Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 84-92.DOI: 10.13745/j.esf.sf.2022.1.14
Previous Articles Next Articles
DOU Yanguang1,2(), LI Qing1,4, WU Yonghua2,3, ZHAO Jingtao1,4, SUN Chenghui1, CAI Feng1,4, CHEN Xiaohui1,4, ZHANG Yong1,4, FAN Jiahui1, SHI Xuefa2,3
Received:
2021-10-07
Revised:
2021-11-27
Online:
2022-07-25
Published:
2022-07-28
CLC Number:
DOU Yanguang, LI Qing, WU Yonghua, ZHAO Jingtao, SUN Chenghui, CAI Feng, CHEN Xiaohui, ZHANG Yong, FAN Jiahui, SHI Xuefa. Carbon and oxygen isotopic characteristics of benthic foraminifera in the Okinawa Trough since MIS6 and their palaeoceanographical significance[J]. Earth Science Frontiers, 2022, 29(4): 84-92.
编号 | 深度/cm | 属种 | AMS 14C年龄/a B.P. | 校正年龄/cal a B.P. |
---|---|---|---|---|
Z1-S2 | 38~39 | N.dutertrei | 1 210±30 | 755(840~670) |
Z1-S4 | 88~89 | N.dutertrei | 2 840±30 | 2 596(2 706~2 485) |
Z1-S6 | 138~139 | N.dutertrei | 4 140±30 | 4 209(4 328~4 090) |
Z1-S12 | 288~289 | N.dutertrei | 9 960±50 | 10 927(11 105~10 749) |
Z1-S14 | 338~339 | N.dutertrei | 11 080±30 | 12 619(12 696~12 543) |
Z1-S16 | 388~389 | N.dutertrei | 13 150±40 | 15 185(15 330~15 040) |
Z1-S24 | 588~589 | N.dutertrei | 16 950±50 | 19 951(20 153~19 749) |
Z1-S26 | 638~639 | N.dutertrei | 17 690±50 | 20 847(21 044~20 650) |
Z1-S32 | 788~789 | N.dutertrei | 19 770±60 | 23 308(23 561~23 055) |
Z1-S36 | 888~889 | N.dutertrei | 19 970±70 | 23 578(23 850~23 306) |
Z1-S42 | 1 038~1 039 | N.dutertrei | 23 560±90 | 27 445(27 645~27 245) |
Z1-S44 | 1 088~1 089 | N.dutertrei | 24 620±100 | 28 255(28 565~27 945) |
Z1-S46 | 1 138~1 139 | N.dutertrei | 24 870±100 | 28 504(28 767~28 240) |
Z1-S48 | 1 178~1 179 | N.dutertrei | 26 090±110 | 29 879(30 293~29 465) |
Z1-S52 | 1 288~1 289 | N.dutertrei | 27 910±170 | 31 325(31 584~31 065) |
Z1-S54 | 1 338~1 389 | N.dutertrei | 28 760±140 | 32 247(32 803~31 690) |
Z1-S56 | 1 388~1 389 | N.dutertrei | 31 520±180 | 35 504(35 439~34 631) |
Z1-S59 | 1 463~1 464 | N.dutertrei | 33 760±280 | 37 588(38 450~36 725) |
Table 1 AMS 14C dating of Core CSHC-15 and calendar year correction
编号 | 深度/cm | 属种 | AMS 14C年龄/a B.P. | 校正年龄/cal a B.P. |
---|---|---|---|---|
Z1-S2 | 38~39 | N.dutertrei | 1 210±30 | 755(840~670) |
Z1-S4 | 88~89 | N.dutertrei | 2 840±30 | 2 596(2 706~2 485) |
Z1-S6 | 138~139 | N.dutertrei | 4 140±30 | 4 209(4 328~4 090) |
Z1-S12 | 288~289 | N.dutertrei | 9 960±50 | 10 927(11 105~10 749) |
Z1-S14 | 338~339 | N.dutertrei | 11 080±30 | 12 619(12 696~12 543) |
Z1-S16 | 388~389 | N.dutertrei | 13 150±40 | 15 185(15 330~15 040) |
Z1-S24 | 588~589 | N.dutertrei | 16 950±50 | 19 951(20 153~19 749) |
Z1-S26 | 638~639 | N.dutertrei | 17 690±50 | 20 847(21 044~20 650) |
Z1-S32 | 788~789 | N.dutertrei | 19 770±60 | 23 308(23 561~23 055) |
Z1-S36 | 888~889 | N.dutertrei | 19 970±70 | 23 578(23 850~23 306) |
Z1-S42 | 1 038~1 039 | N.dutertrei | 23 560±90 | 27 445(27 645~27 245) |
Z1-S44 | 1 088~1 089 | N.dutertrei | 24 620±100 | 28 255(28 565~27 945) |
Z1-S46 | 1 138~1 139 | N.dutertrei | 24 870±100 | 28 504(28 767~28 240) |
Z1-S48 | 1 178~1 179 | N.dutertrei | 26 090±110 | 29 879(30 293~29 465) |
Z1-S52 | 1 288~1 289 | N.dutertrei | 27 910±170 | 31 325(31 584~31 065) |
Z1-S54 | 1 338~1 389 | N.dutertrei | 28 760±140 | 32 247(32 803~31 690) |
Z1-S56 | 1 388~1 389 | N.dutertrei | 31 520±180 | 35 504(35 439~34 631) |
Z1-S59 | 1 463~1 464 | N.dutertrei | 33 760±280 | 37 588(38 450~36 725) |
Fig.2 From left: δ18O for core CSHC-15 (before correction), global δ18O (after [7]), δ18O for core CSHC-15 (after correction), and benthic foraminifera species used in shell isotope measurements
Fig.3 δ13C and CaCO3 content changes in core CSHC-15 (δ13C anomaly values indicated by gray strips) and benthic foraminifera species used in shell isotope measurements
[1] | DUPLESSY J C, SHACKLETON N J. Response of global deep water circulation to Earth’s climatic change 135000-107000 years ago[J]. Nature, 1985, 316: 500-507. |
[2] | ZAHN R, WINN K, SAENTHEIN M. Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and C. wuellerstorfi[J]. Paleoceanography, 1986, 1: 27-42. |
[3] | 吴永华, 石学法, 邹建军, 等. 鄂霍次克海东南部180 ka BP 以来底栖有孔虫δ13C轻值事件[J]. 科学通报, 2014, 59: 1468-1476. |
[4] | 郭启梅, 李保华, 王晓燕, 等. 深海底栖有孔虫在古海洋学研究中的应用[J]. 古生物学报, 2020, 59(3): 365-379. |
[5] | SHACKLETON N J, KENNETT J P. Paleotemperature history of the Cenozoic and the initiation of antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281[J]. Initial Reports of the DSDP, 1975, 29: 743-755. |
[6] | ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to Present[J]. Science, 2001, 292: 686-693. |
[7] | LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1-17. |
[8] | MILLER K, FAIRBANKS R G, MOUNTAIN G. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion[J]. Paleoceanography, 1987, 2: 1-19. |
[9] | SHACKLETON N J. Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles[M]//ANDERSEN N R, MALAHOFF A. The fate of fossil fuel CO2 in the oceans. New York: Plenum Publish Corporation, 1977: 401-427. |
[10] | DUPLESSY J C, SHACKLETON N J, MATTHEWS R K, et al. 13C record of benthic foraminifera in the last interglacial ocean: implications for the carbon cycle and the global deep water circulation[J]. Quaternary Research, 1984, 21: 225-243. |
[11] | CURRY W B, OPPO D W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean[J]. Paleoceanography, 2005, 20: 1-12. |
[12] | HESSE T, BUTZIN M, BICKERT T, et al. A model-data comparison of δ13C in the glacial Atlantic Ocean[J]. Paleoceanography, 2011, 26: 1-16. |
[13] |
李清, 王家生, 王晓芹, 等. IODP311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
DOI |
[14] | 李清, 王家生, 蔡峰, 等. 自生碳酸盐岩与底栖有孔虫碳同位素特征对多幕次甲烷事件的耦合响应: 以IODP311航次1328和1329站位为例[J]. 海洋地质与第四纪地质, 2015, 35 (5): 37-46. |
[15] | TALLEY L D. Hydrographic atlas of the World ocean circulation experiment[M] //SPARROWM, CHAPMANP, GOULDJ. Pacificocean. International WOCE Project Office (Vol.2). Southampton: Southampton Oceanography Centre, 2007. |
[16] | NAKAMURA H, NISHINA A, LIU Z J, et al. Intermediate and deep water formation in the Okinawa Trough[J]. Journal of Geophysical Geophysical Research, 2013, 118: 6881-6893. |
[17] | TALLEY I D. Distribution and formation of North Pacific Intermediate Water[J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. |
[18] | MIYAO T, ISHIKAWA K. Formation,distribution and volume transport of the North Pacific Intermediate Water studied by repeat hydrographic observations[J]. Journal of Oceanography, 2003, 59: 905-919. |
[19] | YOU Y Z. The pathway and circulation of North Pacific Intermediate Water[J]. Geophysical Research Letters, 2003, 30: 1-10. |
[20] | 李铁刚, 向荣, 孙荣涛, 等. 冲绳海槽中南部18 ka以来的底栖有孔虫与底层水演化[J]. 中国科学D辑, 2004(2): 163-170. |
[21] | KAO S J, HORNG C S, HSU S C, et al. Enhanced deepwater circulation and shift of sedimentary organic matter oxidation pathway in the Okinawa Trough since the Holocene[J]. Geophysical Research Letters, 2005, 32: 1-4. |
[22] | DOU Y, YANG S, LI C, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum[J]. Progress in Oceanography, 2015, 135: 77-90. |
[23] | ZHAO D, WAN S, LU Z, et al. Delayed collapse of the North Pacific Intermediate Water after the glacial termination[J]. Geophysical Research Letters, 2021, 48: 1-10. |
[24] | STUIVER M, REIMER P J, REIMER R W. CALIB 8. 2, 2021[2021-09-02]. http://calib.org.. |
[25] | THOMPSON P R, BE W H A, DUPLESSY J C, et al. Disappearance of pink pigmented Globigerina rubber at 12 000 000 yr BP in the Indian and Pacific Oceans[J]. Nature, 1979, 280: 554-558. |
[26] | 田军, 汪品先, 成鑫荣. 南海ODP1143站上新世至更新世天文年代标尺的建立[J]. 地球科学, 2004, 29(1): 1-6. |
[27] | SHACKLETON N J, HALL M A. Oxygen and carbon isotope stratigraphy of deep sea during project hole 552A: Plio-Pleistocene glacial history[J]. Initial Reports of Deep Sea Drilling Project, 1984, 81: 599-609. |
[28] | ZAHN R, SARNTHEIN M, ERLENKEUSER H. Benthic isotope evidence for changes of the Mediterranean Outflow during the Late Quaternary[J]. Paleoceanography, 1987, 2: 543-559. |
[29] | KABOTH S, de BOER B, BAHR A, et al. Mediterranean Outflow Water dynamics during the past -570 kyr: regional and global implications[J]. Paleoceanography, 2017, 32: 634-647. |
[30] | 汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1): 1-11. |
[31] | DUPLESSY J C, SHACKLETON N J, FAIRBAKS R G, et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation[J]. Paleoceanography, 1988, 3: 343-360. |
[32] | KROOPNICK P M. The distribution of 13C of CO2 in the world oceans[J]. Deep-Sea Research, 1985, 32: 57-84. |
[33] | 翦知湣, 陈荣华, 李保华. 冲绳海槽南部20 ka来深水底栖有孔虫的古海洋学记录[J]. 中国科学D辑, 1996, 26(5): 467-473. |
[34] | MACKENSEN A, HUBBERTEN H W, BICKERT T, et al. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean Deep Water: implications for glacial ocean circulation models[J]. Paleoceanography, 1993, 8: 587-610. |
[35] | ZARRIESS M, MACKENSEN A. Testing the impact of seasonal phytodetritus deposition on δ13C of epibenthic foraminifer Cibicidoides wuellerstorfi: a 31000 year high-resolution record from the northwest African continental slope[J]. Paleoceanography, 2011, 26: PA2202. |
[36] | 成鑫荣, 汪品先, 黄宝琦, 等. 南海表层沉积中有孔虫壳体的碳同位素研究及其意义[J]. 科学通报, 2005, 50: 48-52. |
[37] | ALTENBACH A, SARNTHEIN M. Productivity record in benthic foraminifera[M]//BERGER W H, SMETACEK V S, WEFER G. Productivity of the ocean:present and past. New York: John Wiley & Sons, 1989: 255-270. |
[38] | 李铁刚, 向荣, 孙荣涛, 等. 冲绳海槽中南部 18 ka 以来的底栖有孔虫与底层水演化[J]. 中国科学D辑, 2004, 34(2): 163-170. |
[39] | WOODRUFF F, SAVIN S M, DOUGLAS R G. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera[J]. Marine Micropaleontology, 1980, 5: 3-11. |
[40] | GOSSMAN E L. Stable isotope fractionation in live benthic foraminifera from the southern California Borderland[J]. Palaeoecography, Palaeoclimatology, Palaeoecology, 1984, 47: 301-327. |
[41] | YOU Y, SUGINOHARA N, FUKASAWA M, et al. Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water[J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3253-3280. |
[42] | SHIMIZU Y, IWAO T, YASUDA I, et al. Formation process of North Pacific Intermediate Water revealed by profiling floats set to drift on 26.7 σθ isopycnal surface[J]. Journal of Oceanography, 2004, 60(2): 453-462. |
[43] | 李铁刚, 刘振夏, HALL M A, 等. 冲绳海槽末次冰消期浮游有孔虫δ13C的宽幅低值事件[J]. 科学通报, 2002, 27: 298-301. |
[44] | KENDER S, RAVELO A C, WORNE S, et al. Closure of the Bering Strait caused mid-Pleistocene transition cooling[J]. Nature Communications, 2018, 9, 5386. |
[45] | KNUDSON K P, RAVELO A C. North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait[J]. Paleoeanography, 2015, 30(10), 1287-1304. |
[46] | WORNE S, KENDER S, SWANN G E, et al. Coupled climate and subarctic Pacific nutrient upwelling over the last 850000 years[J]. Earth and Planetary Science Letters, 2019, 522: 87-97. |
[47] | KEIGWIN L D. Glacial-age hydrography of the far northwest Pacific Ocean[J]. Paleoceanography, 1998, 13: 323-339. |
[48] | LAMBECK K, CHAPPELL J. Sea level change through the last glacial cycle[J]. Science, 2001, 292: 679-686. |
[49] | WEFER G, HEINZE P M, BERGER W H. Clues to ancient methane release[J]. Nature, 1994, 369: 282. |
[50] | KENNETT J P, CANNARIATO K G, HENDY I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science, 2000, 288: 128-133. |
[51] | RATHBURN A E, LEVIN L A, HELD Z, et al. Benthic foraminifera associated with cold methane seeps on the northern California margin: ecology and stable isotopic composition[J]. Marine Micropaleontology, 2000, 38: 247-266. |
[52] | HILL T M, KENNETT J P, VALENTINE D L. Isotopic evidence for the incoporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, northeast Pacific[J]. Geochimica et Cosmochimica Acta, 2004, 68: 4619-4627. |
[53] | HILL T M, KENNETT J P, SPERO H J. Foraminifera as indicators of methane-rich environments: a study of modern methane seeps in Santa Barbara Channel, California[J]. Marine Micropaleontology, 2003, 49: 123-138. |
[54] | SEN GUPTA B K, PLATON E, BERNHARD J M, et al. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico slope[J]. Journal of Foraminiferal Research, 1997, 27: 292-300. |
[55] | MARTIN J B, DAY S A, RATHBURN A E, et al. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California[J]. Geochemistry Geophysics Geosystems, 2004, 5(4): 1-25. |
[56] | SUN Z, WEI H, ZHANG Z, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep-Sea Research: Part I, 2015, 95: 37-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||