Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 285-299.DOI: 10.13745/j.esf.sf.2021.9.51
Previous Articles Next Articles
LIU Yonggang1(), ZHANG Ming1, LIN Qifan1, LIU Peng2, HU Yongyun1
Received:
2021-06-22
Revised:
2021-07-30
Online:
2022-09-25
Published:
2022-08-24
CLC Number:
LIU Yonggang, ZHANG Ming, LIN Qifan, LIU Peng, HU Yongyun. Variation of atmospheric dust loading and its climate impacts in different geological periods[J]. Earth Science Frontiers, 2022, 29(5): 285-299.
时期 | 轨道参数 对应年份 | CO2含量/ 10-6 | 太阳常数/ (W·m-2) | 海陆分布 | 沙尘设置 | 地表侵蚀系数k |
---|---|---|---|---|---|---|
中全新世 | 6 ka | 280 | 1 361 | 现代 | 固定为现代观测值 | |
6 ka | 280 | 1 361 | 现代 | 全球无沙尘 | ||
末次盛冰期 | 21 ka | 185 | 1 361 | ICE-6G | 在线模拟 | 同现代 |
21 ka | 185 | 1 361 | ICE-6G | 全球无沙尘 | 全球设为0 | |
盘古超大陆时期 | 1990 | 7 000 | 1 334 | 据[48] | 在线模拟 | 全球均一(0.013) |
1990 | 7 000 | 1 334 | 据[48] | 全球无沙尘 | 全球设为0 | |
前寒武纪 | 1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.30) |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.15) | |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.075) | |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.037 5) | |
1990 | 2 000 | 1 285 | 据[49] | 全球无沙尘 | 全球设为0 |
Table 1 Boundary conditions and soil erodibility factors for all experiments
时期 | 轨道参数 对应年份 | CO2含量/ 10-6 | 太阳常数/ (W·m-2) | 海陆分布 | 沙尘设置 | 地表侵蚀系数k |
---|---|---|---|---|---|---|
中全新世 | 6 ka | 280 | 1 361 | 现代 | 固定为现代观测值 | |
6 ka | 280 | 1 361 | 现代 | 全球无沙尘 | ||
末次盛冰期 | 21 ka | 185 | 1 361 | ICE-6G | 在线模拟 | 同现代 |
21 ka | 185 | 1 361 | ICE-6G | 全球无沙尘 | 全球设为0 | |
盘古超大陆时期 | 1990 | 7 000 | 1 334 | 据[48] | 在线模拟 | 全球均一(0.013) |
1990 | 7 000 | 1 334 | 据[48] | 全球无沙尘 | 全球设为0 | |
前寒武纪 | 1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.30) |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.15) | |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.075) | |
1990 | 2 000 | 1 285 | 据[49] | 在线模拟 | 全球均一(0.037 5) | |
1990 | 2 000 | 1 285 | 据[49] | 全球无沙尘 | 全球设为0 |
[1] |
TEGEN I, LACIS A A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D14): 19237-19244.
DOI URL |
[2] |
GINOUX P, CHIN M, TEGEN I, et al. Sources and distributions of dust aerosols simulated with the GOCART model[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D17): 20255-20273.
DOI URL |
[3] |
SOKOLIK I N, TOON O B. Direct radiative forcing by anthropogenic airborne mineral aerosols[J]. Nature, 1996, 381(6584): 681-683.
DOI URL |
[4] | HUANG J P, WANG T H, WANG W C, et al. Climate effects of dust aerosols over East Asian arid and semiarid regions[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11398-11416. |
[5] |
SASSEN K, DEMOTT P J, PROSPERO J M, et al. Saharan dust storms and indirect aerosol effects on clouds: crystal-FACE results[J]. Geophysical Research Letters, 2003, 30(12). DOI: 10.1029/2003GL017371.
DOI |
[6] |
VINOJ V, RASCH P J, WANG H L, et al. Short-term modulation of Indian summer monsoon rainfall by West Asian dust[J]. Nature Geoscience, 2014, 7(4): 308-313.
DOI URL |
[7] | JIN Q, WEI J, YANG Z L, et al. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations[J]. Atmospheric Chemistry and Physics, 2015, 15(17): 9897-9915. |
[8] |
JIN Q J, YANG Z L, WEI J F. Seasonal responses of indian summer monsoon to dust aerosols in the middle east, India, and China[J]. Journal of Climate, 2016, 29(17): 6329-6349.
DOI URL |
[9] |
LI Z Q, LAU W K M, RAMANATHAN V, et al. Aerosol and monsoon climate interactions over Asia[J]. Reviews of Geophysics, 2016, 54(4): 866-929.
DOI URL |
[10] |
WU G X, LI Z Q, FU C B, et al. Advances in studying interactions between aerosols and monsoon in China[J]. Science China Earth Sciences, 2016, 59(1): 1-16.
DOI URL |
[11] |
SERRA N, MARTÍNEZ AVELLANEDA N, STAMMER D. Large-scale impact of Saharan dust on the North Atlantic Ocean circulation[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 704-730.
DOI URL |
[12] | ZHANG M, LIU Y, ZHANG J, et al. AMOC and climate responses to dust reduction and greening of Sahara during the Mid-Holocene[J]. Journal of Climate, 2021, 34(12): 4893-4912. |
[13] |
YUAN T L, OREOPOULOS L, ZELINKA M, et al. Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 2016, 43(3): 1349-1356.
DOI URL |
[14] |
PAUSATA F S R, ZHANG Q, MUSCHITIELLO F, et al. Greening of the Sahara suppressed ENSO activity during the mid-Holocene[J]. Nature Communications, 2017, 8: 16020.
DOI URL |
[15] | PAUSATA F S R, EMANUEL K A, CHIACCHIO M, et al. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6221-6226. |
[16] |
WARREN S G, WISCOMBE W J. A model for the spectral albedo of snow. II: snow containing atmospheric aerosols[J]. Journal of the Atmospheric Sciences, 1980, 37(12): 2734-2745.
DOI URL |
[17] |
SARANGI C, QIAN Y, RITTGER K, et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia[J]. Nature Climate Change, 2020, 10(11): 1045-1051.
DOI URL |
[18] |
LAMBERT F, DELMONTE B, PETIT J R, et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core[J]. Nature, 2008, 452(7187): 616-619.
DOI URL |
[19] |
ABBOT D S, HALEVY I. Dust aerosol important for snowball earth deglaciation[J]. Journal of Climate, 2010, 23(15): 4121-4132.
DOI URL |
[20] | ABBOT D S, PIERREHUMBERT R T. Mudball: surface dust and snowball earth deglaciation[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D3): D03104. |
[21] | SHAFFER G, LAMBERT F. In and out of glacial extremes by way of dust-climate feedbacks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2026-2031. |
[22] |
YOON J E, YOO K C, MACDONALD A M, et al. Reviews and syntheses: ocean iron fertilization experiments-past, present, and future looking to a future korean iron fertilization experiment in the southern ocean (KIFES) project[J]. Biogeosciences, 2018, 15(19): 5847-5889.
DOI URL |
[23] |
BRACONNOT P, OTTO-BLIESNER B, HARRISON S, et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum-Part 1: experiments and large-scale features[J]. Climate of the Past, 2007, 3(2): 261-277.
DOI URL |
[24] |
BRIERLEY C M, ZHAO A N, HARRISON S P, et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations[J]. Climate of the Past, 2020, 16(5): 1847-1872.
DOI URL |
[25] |
HOLMES J A. Ecology. How the Sahara became dry?[J]. Science, 2008, 320(5877): 752-753.
DOI URL |
[26] |
LÉZINE A M, HÉLY C, GRENIER C, et al. Sahara and Sahel vulnerability to climate changes, lessons from Holocene hydrological data[J]. Quaternary Science Reviews, 2011, 30(21/22): 3001-3012.
DOI URL |
[27] |
SHANAHAN T M, MCKAY N P, HUGHEN K A, et al. The time-transgressive termination of the African Humid Period[J]. Nature Geoscience, 2015, 8(2): 140-144.
DOI URL |
[28] |
CHEN Z H, WEN Q, YANG H J. Impact of Tibetan Plateau on North African precipitation[J]. Climate Dynamics, 2021, 57(9/10): 2767-2777.
DOI URL |
[29] |
BROCCOLI A J, MANABE S. The effects of orography on midlatitude northern hemisphere dry climates[J]. Journal of Climate, 1992, 5(11): 1181-1201.
DOI URL |
[30] |
LIU P, LIU Y G, PENG Y R, et al. Large influence of dust on the Precambrian climate[J]. Nature Communications, 2020, 11: 4427.
DOI URL |
[31] |
KOHFELD K E, HARRISON S P. DIRTMAP: the geological record of dust[J]. Earth-Science Reviews, 2001, 54(1/2/3): 81-114.
DOI URL |
[32] |
ROHLING E J, ROHLING E J, SLUIJS A, et al. Making sense of palaeoclimate sensitivity[J]. Nature, 2012, 491(7426): 683-691.
DOI URL |
[33] |
SHI Z G, LIU X D, AN Z S, et al. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change[J]. Climate Dynamics, 2011, 37(11/12): 2289-2301.
DOI URL |
[34] | HEAVENS N G, SHIELDS C A, MAHOWALD N M. A paleogeographic approach to aerosol prescription in simulations of deep time climate[J]. Journal of Advances in Modeling Earth Systems, 2012, 4(4): M11002. |
[35] |
SOREGHAN G S, HEAVENS N G, HINNOV L A, et al. Reconstructing the dust cycle in deep time: the case of the late Paleozoic icehouse[J]. The Paleontological Society Papers, 2015, 21: 83-120.
DOI URL |
[36] |
NEALE R B, RICHTER J, PARK S, et al. The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments[J]. Journal of Climate, 2013, 26(14): 5150-5168.
DOI URL |
[37] |
RICHTER J H, RASCH P J. Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3[J]. Journal of Climate, 2008, 21(7): 1487-1499.
DOI URL |
[38] | NEALE R B, RICHTER J H, CONLEY A J, et al. Description of the NCAR community atmosphere model (CAM 4.0)[R]. Boulder: National Center for Atmospheric Research, 2010. |
[39] | MAHOWALD N M, MUHS D R, LEVIS S, et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D10): D10202. |
[40] | LAWRENCE D M, OLESON K W, FLANNER M G, et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model[J]. Journal of Advances in Modeling Earth Systems, 2011, 3(1): M03001. |
[41] | SMITH R, JONES P, BRIEGLEB B, et al. The Parallel Ocean Program (POP) reference manual: ocean component of the Community Climate System Model (CCSM)[R]. Boulder: National Center for Atmospheric Research, 2010. |
[42] | BRIEGLEB B P, DANABASOGLU G, LARGE W G. An overflow parameterization for the ocean component of the Community Climate System Model[R]. Boulder: National Center for Atmospheric Research, 2010. |
[43] |
DANABASOGLU G, BATES S C, BRIEGLEB B P, et al. The CCSM4 ocean component[J]. Journal of Climate, 2012, 25(5): 1361-1389.
DOI URL |
[44] | HUNKE E C, LIPSCOMB W H. CICE: the Los Alamos Sea Ice Model documentation and software user's manual version 4.1. LA-CC-06-012[R]. Los Alamos: Los Alamos National Laboratory, 2010. |
[45] |
ZENDER C S. Spatial heterogeneity in aeolian erodibility: uniform, topographic, geomorphic, and hydrologic hypotheses[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D17): 4543.
DOI URL |
[46] |
DEMENOCAL P, ORTIZ J, GUILDERSON T, et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 347-361.
DOI URL |
[47] |
MCGEE D, DEMENOCAL P B, WINCKLER G, et al. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr[J]. Earth and Planetary Science Letters, 2013, 371/372: 163-176.
DOI URL |
[48] | SCOTESE C R, WRIGHT N M. PaleoMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic[EB/OL]. [2019-04-01]. https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese_Wright_2018_PaleoDEM/Scotese_Wright2018_PALEOMAP_PaleoDEMs.pdf. |
[49] |
LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
DOI URL |
[50] |
ZHU J, LIU Z Y, BRADY E, et al. Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model[J]. Geophysical Research Letters, 2017, 44(13): 6984-6992.
DOI URL |
[51] |
PAUSATA F S R, MESSORI G, ZHANG Q. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period[J]. Earth and Planetary Science Letters, 2016, 434: 298-307.
DOI URL |
[52] |
ALBANI S, MAHOWALD N M. Paleodust insights into dust impacts on climate[J]. Journal of Climate, 2019, 32(22): 7897-7913.
DOI URL |
[53] |
SCHNEIDER T, BISCHOFF T, HAUG G H. Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513 (7516): 45-53.
DOI URL |
[54] |
ALBANI S, MAHOWALD N M, PERRY A T, et al. Improved dust representation in the community atmosphere model[J]. Journal of Advances in Modeling Earth Systems, 2014, 6(3): 541-570.
DOI URL |
[55] | MORRIS J L, PUTTICK M N, CLARK J W, et al. The timescale of early land plant evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): E2274-E2283. |
[56] |
HOFFMAN P F, KAUFMAN A J, HALVERSON G P, et al. A neoproterozoic snowball earth[J]. Science, 1998, 281 (5381): 1342-1346.
DOI URL |
[57] |
ZHANG X X, LIU H L, ZHANG M. Double ITCZ in coupled ocean-atmosphere models: from CMIP3 to CMIP5[J]. Geophysical Research Letters, 2015, 42(20): 8651-8659.
DOI URL |
[58] |
JIANG D B, HU D, TIAN Z P, et al. Differences between CMIP6 and CMIP5 models in simulating climate over China and the east Asian monsoon[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1102-1118.
DOI URL |
[1] | ZHANG Mengwei, GAO Liang, ZHAO Yue, PEI Junling, YANG Zhenyu, GUO Xiaoqian, HU Xinwei. The interaction between the opening of the Drake Passage and global paleoceanographic-paleoclimatic change [J]. Earth Science Frontiers, 2024, 31(6): 415-435. |
[2] | LIU Wei, ZHANG Hongrui, LUO Dike, JIA Pengfei, JIN Lijie, ZHOU Yonggang, LIANG Yunhan, WANG Zisheng, LI Chunjia. Petrogenesis of Paleoproterozoic granites in the Dondo area, northern Angola block: Geological response to the assembly of Columbia Supercontinent [J]. Earth Science Frontiers, 2024, 31(4): 237-257. |
[3] | HE Hui, MU Wenping, ZHANG Xiao, SONG Yubing, LÜ Yuanyang, WU Xiong, YE Baoying, BAI Zhongke. Spatio-temporal evolution evaluation of geological environment of large open-pit coal mine areas in Xilin Gol league [J]. Earth Science Frontiers, 2024, 31(3): 443-457. |
[4] | SUN Huanquan, MAO Xiang, WU Chenbingjie, GUO Dianbin, WANG Haitao, SUN Shaochuan, ZHANG Ying, LUO Lu. Geothermal resources exploration and development technology: Current status and development directions [J]. Earth Science Frontiers, 2024, 31(1): 400-411. |
[5] | WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age [J]. Earth Science Frontiers, 2024, 31(1): 412-430. |
[6] | SONG Yan, DONG Shaochun, HU Huan, WANG Rucheng. Global temporospatial distribution patterns of Nb/Ta-bearing minerals based on big data analytics [J]. Earth Science Frontiers, 2023, 30(5): 197-204. |
[7] | YU Shi, PU Junbing, LIU Fan, YANG Hui. Effect of vegetation on carbon sequestration in karst systems-a critical review [J]. Earth Science Frontiers, 2023, 30(4): 418-428. |
[8] | DENG Yirong, WANG Yonghong, ZHAO Yanjie, GU Peike, XIAO Jin, ZHOU Jian, LI Zhaohui, YU Zhiqiang, PENG Ping’an. Carbon dioxide storage in China: Current status, main challenges, and future outlooks [J]. Earth Science Frontiers, 2023, 30(4): 429-439. |
[9] | SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies [J]. Earth Science Frontiers, 2022, 29(5): 342-354. |
[10] | WU Jiawang, YAO Shengnan, Amalia FILIPPIDI, LIU Zhifei, Gert J. DE LANGE. Terrigenous detrital inputs and hydroclimate changes in the Holocene eastern Mediterranean Sea: A basin-wide geochemical view [J]. Earth Science Frontiers, 2022, 29(4): 156-167. |
[11] | LEI Ziyan, GE Qian, CHEN Dong, ZHANG Yongcong, HAN Xibin, YE Liming, BIAN Yeping, XU Dong. Provenance of sediments in the Amundsen Sea, West Antarctic since the mid-Holocene and paleoclimate reconstruction [J]. Earth Science Frontiers, 2022, 29(4): 179-190. |
[12] | ZHU Liang, LIU Jingtao, ZHANG Yuxi, LIU Dandan, JIAO Shizhe. Evaluation of water resource multiple effect based on the analysis of water circulation: An example of the Beichuan River Basin upstream of the Yellow River [J]. Earth Science Frontiers, 2022, 29(3): 263-270. |
[13] | YAN Maodu, ZHANG Dawen, LI Minghui. Research progress and new views on the potash deposits in the Simao and Khorat Basins [J]. Earth Science Frontiers, 2021, 28(6): 10-28. |
[14] | WANG Jun, ZHANG Xiao, GAO Yan. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progress and prospect [J]. Earth Science Frontiers, 2021, 28(4): 70-82. |
[15] | YUAN Tao, NI Xuan, ZHOU Wei. Spatio-temporal impact and the scope of vegetation disturbance from coal mining: A case of the Ningdong mining district [J]. Earth Science Frontiers, 2021, 28(4): 110-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||