Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 462-472.DOI: 10.13745/j.esf.sf.2023.2.71
Previous Articles Next Articles
XIANG Xin1(), HUANG Chuanyan2,*(
), CAO Lanzhu1, CAO Qiang2, JIANG Tao1, ZHANG Yufei1, SONG Yu2, XU Jie3
Received:
2022-06-19
Revised:
2022-10-28
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
XIANG Xin, HUANG Chuanyan, CAO Lanzhu, CAO Qiang, JIANG Tao, ZHANG Yufei, SONG Yu, XU Jie. Enrichment model and exploration potential for unconventional oil and gas in troughs, Erlian Basin[J]. Earth Science Frontiers, 2023, 30(6): 462-472.
Fig.3 Composite diagrams for wells, showing the relationship between hydrocarbon densification and accumulation in interbedded type shale oil reservoirs, Erlian Basin. (a) Well Tai 591X, Wunan trough. (b) Well 20, A’nan trough.
Fig.4 Numerical simulation results for typical glutenite reservoirs in troughs, Erlian Basin. (a) Porosity profile. (b) Relationship between charging pressure and oil saturation for interbedded type shale oil.
储层层位 | 储层类型 | 样品数/个 | 模拟平均 孔隙度/% | 测井平均 孔隙度/% | 含油5%平均充注 动力下限/MPa | 含油50%平均富集 动力下限/MPa |
---|---|---|---|---|---|---|
太591x-腾一下 | 致密 | 2 | 8.925 | 5.5 | 4.25 | 7.4 |
太591x-腾一下 | 常规 | 2 | 10.985 | 17.85 | 3.97 | 6.7 |
太60x-腾一下 | 致密 | 2 | 9.6 | 10.2 | 4 | 7.1 |
太60x-阿四段 | 致密 | 4 | 8.59 | 9.4 | 5.4 | 7.82 |
Table 1 Average porosity and pressure threshold values by stimulation for typical glutenite reservoirs, Erlian Basin
储层层位 | 储层类型 | 样品数/个 | 模拟平均 孔隙度/% | 测井平均 孔隙度/% | 含油5%平均充注 动力下限/MPa | 含油50%平均富集 动力下限/MPa |
---|---|---|---|---|---|---|
太591x-腾一下 | 致密 | 2 | 8.925 | 5.5 | 4.25 | 7.4 |
太591x-腾一下 | 常规 | 2 | 10.985 | 17.85 | 3.97 | 6.7 |
太60x-腾一下 | 致密 | 2 | 9.6 | 10.2 | 4 | 7.1 |
太60x-阿四段 | 致密 | 4 | 8.59 | 9.4 | 5.4 | 7.82 |
Fig.5 Simulated residual-pressure profiles along representative survey lines in Wunan (a) and A’nan (b) troughs, Erlian Basin during critical accumulation period in the Saihan stage (105 Ma)
Fig.9 dV/dd vs. pore-size plots and N2 absortion-desorption isotherms for organic-rich shale from K1bt1-K1ba, Erlian Basin. (a) Wunan trough. (b) A’nan trough.
参数项 | 乌南 | 阿南 |
---|---|---|
页岩生烃条件 | 中等(OSI:<100 mg/g) | 好(OSI:100~200 mg/g) |
页岩储集条件 | 好(墨水瓶状与平行狭缝状中孔为主) | 中等(开放的平行狭缝状微孔、中孔为主) |
页岩脆性矿物含量 | 好(61%~93%) | 中等(57%~82%) |
主控因素与有利层段 | 页岩生烃条件;页岩层系内高TOC含量、HI、OSI层段 | 页岩储集条件;页岩层系内高孔隙度、渗透率层段 |
Table 2 Comparison of interlayer type shale oil enrichment conditions between the Wunan and A’nan troughs
参数项 | 乌南 | 阿南 |
---|---|---|
页岩生烃条件 | 中等(OSI:<100 mg/g) | 好(OSI:100~200 mg/g) |
页岩储集条件 | 好(墨水瓶状与平行狭缝状中孔为主) | 中等(开放的平行狭缝状微孔、中孔为主) |
页岩脆性矿物含量 | 好(61%~93%) | 中等(57%~82%) |
主控因素与有利层段 | 页岩生烃条件;页岩层系内高TOC含量、HI、OSI层段 | 页岩储集条件;页岩层系内高孔隙度、渗透率层段 |
Fig.10 Unconventional oil and gas accumulation model for typical troughs, Erlian Basin. (a) South trough, Wuliyasitai sag. (b) Shannan trough, A’nan sag.
类型 | 代表洼槽 | 相态 | 充注动阻力 | 输导通道 | 聚集特征 | 富集因素 |
---|---|---|---|---|---|---|
互层型 | 乌南洼槽,赛东洼槽, 阿南善南洼槽等 | 中深层:原油(轻质油); 深层:天然气 | 动力:异常高压; 阻力:中值压力 | 致密砂砾岩孔吼、 微裂缝 | 源-储一体型和 源-储接触型,源内汇聚 | 高净动力+ 甜点控富集 |
夹层型 | 阿南善南洼槽、乌南 洼槽、淖东洼槽等 | 中深层:原油; 深层:天然气 | 动力:异常流体压力 | 微纳米孔隙、裂缝 (微运移或无运移) | 滞留成藏, 源内聚集 | 源储配置+ 甜点控富集 |
Table 3 Enrichment gelogical characteristics of shale oil/gas in the sag area of the Erlian Basin
类型 | 代表洼槽 | 相态 | 充注动阻力 | 输导通道 | 聚集特征 | 富集因素 |
---|---|---|---|---|---|---|
互层型 | 乌南洼槽,赛东洼槽, 阿南善南洼槽等 | 中深层:原油(轻质油); 深层:天然气 | 动力:异常高压; 阻力:中值压力 | 致密砂砾岩孔吼、 微裂缝 | 源-储一体型和 源-储接触型,源内汇聚 | 高净动力+ 甜点控富集 |
夹层型 | 阿南善南洼槽、乌南 洼槽、淖东洼槽等 | 中深层:原油; 深层:天然气 | 动力:异常流体压力 | 微纳米孔隙、裂缝 (微运移或无运移) | 滞留成藏, 源内聚集 | 源储配置+ 甜点控富集 |
[1] | 国家标准化管理委员会. 页岩油地质评价方法: GB/T 38718—2020[S]. 北京: 中国标准出版社, 2020. |
[2] | 《中国石油地质志华北油气区》编纂委员会. 中国石油地质志华北油气区(下册): 卷七[M]. 北京: 石油工业出版社, 2019: 1-316. |
[3] |
张文朝, 祝玉衡, 姜冬华, 等. 二连盆地“洼槽”控油规律与油气勘探前景[J]. 石油学报, 1997(4): 25-31.
DOI |
[4] |
贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、 主要类型、 基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.
DOI |
[5] |
邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J], 石油学报, 2012, 33(2): 173-187.
DOI |
[6] |
张君峰, 毕海滨, 许浩, 等. 国外致密油勘探开发新进展及借鉴意义[J]. 石油学报, 2015, 36(2): 127-137.
DOI |
[7] |
WANG M, GUO Z, JIAO C, et al. Exploration progress and geochemical features of lacustrine shale oils in China[J]. Journal of Petroleum Science and Engineering, 2019, 178: 975-986.
DOI URL |
[8] | 姜振学, 林世国, 庞雄奇, 等. 两种类型致密砂岩气藏对比[J]. 石油实验地质, 2006, 28(3): 210-214, 219. |
[9] |
贾承造, 郑民, 张永峰. 非常规油气地质学重要理论问题[J]. 石油学报, 2014, 35(1): 1-10.
DOI |
[10] | ZOU C N, TAO S Z, ZHANG X X, et al. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China’s large gas provinces of low porosity and permeability[J]. Science in China Series D: Earth Sciences, 2009, 52(8): 1068-1090. |
[11] | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
[12] | 聂海宽, 张金川, 薛会, 等. 杭锦旗探区储层致密化与天然气成藏的关[J]. 西安石油大学学报(自然科学版), 2009, 24(1): 1-7, 108. |
[13] |
WU H, HU W, WANG Y, et al. Depositional conditions and accumulation models of tight oils in the Middle Permian Lucaogou Formation in Junggar Basin, northwestern China: new insights from geochemical analysis[J]. AAPG Bulletin, 2021, 105: 2477-2518.
DOI URL |
[14] | 张凤奇, 王震亮, 武富礼, 等. 低渗透致密砂岩储层成藏期油气运移的动力分析[J]. 中国石油大学学报(自然科学版), 2012, 36(4): 32-38. |
[15] |
曾溅辉, 杨智峰, 冯枭, 等. 致密储层油气成藏机理研究现状及其关键科学问[J]. 地球科学进展, 2014, 29(6): 651-661.
DOI |
[16] |
黄志龙, 马剑, 梁世君, 等. 源-储分离型凝灰岩致密油藏形成机理与成藏模式[J]. 石油学报, 2016, 37(8): 975-985.
DOI |
[17] |
ZOU C N, YANG Z, CUI J W, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 15-27.
DOI URL |
[18] |
赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(6): 1079-1089.
DOI |
[19] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96: 1071-1098.
DOI URL |
[20] |
MILLIKEN K L, RUDNICK M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
DOI URL |
[21] |
MOHAGHEGHS D. Reservoir modeling of shale formations[J]. Journal of Natural Gas Science and Engineering, 2013, 12: 22-23.
DOI URL |
[1] | KANG Fengxin, ZHENG Tingting, SHI Meng, SUI Haibo, XU Meng, JIANG Haiyang, ZHONG Zhennan, QIN Peng, ZHANG Baojian, ZHAO Jichu, MA Zhemin, CUI Yang, LI Jialong, DUAN Xiaofei, BAI Tong, ZHANG Pingping, YAO Song, LIU Xiao, SHI Qipeng, WANG Xuepeng, YANG Haitao, CHEN Jingpeng, LIU Beibei. Occurrence rules and enrichment mechanism of geothermal resources in Shandong Province [J]. Earth Science Frontiers, 2024, 31(6): 67-94. |
[2] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[3] | GAO Yuqiao, HUA Caixia, CAI Xiao, BAI Luanxi, LU Jia. Fracture formation mechanism in shale oil reservoirs, Qintong Depression, North Jiangsu Basin and its influence on hydrocarbon occurrence [J]. Earth Science Frontiers, 2024, 31(5): 35-45. |
[4] | SUN Yaxiong, LIANG Bing, QIU Xuming, DUAN Hongliang, FU Qian, ZHOU Jinfeng, LIU Shili, QIU Yongfeng, HU Huiting, GONG Lei. Characteristics of natural fractures and its influence on shale oil enrichment and preservation in Member 2 of Funing Formation in Gaoyou sag, Subei Basin [J]. Earth Science Frontiers, 2024, 31(5): 61-74. |
[5] | DING Wenlong, WANG Yao, WANG Shenghui, LIU Tingfeng, ZHANG Ziyou, GOU Tong, ZHANG Mengyang, HE Xiang. Research progress and insight on non-tectonic fractures in shale reservoirs [J]. Earth Science Frontiers, 2024, 31(1): 297-314. |
[6] | PENG Jun, SUN Ningliang, LU Kun, XU Yunlong, CHEN Faliang. Shale oil reservoir of the Palaeogene Shahejie Formation in the Dongpu Sag: Petrology and pore microstructural characteristics [J]. Earth Science Frontiers, 2023, 30(4): 128-141. |
[7] | SHI Juye, JIN Zhijun, LIU Quanyou, FAN Tailiang, GAO Zhiqian, WANG Hongyu. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks [J]. Earth Science Frontiers, 2023, 30(4): 142-151. |
[8] | GUO Zhixin, YANG Yongtai, REN Yi, WANG Zhengqing, FENG Zhigang, CHEN Liang, TANG Zhenping. Emplacement and episodic denudation of basement granites from the southern Jiergalangtu Sag, Erlian Basin and its tectonic implications [J]. Earth Science Frontiers, 2023, 30(2): 259-271. |
[9] | MU Hansheng, XUE Xinyu, JIANG Zaixing. Shale oil and gas in the Mesozoic Basins, eastern Yanshan Orogenic Belt—exploration status and outlooks [J]. Earth Science Frontiers, 2023, 30(2): 282-295. |
[10] | YANG Yu, WEN Long, CHEN Cong, WANG Hua. Oil and gas exploration potential of the Permian multi-stage platform-margin zone, western Sichuan Basin. [J]. Earth Science Frontiers, 2023, 30(1): 1-10. |
[11] | CHEN Mangjiao, TAN Kaijun, WEN Long, LE Xingfu, YAO Jun. Natural gas accumulation characteristics and great exploration potential of the Middle Permian in the Sichuan Basin [J]. Earth Science Frontiers, 2023, 30(1): 11-19. |
[12] | ZHAO Wenzhi, ZHU Rukai, LIU Wei, BIAN Congsheng, WANG Kun. Lacustrine medium-high maturity shale oil in onshore China: Enrichment conditions and occurrence features [J]. Earth Science Frontiers, 2023, 30(1): 116-127. |
[13] | ZOU Caineng, MA Feng, PAN Songqi, ZHANG Xinshun, WU Songtao, FU Guoyou, WANG Hongjun, YANG Zhi. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China [J]. Earth Science Frontiers, 2023, 30(1): 128-142. |
[14] | LU Shuangfang, WANG Jun, LI Wenbiao, CAO Yixin, CHEN Fangwen, LI Jijun, XUE Haitao, WANG Min. In-situ upgrading and transformation of low-maturity shale: Economic feasibility and efficiency enhancement approaches from the perspective of energy consumption ratio [J]. Earth Science Frontiers, 2023, 30(1): 187-198. |
[15] | DOU Yanguang, LI Qing, WU Yonghua, ZHAO Jingtao, SUN Chenghui, CAI Feng, CHEN Xiaohui, ZHANG Yong, FAN Jiahui, SHI Xuefa. Carbon and oxygen isotopic characteristics of benthic foraminifera in the Okinawa Trough since MIS6 and their palaeoceanographical significance [J]. Earth Science Frontiers, 2022, 29(4): 84-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||