568 | 28.2 |
20~21 | 5 780±30 | 4 823~5 132 | 900 | 2 106 | 3.9 |
30~31 | 7 980±30 | 7 269~7 496 | 900 | 4 509 | 4.6 |
Table 1 Dating results and deposition rates for sediments from core A11-02
深度/ cm | AMS 14C 年龄/a | 日历年龄范围 (1σ)/Cal a BP | 碳储库 年龄/a | 日历年龄/ Cal a BP | 沉积速率/ (cm·ka-1) |
---|---|---|---|---|---|
0~1 | 4 120±30 | 2 731~3 003 | 900 | 0 | |
15~16 | 4 590±30 | 3 303~3 592 | 900 | 568 | 28.2 |
20~21 | 5 780±30 | 4 823~5 132 | 900 | 2 106 | 3.9 |
30~31 | 7 980±30 | 7 269~7 496 | 900 | 4 509 | 4.6 |
参数 | 平均值 | 范围 | 参数 | 平均值 | 范围 |
---|---|---|---|---|---|
氧化物含量/% | 稀土元素含量/10-6 | ||||
Al2O3 | 15.18 | 13.97~15.76 | ΣREE | 238.31 | 191.77~201.37 |
Fe2O3 | 6.67 | 5.05~7.46 | ΣLREE | 217.54 | 170.95~190.35 |
K2O | 3.14 | 2.84~3.32 | ΣHREE | 20.87 | 19.42~20.03 |
MgO | 2.62 | 2.04~2.75 | ΣLREE/ΣHREE | 9.51 | 8.21~10.47 |
TiO2 | 0.90 | 0.80~0.94 | δCe | 0.63 | 0.62~0.66 |
CaO | 1.61 | 1.52~1.91 | δEu | 1.07 | 1.01~1.08 |
P2O5 | 0.18 | 0.17~0.22 | |||
MnO | 0.11 | 0.07~0.30 | |||
Na2O | 3.65 | 3.44~3.82 |
Table 2 Sediment geochemical data for core A11-02
参数 | 平均值 | 范围 | 参数 | 平均值 | 范围 |
---|---|---|---|---|---|
氧化物含量/% | 稀土元素含量/10-6 | ||||
Al2O3 | 15.18 | 13.97~15.76 | ΣREE | 238.31 | 191.77~201.37 |
Fe2O3 | 6.67 | 5.05~7.46 | ΣLREE | 217.54 | 170.95~190.35 |
K2O | 3.14 | 2.84~3.32 | ΣHREE | 20.87 | 19.42~20.03 |
MgO | 2.62 | 2.04~2.75 | ΣLREE/ΣHREE | 9.51 | 8.21~10.47 |
TiO2 | 0.90 | 0.80~0.94 | δCe | 0.63 | 0.62~0.66 |
CaO | 1.61 | 1.52~1.91 | δEu | 1.07 | 1.01~1.08 |
P2O5 | 0.18 | 0.17~0.22 | |||
MnO | 0.11 | 0.07~0.30 | |||
Na2O | 3.65 | 3.44~3.82 |
参数 | 各参数间相关系数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ΣREE含量 | ΣLREE/ΣHREE | δCe | δEu | (TFe2O3+MnO)/Al2O3 | CIA | Mz | (La/Yb)N | (Gd/Yb)N | |
ΣREE含量 | 1.00 | ||||||||
ΣLREE/ΣHREE | 0.79 | 1.00 | |||||||
δCe | 0.15 | 0.57 | 1.00 | ||||||
δEu | -0.40 | -0.65 | -0.71 | 1.00 | |||||
(TFe2O3+MnO)/Al2O3 | -0.09 | 0.43 | 0.86 | -0.66 | 1.00 | ||||
CIA | 0.58 | 0.66 | 0.69 | -0.60 | 0.40 | 1.00 | |||
Mz | -0.39 | -0.73 | -0.87 | 0.82 | -0.79 | -0.67 | 1.00 | ||
(La/Yb)N | 0.84 | 0.95 | 0.32 | -0.52 | 0.21 | 0.50 | -0.55 | 1.00 | |
(Gd/Yb)N | 0.50 | 0.70 | 0.46 | -0.49 | 0.31 | 0.48 | -0.55 | 0.73 | 1.00 |
Table 3 Correlation matrix for rare earth elements
参数 | 各参数间相关系数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
ΣREE含量 | ΣLREE/ΣHREE | δCe | δEu | (TFe2O3+MnO)/Al2O3 | CIA | Mz | (La/Yb)N | (Gd/Yb)N | |
ΣREE含量 | 1.00 | ||||||||
ΣLREE/ΣHREE | 0.79 | 1.00 | |||||||
δCe | 0.15 | 0.57 | 1.00 | ||||||
δEu | -0.40 | -0.65 | -0.71 | 1.00 | |||||
(TFe2O3+MnO)/Al2O3 | -0.09 | 0.43 | 0.86 | -0.66 | 1.00 | ||||
CIA | 0.58 | 0.66 | 0.69 | -0.60 | 0.40 | 1.00 | |||
Mz | -0.39 | -0.73 | -0.87 | 0.82 | -0.79 | -0.67 | 1.00 | ||
(La/Yb)N | 0.84 | 0.95 | 0.32 | -0.52 | 0.21 | 0.50 | -0.55 | 1.00 | |
(Gd/Yb)N | 0.50 | 0.70 | 0.46 | -0.49 | 0.31 | 0.48 | -0.55 | 0.73 | 1.00 |
Fig.3 NASC-normalized REE distribution patterns for sediment (a), volcanic rock (b) or authigenic mineral (c) samples from core A11-02 (this study) and other sites within the study area (adapted from [9,22⇓⇓⇓⇓⇓-28])
Fig.4 Discrimination diagrams for determination of provenances of sediment (a), volcanic rock (b) or authigenic mineral (c) samples from core A11-02 (this study) and other sites within the study area (adapted from [9,22⇓⇓⇓⇓⇓-28])
组分 | 各元素、粒级组分间载荷 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | Fe2O3 | K2O | MgO | TiO2 | CaO | P2O5 | MnO | Na2O | Mo | Ni | Co | Sr | 黏土 | 粉砂 | 砂 | ||
Al2O3 | 1.00 | ||||||||||||||||
Fe2O3 | 0.43 | 1.00 | |||||||||||||||
K2O | 0.88 | 0.34 | 1.00 | ||||||||||||||
MgO | 0.66 | 0.92 | 0.50 | 1.00 | |||||||||||||
TiO2 | 0.75 | 0.74 | 0.51 | 0.93 | 1.00 | ||||||||||||
CaO | -0.55 | -0.87 | -0.35 | -0.92 | -0.86 | 1.00 | |||||||||||
P2O5 | -0.25 | 0.25 | -0.41 | 0.23 | 0.15 | -0.07 | 1.00 | ||||||||||
MnO | -0.12 | 0.35 | -0.33 | 0.38 | 0.32 | -0.25 | 0.91 | 1.00 | |||||||||
Na2O | 0.46 | 0.57 | 0.44 | 0.65 | 0.53 | -0.43 | 0.30 | 0.34 | 1.00 | ||||||||
Mo | -0.18 | 0.22 | -0.37 | 0.26 | 0.23 | -0.13 | 0.90 | 0.99 | 0.26 | 1.00 | |||||||
Ni | 0.09 | 0.57 | -0.13 | 0.65 | 0.59 | -0.53 | 0.80 | 0.94 | 0.48 | 0.89 | 1.00 | ||||||
Co | -0.13 | 0.43 | -0.39 | 0.45 | 0.38 | -0.36 | 0.91 | 0.97 | 0.35 | 0.93 | 0.95 | 1.00 | |||||
Sr | -0.53 | -0.93 | -0.40 | -0.95 | -0.85 | 0.93 | -0.23 | -0.36 | -0.52 | -0.25 | -0.61 | -0.44 | 1.00 | ||||
黏土 | 0.47 | 0.82 | 0.26 | 0.90 | 0.85 | -0.88 | 0.34 | 0.51 | 0.51 | 0.40 | 0.74 | 0.59 | -0.88 | 1.00 | |||
粉砂 | 0.29 | 0.59 | 0.13 | 0.65 | 0.62 | -0.61 | 0.29 | 0.44 | 0.36 | 0.35 | 0.62 | 0.50 | -0.63 | 0.82 | 1.00 | ||
砂 | -0.43 | -0.78 | -0.23 | -0.86 | -0.81 | 0.83 | -0.34 | -0.51 | -0.48 | -0.41 | -0.73 | -0.58 | 0.84 | -0.99 | -0.91 | 1.00 |
Table 4 Correlation matrix for major and minor elements and particle size classes in sediments from core A11-02
组分 | 各元素、粒级组分间载荷 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | Fe2O3 | K2O | MgO | TiO2 | CaO | P2O5 | MnO | Na2O | Mo | Ni | Co | Sr | 黏土 | 粉砂 | 砂 | ||
Al2O3 | 1.00 | ||||||||||||||||
Fe2O3 | 0.43 | 1.00 | |||||||||||||||
K2O | 0.88 | 0.34 | 1.00 | ||||||||||||||
MgO | 0.66 | 0.92 | 0.50 | 1.00 | |||||||||||||
TiO2 | 0.75 | 0.74 | 0.51 | 0.93 | 1.00 | ||||||||||||
CaO | -0.55 | -0.87 | -0.35 | -0.92 | -0.86 | 1.00 | |||||||||||
P2O5 | -0.25 | 0.25 | -0.41 | 0.23 | 0.15 | -0.07 | 1.00 | ||||||||||
MnO | -0.12 | 0.35 | -0.33 | 0.38 | 0.32 | -0.25 | 0.91 | 1.00 | |||||||||
Na2O | 0.46 | 0.57 | 0.44 | 0.65 | 0.53 | -0.43 | 0.30 | 0.34 | 1.00 | ||||||||
Mo | -0.18 | 0.22 | -0.37 | 0.26 | 0.23 | -0.13 | 0.90 | 0.99 | 0.26 | 1.00 | |||||||
Ni | 0.09 | 0.57 | -0.13 | 0.65 | 0.59 | -0.53 | 0.80 | 0.94 | 0.48 | 0.89 | 1.00 | ||||||
Co | -0.13 | 0.43 | -0.39 | 0.45 | 0.38 | -0.36 | 0.91 | 0.97 | 0.35 | 0.93 | 0.95 | 1.00 | |||||
Sr | -0.53 | -0.93 | -0.40 | -0.95 | -0.85 | 0.93 | -0.23 | -0.36 | -0.52 | -0.25 | -0.61 | -0.44 | 1.00 | ||||
黏土 | 0.47 | 0.82 | 0.26 | 0.90 | 0.85 | -0.88 | 0.34 | 0.51 | 0.51 | 0.40 | 0.74 | 0.59 | -0.88 | 1.00 | |||
粉砂 | 0.29 | 0.59 | 0.13 | 0.65 | 0.62 | -0.61 | 0.29 | 0.44 | 0.36 | 0.35 | 0.62 | 0.50 | -0.63 | 0.82 | 1.00 | ||
砂 | -0.43 | -0.78 | -0.23 | -0.86 | -0.81 | 0.83 | -0.34 | -0.51 | -0.48 | -0.41 | -0.73 | -0.58 | 0.84 | -0.99 | -0.91 | 1.00 |
组分 | 各因子载荷 | 组分 | 各因子载荷 | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | ||
Al2O3 | 0.41 | -0.25 | 0.80 | Na2O | 0.27 | 0.35 | 0.73 |
Fe2O3 | 0.82 | 0.18 | 0.30 | Mo | 0.12 | 0.96 | -0.04 |
K2O | 0.23 | -0.41 | 0.83 | Ni | 0.51 | 0.84 | 0.10 |
MgO | 0.83 | 0.20 | 0.49 | Co | 0.35 | 0.92 | -0.08 |
TiO2 | 0.78 | 0.14 | 0.50 | Sr | -0.88 | -0.17 | -0.32 |
CaO | -0.92 | -0.03 | -0.24 | 黏土 | 0.91 | 0.31 | 0.20 |
P2O5 | 0.07 | 0.95 | -0.05 | 粉砂 | 0.80 | 0.26 | -0.02 |
MnO | 0.24 | 0.96 | -0.02 | 砂 | -0.91 | -0.31 | -0.14 |
Table 5 R-type factor analysis of sediments from core A11-02
组分 | 各因子载荷 | 组分 | 各因子载荷 | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | ||
Al2O3 | 0.41 | -0.25 | 0.80 | Na2O | 0.27 | 0.35 | 0.73 |
Fe2O3 | 0.82 | 0.18 | 0.30 | Mo | 0.12 | 0.96 | -0.04 |
K2O | 0.23 | -0.41 | 0.83 | Ni | 0.51 | 0.84 | 0.10 |
MgO | 0.83 | 0.20 | 0.49 | Co | 0.35 | 0.92 | -0.08 |
TiO2 | 0.78 | 0.14 | 0.50 | Sr | -0.88 | -0.17 | -0.32 |
CaO | -0.92 | -0.03 | -0.24 | 黏土 | 0.91 | 0.31 | 0.20 |
P2O5 | 0.07 | 0.95 | -0.05 | 粉砂 | 0.80 | 0.26 | -0.02 |
MnO | 0.24 | 0.96 | -0.02 | 砂 | -0.91 | -0.31 | -0.14 |
组分 | 各粒级组分载荷 | |||
---|---|---|---|---|
Mz | 黏土 | 粉砂 | 砂 | |
CaO* | 0.268 | 0.256 | 0.138 | 0.231 |
Table 6 Correlation coefficients between CaO* (i.e., CaO in silicate minerals only) and particle size classes
组分 | 各粒级组分载荷 | |||
---|---|---|---|---|
Mz | 黏土 | 粉砂 | 砂 | |
CaO* | 0.268 | 0.256 | 0.138 | 0.231 |
Fig.6 Temporal profiles of climate proxies corresponding to potential climate mechanisms. (a) CIA. (b) Na/K. (c) Grain content (< 22.1 μm). (d) Grain content (> 63 μm). (e) δ18O in West Antarctic ice core WDC06A-7 (adapted from [56]). (f) Mean annual and summer (December) insolation at 72°S (adapted from [57]).
[1] | YONGBIN L, RUJIAN W, LI W U, et al. Glacial dynamics evolutions revealed by Ice-Rafted Detritus record from the Ross Sea sector of the Southern Ocean since late Pleistocene[J]. Quaternary Sciences, 2021, 41(3): 662-677. |
[2] | BAMBER J L, RIVA R E M, VERMEERSEN B L A, et al. Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet[J]. Science, 2009, 324(5929): 901-903. |
[3] | WANG J, TANG Z, CHANG F, et al. The ocean-driven instability of the south Pacific sector of the West Antarctic Ice Sheet since 773 ka[EB/OL]. (2021-05-21)[2021-09-04]. https://doi.org/10.1002/essoar.10507098.1. |
[4] | GOHL K, UENZELMANN-NEBEN G, GILLE-PETZOLDT J, et al. Evidence for a highly dynamic West Antarctic Ice Sheet during the Pliocene[J]. Geophysical Research Letters, 2021, 48(14). |
[5] | LARTER R D, ANDERSON J B, GRAHAM A G C, et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100: 55-86. |
[6] | LI T, DAWSON G, CHUTER S, et al. A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry[J]. Earth System Science Data Discussions, 2022: 14(2). https://doi.org/10.5194/essd-14-535-2022. |
[7] | GAO M, KIM S J, YANG J, et al. Historical fidelity and future change of Amundsen Sea low under 1. 5 ℃-4 ℃ global warming in cmip6[J]. Atmospheric Research, 2021, 255: 105533. |
[8] | MAZUR A K, WÅHLIN A K, SWART S. Seasonal changes of iceberg distribution and surface area in the Amundsen Sea embayment[EB/OL]. (2021-04-06)[2021-09-01]. https://doi.org/10.31223/X5VS4M. |
[9] | SIMOES PEREIRA P. Insights into West Antarctica’s geology and late Pleistocene ice sheet behaviour from isotopic sedimentary provenance studies[D]. London: Imperial College, 2018. |
[10] | STUIVER M, REIMER P J. Extended 14C data base and revised Calib 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. |
[11] | HILLENBRAND C D, SMITH J A, KUHN G, et al. Age assignment of a diatomaceous ooze deposited in the western Amundsen Sea embayment after the Last Glacial Maximum[J]. Journal of Quaternary Science, 2010, 25(3): 280-295. |
[12] | 中国国家标准化管理委员会. 海洋调查规范第8部分: 海洋地质地球物理调查:GB/T 12763.8—2007[S]. 北京: 中国标准出版社, 2007. |
[13] | KIM S Y, LIM D, REBOLLEDO L, et al. A 350-year multiproxy record of climate-driven environmental shifts in the Amundsen Sea polynya, Antarctica[J]. Global and Planetary Change, 2021, 205: 103589. |
[14] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[15] | 窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012, 41(2): 147-157. |
[16] | HONDA M, SHIMIZU H. Geochemical, mineralogical and sedimentological studies on the Taklimakan desert sands[J]. Sedimentology, 1998, 45(6): 1125-1143. |
[17] | NESBITT H W, YOUNG G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
[18] | 熊志方, 龚一鸣. 北戴河红色风化壳地球化学特征及气候环境意义[J]. 地学前缘, 2006, 13(6): 177-186. |
[19] | 蓝先洪, 李日辉, 密蓓蓓, 等. 渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别[J]. 地球科学, 2016, 41(3): 463-474. |
[20] | 盛晶瑾. 渤海湾西北部晚更新世以来沉积物稀土元素特征及物源意义[D]. 长春: 吉林大学, 2010. |
[21] | 石林, 解广轰. 南极罗斯岛及泰勒谷新生代火山岩微量元素特征及岩石成因[J]. 南极研究, 1995(3): 47-55. |
[22] | SETTI M, MARINONI L, LÓPEZ-GALINDO A. Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica[J]. Clay Minerals, 2004, 39(4): 405-421. |
[23] | 修淳, 陈新玺, 周勐佳, 等. 南极罗斯海R11柱样晚更新世晚期以来稀土元素地球化学特征[J]. 海洋地质前沿, 2017, 33(5): 1-8. |
[24] | 郑祥身, 刘嘉麒, 李锺益, 等. 西南极利文斯顿岛百耳斯半岛中生代火山岩地球化学特征[J]. 岩石学报, 1998(4): 98-114. |
[25] | 徐步台, 施光春. 南极半岛西部海域沉积物的氧同位素和稀土元素地球化学[J]. 科学通报, 1987(8): 606-609. |
[26] | 刘嘉麒, 张雯华, 郭正府. 南极南设得兰群岛中-新生代火山作用与地质环境[J]. 极地研究, 2002, 14(1): 1-11. |
[27] |
SOKOLOV S, RINTOUL S R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height[J]. Journal of Geophysical Research: Oceans, 2009, 114: C11019. DOI: 10.1029/2008JC005248.
DOI URL |
[28] | STAMMERJOHN S E, MAKSYM T, MASSOM R A, et al. Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979-2014[J]. Elementa: Science of the Anthropocene, 2015, 3: 000055. https://doi.org/10.12952/journal.elementa.000055. |
[29] | 陈志华, 黄元辉, 唐正, 等. 南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(3): 145-155. |
[30] | KIM C S, KIM T W, CHO K H, et al. Variability of the Antarctic Coastal Current in the Amundsen Sea[J]. Estuarine, Coastal and Shelf Science, 2016, 181: 123-133. |
[31] | GLADSTONE R M, BIGG G R, NICHOLLS K W. Iceberg trajectory modeling and meltwater injection in the Southern Ocean[J]. Journal of Geophysical Research: Oceans, 2001, 106(C9): 19903-19915. |
[32] |
WALKER D P, BRANDON M A, JENKINS A, et al. Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough[J]. Geophysical Research Letters, 2007, 34: L02602. DOI: 10.1029/2006GL028154.
DOI URL |
[33] |
THOMA M, JENKINS A, HOLLAND D, et al. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica[J]. Geophysical Research Letters, 2008, 35: L18602. DOI: 10.1029/2008GL034939.
DOI URL |
[34] | JENKINS A, DUTRIEUX P, JACOBS S S, et al. Observations beneath Pine Island Glacier in west Antarctica and implications for its retreat[J]. Nature Geoscience, 2010, 3(7): 468-472. |
[35] | ARNEBORG L, WÅHLIN A K, BJÖRK G, et al. Persistent inflow of warm water onto the central Amundsen shelf: 12[J]. Nature Geoscience, 2012, 5(12): 876-880. |
[36] | RANDALL-GOODWIN E, MEREDITH M P, JENKINS A, et al. Freshwater distributions and water mass structure in the Amundsen Sea Polynya region, Antarctica freshwater distributions and water mass structure in the ASP region[J]. Elementa: Science of the Anthropocene, 2015, 3: 000065. https://doi.org/10.12952/journal.elementa.000065. |
[37] | KIM I, HAHM D, RHEE T S, et al. The distribution of glacial meltwater in the Amundsen Sea, Antarctica, revealed by dissolved helium and neon[J]. Journal of Geophysical Research: Oceans, 2016, 121(3): 1654-1666. |
[38] | MILES T, LEE S H, WÅHLIN A, et al. Glider observations of the Dotson Ice Shelf outflow[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 123: 16-29. |
[39] | PEREIRA P S, VAN DE FLIERDT T, HEMMING S R, et al. Geochemical fingerprints of glacially eroded bedrock from West Antarctica: detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in late Holocene glacial-marine sediments[J]. Earth-Science Reviews, 2018, 182: 204-232. |
[40] | 杜德文, 石学法, 孟宪伟, 等. 黄海沉积物地球化学的粒度效应[J]. 海洋科学进展, 2003(1): 78-82. |
[41] | 郭峰, 杨作升, 刘振夏, 等. 末次盛冰期以来冲绳海槽中段岩心中黏土粒级沉积物地球化学特征及物质来源的阶段性[J]. 海洋学报, 2001, 23(3): 117-126. |
[42] | 李小洁, 梁莲姬. 南海北部沉积物常量元素变化、碳酸盐旋回及其古环境意义[J]. 第四纪研究, 2015, 35(2): 411-421. |
[43] | 张俊, 孟宪伟, 王湘芹. 晚第四纪南海北部陆坡沉积物常量元素比值对气候变冷事件的指示意义[J]. 海洋学报, 2013(4): 106-111. |
[44] | 陈旸, 陈骏, 刘连文. 甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J]. 地质力学学报, 2001, 7(2): 167-175. |
[45] | 李徐生, 韩志勇, 杨守业, 等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1174-1184. |
[46] | NESBITT H W, MARKOVICS G, PRICE R C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochemical et Cosmochimica Acta, 1980, 44(11): 1659-1666. |
[47] | 王豪壮, 陈志华, 王春娟, 等. 普里兹湾陆架表层沉积物粒度特征及其环境指示意义[J]. 极地研究, 2015, 27(4): 421-428. |
[48] |
ASSMANN K M, HELLMER H H, JACOBS S S. Amundsen Sea ice production and transport[J]. Journal of Geophysical Research: Oceans, 2005, 110: C12013. DOI: 10.1029/2004JC002797.
DOI URL |
[49] | WÅHLIN A K, KALÉN O, ARNEBORG L, et al. Variability of Warm Deep Water inflow in a submarine trough on the Amundsen Sea shelf[J]. Journal of Physical Oceanography, 2013, 43(10): 2054-2070. |
[50] | WÅHLIN A K, KALEN O, ASSMANN K M, et al. Subinertial oscillations on the Amundsen Sea shelf, Antarctica[J]. Journal of Physical Oceanography, 2016, 46(9): 2573-2582. |
[51] | DUCKLOW H W, WILSON S E, POST A F, et al. Particle flux on the continental shelf in the Amundsen Sea polynya and Western Antarctic Peninsula Antarctic particle flux[J]. Elementa: Science of the Anthropocene, 2015, 3: 000046. https://doi.org/10.12952/journal.elementa.000046. |
[52] | KIM I, KIM G, CHOY E J. The significant inputs of trace elements and rare earth elements from melting glaciers in Antarctic coastal waters: 1[J]. Polar Research, 2015, 34(1): 24289. |
[53] | DIEKMANN B, KUHN G. Provenance and dispersal of glacial-marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport[J]. Marine Geology, 1999, 158(1): 209-231. |
[54] | 张海龙, 肖晓彤. 北冰洋海冰重建方法研究进展[J]. 第四纪研究, 2021, 41(3): 813-823. |
[55] | DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. |
[56] | MARCOTT S A, BAUSKA T K, BUIZERT C, et al. Centennial-scale changes in the global carbon cycle during the Last Deglaciation[J]. Nature, 2014, 514(7524): 616-619. |
[57] | LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[58] | MASSON V, VIMEUX F, JOUZEL J, et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records[J]. Quaternary Research, 2000, 54(3): 348-358. |
[59] | MILLIKEN K T, ANDERSON J B, WELLNER J S, et al. High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica[J]. GSA Bulletin, 2009, 121(11/12): 1711-1725. |
[60] | KAPLAN M R, STRELIN J A, SCHAEFER J M, et al. Holocene glacier behavior around the northern Antarctic Peninsula and possible causes[J]. Earth and Planetary Science Letters, 2020, 534: 116077. |
[61] | JONES V J, HODGSON D A, CHEPSTOW-LUSTY A. Paleolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica[J]. The Holocene, 2000, 10(1): 43-60. |
[62] | JACOBS S S, JENKINS A, GIULIVI C F, et al. Stronger ocean circulation and increased melting under Pine Island glacier ice shelf[J]. Nature Geoscience, 2011, 4(8): 519-523. |
[63] |
SHEPHERD A, WINGHAM D, RIGNOT E. Warm ocean is eroding West Antarctic Ice Sheet[J]. Geophysical Research Letters, 2004, 31: L23402. DOI: 10.1029/2004GL021106.
DOI URL |
[64] | SHEVENELL A E, KENNETT J P. Antarctic Holocene climate change: a benthic foraminiferal stable isotope record from palmer deep: Antarctic Holocene climate change[J]. Paleoceanography, 2002, 17(2): PAL 9-1-PAL 9-12. |
[65] | BARNARD A, WELLNER J S, ANDERSON J B. Late Holocene climate change recorded in proxy records from a Bransfield Basin sediment core, Antarctic peninsula[J]. Polar Research, 2014, 33(1): 17236. |
[66] | BENTLEY M J, HODGSON D A, SMITH J A, et al. Mechanisms of Holocene paleoenvironmental change in the Antarctic Peninsula region[J]. The Holocene, 2009, 19(1): 51-69. |
[67] | BERTLER N A N, MAYEWSKI P A, CARTER L. Cold conditions in Antarctica during the Little Ice Age: implications for abrupt climate change mechanisms[J]. Earth and Planetary Science Letters, 2011, 308(1): 41-51. |
[1] | ZHANG Mengwei, GAO Liang, ZHAO Yue, PEI Junling, YANG Zhenyu, GUO Xiaoqian, HU Xinwei. The interaction between the opening of the Drake Passage and global paleoceanographic-paleoclimatic change [J]. Earth Science Frontiers, 2024, 31(6): 415-435. |
[2] | WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age [J]. Earth Science Frontiers, 2024, 31(1): 412-430. |
[3] | SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies [J]. Earth Science Frontiers, 2022, 29(5): 342-354. |
[4] | LIU Yonggang, ZHANG Ming, LIN Qifan, LIU Peng, HU Yongyun. Variation of atmospheric dust loading and its climate impacts in different geological periods [J]. Earth Science Frontiers, 2022, 29(5): 285-299. |
[5] | DONG Hongkun, WAN Shiming, LIU Chang, ZHAO Debo, ZENG Zhigang, LI Anchun. Mineralogical and geochemical constraints on the origin of rhythmic layering of Late Miocene reddish-brown and greenish-gray sediments in the northern South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 42-54. |
[6] | FENG Shuo, LIU Zhifei, Penjai SOMPONGCHAIYAKUL, LIN Baozhi, Martin G. WIESNER. Grain size characteristics of terrigenous clastics in surface sediments of the Gulf of Thailand and their significance for sedimentary dynamic environment [J]. Earth Science Frontiers, 2022, 29(4): 211-220. |
[7] | YAN Maodu, ZHANG Dawen, LI Minghui. Research progress and new views on the potash deposits in the Simao and Khorat Basins [J]. Earth Science Frontiers, 2021, 28(6): 10-28. |
[8] | LEI Huarui,JIANG Zaixing,ZHOU Hongke. Analysis of paleoclimate evolution of the hyperthermal period in the early Paleogene: taking the Dongying depression as an example. [J]. Earth Science Frontiers, 2018, 25(4): 176-184. |
[9] | GUAN Kaiping,TIAN Li,AN Zhihui,YE Qin,,HU Jun,TONG Jinnan. Stratigraphic succession of the Nanhuan Period in the Shennongjia area in western Hubei and its regional correlation. [J]. Earth Science Frontiers, 2016, 23(6): 236-245. |
[10] | ZHANG Yuan-Zhi, HUANG Chao-Jun, ZHOU Chao, CHEN Sheng-Bo. idirectional reflectance of lunar olivine with the consideration of grain size [J]. Earth Science Frontiers, 2014, 21(6): 150-154. |
[11] | . he relationship between environmental evolution and human activities in Liangzhu Sites Group, Zhejiang Province, China. [J]. Earth Science Frontiers, 2011, 18(3): 347-357. |
[12] | CHEN Jun-Meng, DIAO Beng, WANG Cheng-Shan, HUANG Yong-Jian. Modeling the East Asian climate during the Late Cretaceous (80 Ma). [J]. Earth Science Frontiers, 2009, 16(6): 226-239. |
[13] | DIAO Kui-Dong JIANG Shao-Chong ZHENG Xin-Yuan CHEN Tian-Yu LING Hong-Fei. Nd isotope evolution of ocean waters and implications for paleoocean circulation. [J]. Earth Science Frontiers, 2009, 16(5): 159-171. |
[14] | LI Lin ZHOU Ti-Jiang HUANG Yong-Jian MA Chao. The deeptime research by chromatometry: An example from the Cenomanian to Turonian Stages of the Cretaceous, Gongza section, Southern Tibet. [J]. Earth Science Frontiers, 2009, 16(5): 153-159. |
[15] | TIAN Xin XIANG Fang LUO Lai SONG Jian-Chun. Climate significance of continental special deposits. [J]. Earth Science Frontiers, 2009, 16(5): 71-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||