Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 93-102.DOI: 10.13745/j.esf.sf.2022.1.3
Previous Articles Next Articles
YANG Ziyang1,2,3,4(), REN Denglong5, HE Zhipeng6,*(), LI Xuegang1,2,3,4,*(), SONG Jinming1,2,3,4, YUAN Huamao1,2,3,4, DUAN Liqin1,2,3,4, LI Ning1,2,3,4, ZHANG Qian1,4
Received:
2021-09-10
Revised:
2021-11-15
Online:
2022-07-25
Published:
2022-07-28
Contact:
HE Zhipeng,LI Xuegang
CLC Number:
YANG Ziyang, REN Denglong, HE Zhipeng, LI Xuegang, SONG Jinming, YUAN Huamao, DUAN Liqin, LI Ning, ZHANG Qian. Exploring biomineralization in the tropical western Pacific sediments based on phospholipid fatty acid analysis[J]. Earth Science Frontiers, 2022, 29(4): 93-102.
脂肪酸种类 | 检出限/(μg·mL-1) | RSD/% | 特征离子 |
---|---|---|---|
8:0 | 0.032 | 2% | 74 115 158 |
10:0 | 0.027 | 2% | 74 143 186 |
12:0 | 0.023 | 2% | 74 171 214 |
14:0 | 0.034 | 2% | 74 199 242 |
i14:0 | 0.030 | 4% | 74 211 242 |
15:0 | 0.044 | 3% | 74 213 256 |
i15:0 | 0.033 | 4% | 74 213 256 |
a15:0 | 0.032 | 4% | 74 199 256 |
16:0 | 0.022 | 1% | 74 227 270 |
i16:0 | 0.028 | 4% | 74 227 270 |
17:0 | 0.031 | 2% | 74 284 241 |
i17:0 | 0.033 | 4% | 74 241 284 |
17:1ω7 | 0.039 | 3% | 55 250 282 |
18:0 | 0.068 | 5% | 74 298 255 |
i19:0 | 0.035 | 4% | 143 269 312 |
20:0 | 0.053 | 4% | 74 326 283 |
i20:1 | 0.035 | 4% | 55 292 324 |
24:0 | 0.110 | 7% | 74 382 339 |
13:0 | 0.022 | 1% | 74 185 228 |
14:1 | 0.028 | 2% | 55 208 240 |
16:1ω7 | 0.033 | 2% | 55 236 268 |
i16:1 | 0.034 | 4% | 55 194 236 |
18:1 | 0.071 | 5% | 55 264 296 |
18:2 | 0.087 | 6% | 67 294 263 |
20:3 | 0.077 | 5% | 79 320 289 |
20:5 | 0.250 | 17% | 79 287 316 |
22:1 | 0.080 | 5% | 55 320 352 |
11:0 | 0.024 | 2% | 74 157 200 |
20:4 | 0.093 | 6% | 79 287 318 |
Table 1 Detection limits, RSD and characteristic ions of fatty acid methyl esters
脂肪酸种类 | 检出限/(μg·mL-1) | RSD/% | 特征离子 |
---|---|---|---|
8:0 | 0.032 | 2% | 74 115 158 |
10:0 | 0.027 | 2% | 74 143 186 |
12:0 | 0.023 | 2% | 74 171 214 |
14:0 | 0.034 | 2% | 74 199 242 |
i14:0 | 0.030 | 4% | 74 211 242 |
15:0 | 0.044 | 3% | 74 213 256 |
i15:0 | 0.033 | 4% | 74 213 256 |
a15:0 | 0.032 | 4% | 74 199 256 |
16:0 | 0.022 | 1% | 74 227 270 |
i16:0 | 0.028 | 4% | 74 227 270 |
17:0 | 0.031 | 2% | 74 284 241 |
i17:0 | 0.033 | 4% | 74 241 284 |
17:1ω7 | 0.039 | 3% | 55 250 282 |
18:0 | 0.068 | 5% | 74 298 255 |
i19:0 | 0.035 | 4% | 143 269 312 |
20:0 | 0.053 | 4% | 74 326 283 |
i20:1 | 0.035 | 4% | 55 292 324 |
24:0 | 0.110 | 7% | 74 382 339 |
13:0 | 0.022 | 1% | 74 185 228 |
14:1 | 0.028 | 2% | 55 208 240 |
16:1ω7 | 0.033 | 2% | 55 236 268 |
i16:1 | 0.034 | 4% | 55 194 236 |
18:1 | 0.071 | 5% | 55 264 296 |
18:2 | 0.087 | 6% | 67 294 263 |
20:3 | 0.077 | 5% | 79 320 289 |
20:5 | 0.250 | 17% | 79 287 316 |
22:1 | 0.080 | 5% | 55 320 352 |
11:0 | 0.024 | 2% | 74 157 200 |
20:4 | 0.093 | 6% | 79 287 318 |
微生物 | PLFA标志物 |
---|---|
细菌 | 一些饱和或单不饱和脂肪酸:15:0,16:0,17:0,18:1ω5,18:1ω7,i19:0,a19:0 |
好氧细菌 | 16:1ω7,i14:0,a14:0,15:0 2OH,15:0 3OH,a15:0,i15:0 |
厌氧细菌 | cy17:0,cy19:0 |
革兰氏阳性菌 | a16:0,i16:0,a17:0,i17:0,i18:0 |
革兰氏阴性菌 | i15:0 3OH,16:1ω9,i17:0 3OH |
硫酸盐还原菌 | 17:1ω6,17:1ω7 |
放线菌 | 10Me16:0,10Me17:0,10Me18:0 |
假单胞菌 | 18:1ω7 |
真菌 | 18:3ω6 (6,9,12),18:1ω9 |
Table 2 Corresponding relationships between microbial groups and PLFA biomarkers [23⇓-25]
微生物 | PLFA标志物 |
---|---|
细菌 | 一些饱和或单不饱和脂肪酸:15:0,16:0,17:0,18:1ω5,18:1ω7,i19:0,a19:0 |
好氧细菌 | 16:1ω7,i14:0,a14:0,15:0 2OH,15:0 3OH,a15:0,i15:0 |
厌氧细菌 | cy17:0,cy19:0 |
革兰氏阳性菌 | a16:0,i16:0,a17:0,i17:0,i18:0 |
革兰氏阴性菌 | i15:0 3OH,16:1ω9,i17:0 3OH |
硫酸盐还原菌 | 17:1ω6,17:1ω7 |
放线菌 | 10Me16:0,10Me17:0,10Me18:0 |
假单胞菌 | 18:1ω7 |
真菌 | 18:3ω6 (6,9,12),18:1ω9 |
深度/ cm | 总 PLFA | 各种PLFA含量/(μg·g-1) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8:0 | 10:0 | 12:0 | 14:0 | i14:0 | i15:0 | 15:0 | 16:0 | 17:0 | 17:1ω7 | 18:0 | i19:0 | 20:0 | 22:0 | 24:0 | i16:1 | i16:0 | 13:0 | 16:1ω7 | i20:1 | 14:1 | a15:0 | i17:0 | 18:1 | 20:3 | 20:5 | 22:4 | 20:4 | 11:0 | 18:2 | 22:1 | |||
0~<1 | 0.27 | 0.002 7 | 0.001 2 | 0.001 5 | 0.011 | 0.024 | 0.007 1 | 0.004 4 | 0.046 | 0.005 0 | 0.013 | 0.012 | 0.012 | 0.003 7 | 0.005 6 | 0.007 2 | - | 0.039 | 0.001 3 | 0.038 | 0.005 0 | 0.001 4 | 0.001 7 | 0.004 0 | 0.008 0 | 0.002 3 | 0.002 7 | 0.003 2 | - | 0.000 64 | 0.002 0 | 0.004 0 | |
1~<2 | 0.22 | 0.002 3 | 0.001 2 | 0.001 4 | 0.007 6 | 0.019 | 0.005 4 | 0.003 8 | 0.035 | 0.005 2 | 0.008 4 | 0.011 | 0.009 8 | 0.003 8 | 0.005 9 | - | 0.021 | 0.031 | 0.001 4 | 0.015 | 0.004 3 | 0.001 6 | 0.001 3 | 0.003 2 | 0.007 7 | 0.002 6 | 0.003 1 | 0.004 3 | - | - | - | - | |
2~<3 | 0.20 | 0.002 3 | 0.001 1 | 0.001 2 | 0.007 1 | 0.017 | 0.004 9 | 0.003 4 | 0.032 | 0.004 6 | 0.007 0 | 0.009 1 | 0.003 6 | 0.003 4 | 0.005 4 | 0.007 0 | 0.018 | 0.027 | 0.001 2 | 0.025 | - | 0.001 4 | 0.001 2 | 0.002 8 | 0.006 7 | 0.002 3 | 0.002 8 | 0.003 9 | 0.003 2 | - | - | - | |
3~<4 | 0.087 | 0.001 7 | 0.001 1 | 0.001 1 | 0.003 4 | 0.005 3 | 0.001 5 | 0.002 4 | 0.014 | 0.004 0 | - | 0.006 9 | 0.002 8 | 0.003 3 | 0.005 2 | 0.007 0 | 0.005 6 | 0.008 4 | 0.001 1 | 0.011 | 0.001 3 | - | - | - | - | - | - | - | - | - | - | - | |
4~<5 | 0.028 | 0.001 4 | 0.000 89 | 0.000 89 | 0.001 6 | 0.000 54 | 0.000 17 | 0.001 7 | 0.004 8 | 0.003 3 | - | 0.004 7 | 0.000 29 | 0.002 7 | 0.004 5 | - | - | 0.000 59 | |||||||||||||||
5~<6 | 0.028 | 0.001 5 | 0.000 91 | 0.000 91 | 0.001 5 | 0.000 39 | 0.000 13 | 0.001 7 | 0.004 6 | 0.003 4 | - | 0.004 9 | 0.000 23 | 0.002 8 | 0.004 6 | - | - | 0.000 44 | |||||||||||||||
6~<7 | 0.032 | 0.001 4 | 0.000 86 | 0.000 86 | 0.001 5 | 0.000 38 | 0.000 11 | 0.001 6 | 0.004 5 | 0.003 1 | - | 0.004 5 | 0.000 13 | 0.002 6 | 0.004 3 | 0.005 9 | - | 0.000 32 | |||||||||||||||
7~<8 | 0.035 | 0.001 9 | 0.000 92 | 0.000 97 | 0.001 6 | 0.000 30 | 8.1E-05 | 0.001 8 | 0.004 5 | 0.003 5 | - | 0.005 0 | 0.000 11 | 0.002 9 | 0.004 8 | 0.006 6 | - | - | |||||||||||||||
8~<9 | 0.022 | 0.001 4 | 0.000 74 | - | 0.001 2 | 0.000 10 | 2.2E-05 | 0.001 4 | 0.003 4 | 0.002 9 | - | 0.004 0 | 2.2E-05 | 0.002 3 | 0.003 9 | - | - | - | |||||||||||||||
9~<10 | 0.021 | 0.001 2 | 0.000 68 | - | 0.001 2 | 0.000 13 | 3.3E-05 | 0.001 4 | 0.003 3 | 0.002 9 | - | 0.004 0 | 4.4E-05 | 0.002 3 | 0.003 8 | - | - | - | |||||||||||||||
10~<11 | 0.056 | 0.004 6 | 0.002 2 | 0.001 5 | 0.002 5 | 0.000 98 | 0.000 20 | 0.002 8 | 0.008 4 | 0.005 3 | 0.007 5 | 0.008 0 | 0.000 14 | 0.004 3 | 0.007 2 | - | 0.000 84 | - | |||||||||||||||
11~<12 | 0.039 | 0.003 0 | 0.001 3 | 0.001 4 | 0.002 1 | 0.000 27 | 5.7E-05 | 0.002 5 | 0.005 9 | 0.004 9 | - | 0.006 8 | - | 0.004 0 | 0.006 7 | - | - | - | |||||||||||||||
12~<13 | 0.043 | 0.002 3 | 0.001 5 | - | 0.001 9 | 0.000 21 | 5.2E-05 | 0.002 2 | 0.005 4 | 0.004 5 | - | 0.006 2 | - | 0.003 7 | 0.006 1 | 0.008 4 | 0.000 14 | - | |||||||||||||||
13~<14 | 0.044 | 0.002 2 | 0.001 2 | 0.001 1 | 0.001 7 | 0.000 27 | 6.0E-05 | 0.002 0 | 0.005 2 | 0.003 9 | 0.004 1 | 0.005 6 | 7.5E-05 | 0.003 3 | 0.005 4 | 0.007 4 | - | - | |||||||||||||||
14~<15 | 0.042 | 0.002 2 | 0.001 1 | 0.001 2 | 0.001 9 | 0.000 38 | 9.8E-05 | 0.002 2 | 0.005 5 | 0.004 2 | - | 0.006 1 | 9.8E-05 | 0.003 5 | 0.005 8 | 0.007 9 | 0.000 18 | - | |||||||||||||||
15~<16 | 0.043 | 0.002 0 | 0.001 1 | 0.001 1 | 0.001 8 | 0.000 22 | 6.2E-05 | 0.002 0 | 0.005 4 | 0.004 0 | 0.003 4 | 0.005 8 | 9.2E-05 | 0.003 4 | 0.005 6 | 0.007 6 | - | - | |||||||||||||||
16~<17 | 0.050 | 0.002 9 | 0.001 3 | 0.001 4 | 0.002 2 | 0.000 20 | 4.0E-05 | 0.002 6 | 0.006 3 | 0.005 1 | - | 0.007 2 | 3.9E-05 | 0.004 2 | 0.007 0 | 0.009 6 | 5.9E-05 | - | |||||||||||||||
17~<18 | 0.043 | 0.002 5 | 0.001 6 | - | 0.002 1 | 0.000 30 | 3.8E-05 | 0.002 5 | 0.005 8 | 0.004 9 | 0.005 7 | 0.006 8 | 3.8E-05 | 0.004 0 | 0.006 7 | - | - | - | |||||||||||||||
18~<19 | 0.046 | 0.002 8 | 0.001 4 | 0.001 3 | 0.002 0 | 0.000 27 | 5.4E-05 | 0.002 3 | 0.006 0 | 0.004 7 | - | 0.006 6 | - | 0.003 8 | 0.006 4 | 0.008 7 | 0.000 13 | - | |||||||||||||||
19~≤20 | 0.028 | 0.001 7 | 0.000 80 | 0.000 78 | 0.001 2 | 0.000 14 | 3.2E-05 | 0.001 4 | 0.003 5 | 0.002 8 | - | 0.004 1 | - | 0.002 3 | 0.003 8 | 0.005 3 | - | - |
Table 3 Content of various PLFAs in the sediment
深度/ cm | 总 PLFA | 各种PLFA含量/(μg·g-1) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8:0 | 10:0 | 12:0 | 14:0 | i14:0 | i15:0 | 15:0 | 16:0 | 17:0 | 17:1ω7 | 18:0 | i19:0 | 20:0 | 22:0 | 24:0 | i16:1 | i16:0 | 13:0 | 16:1ω7 | i20:1 | 14:1 | a15:0 | i17:0 | 18:1 | 20:3 | 20:5 | 22:4 | 20:4 | 11:0 | 18:2 | 22:1 | |||
0~<1 | 0.27 | 0.002 7 | 0.001 2 | 0.001 5 | 0.011 | 0.024 | 0.007 1 | 0.004 4 | 0.046 | 0.005 0 | 0.013 | 0.012 | 0.012 | 0.003 7 | 0.005 6 | 0.007 2 | - | 0.039 | 0.001 3 | 0.038 | 0.005 0 | 0.001 4 | 0.001 7 | 0.004 0 | 0.008 0 | 0.002 3 | 0.002 7 | 0.003 2 | - | 0.000 64 | 0.002 0 | 0.004 0 | |
1~<2 | 0.22 | 0.002 3 | 0.001 2 | 0.001 4 | 0.007 6 | 0.019 | 0.005 4 | 0.003 8 | 0.035 | 0.005 2 | 0.008 4 | 0.011 | 0.009 8 | 0.003 8 | 0.005 9 | - | 0.021 | 0.031 | 0.001 4 | 0.015 | 0.004 3 | 0.001 6 | 0.001 3 | 0.003 2 | 0.007 7 | 0.002 6 | 0.003 1 | 0.004 3 | - | - | - | - | |
2~<3 | 0.20 | 0.002 3 | 0.001 1 | 0.001 2 | 0.007 1 | 0.017 | 0.004 9 | 0.003 4 | 0.032 | 0.004 6 | 0.007 0 | 0.009 1 | 0.003 6 | 0.003 4 | 0.005 4 | 0.007 0 | 0.018 | 0.027 | 0.001 2 | 0.025 | - | 0.001 4 | 0.001 2 | 0.002 8 | 0.006 7 | 0.002 3 | 0.002 8 | 0.003 9 | 0.003 2 | - | - | - | |
3~<4 | 0.087 | 0.001 7 | 0.001 1 | 0.001 1 | 0.003 4 | 0.005 3 | 0.001 5 | 0.002 4 | 0.014 | 0.004 0 | - | 0.006 9 | 0.002 8 | 0.003 3 | 0.005 2 | 0.007 0 | 0.005 6 | 0.008 4 | 0.001 1 | 0.011 | 0.001 3 | - | - | - | - | - | - | - | - | - | - | - | |
4~<5 | 0.028 | 0.001 4 | 0.000 89 | 0.000 89 | 0.001 6 | 0.000 54 | 0.000 17 | 0.001 7 | 0.004 8 | 0.003 3 | - | 0.004 7 | 0.000 29 | 0.002 7 | 0.004 5 | - | - | 0.000 59 | |||||||||||||||
5~<6 | 0.028 | 0.001 5 | 0.000 91 | 0.000 91 | 0.001 5 | 0.000 39 | 0.000 13 | 0.001 7 | 0.004 6 | 0.003 4 | - | 0.004 9 | 0.000 23 | 0.002 8 | 0.004 6 | - | - | 0.000 44 | |||||||||||||||
6~<7 | 0.032 | 0.001 4 | 0.000 86 | 0.000 86 | 0.001 5 | 0.000 38 | 0.000 11 | 0.001 6 | 0.004 5 | 0.003 1 | - | 0.004 5 | 0.000 13 | 0.002 6 | 0.004 3 | 0.005 9 | - | 0.000 32 | |||||||||||||||
7~<8 | 0.035 | 0.001 9 | 0.000 92 | 0.000 97 | 0.001 6 | 0.000 30 | 8.1E-05 | 0.001 8 | 0.004 5 | 0.003 5 | - | 0.005 0 | 0.000 11 | 0.002 9 | 0.004 8 | 0.006 6 | - | - | |||||||||||||||
8~<9 | 0.022 | 0.001 4 | 0.000 74 | - | 0.001 2 | 0.000 10 | 2.2E-05 | 0.001 4 | 0.003 4 | 0.002 9 | - | 0.004 0 | 2.2E-05 | 0.002 3 | 0.003 9 | - | - | - | |||||||||||||||
9~<10 | 0.021 | 0.001 2 | 0.000 68 | - | 0.001 2 | 0.000 13 | 3.3E-05 | 0.001 4 | 0.003 3 | 0.002 9 | - | 0.004 0 | 4.4E-05 | 0.002 3 | 0.003 8 | - | - | - | |||||||||||||||
10~<11 | 0.056 | 0.004 6 | 0.002 2 | 0.001 5 | 0.002 5 | 0.000 98 | 0.000 20 | 0.002 8 | 0.008 4 | 0.005 3 | 0.007 5 | 0.008 0 | 0.000 14 | 0.004 3 | 0.007 2 | - | 0.000 84 | - | |||||||||||||||
11~<12 | 0.039 | 0.003 0 | 0.001 3 | 0.001 4 | 0.002 1 | 0.000 27 | 5.7E-05 | 0.002 5 | 0.005 9 | 0.004 9 | - | 0.006 8 | - | 0.004 0 | 0.006 7 | - | - | - | |||||||||||||||
12~<13 | 0.043 | 0.002 3 | 0.001 5 | - | 0.001 9 | 0.000 21 | 5.2E-05 | 0.002 2 | 0.005 4 | 0.004 5 | - | 0.006 2 | - | 0.003 7 | 0.006 1 | 0.008 4 | 0.000 14 | - | |||||||||||||||
13~<14 | 0.044 | 0.002 2 | 0.001 2 | 0.001 1 | 0.001 7 | 0.000 27 | 6.0E-05 | 0.002 0 | 0.005 2 | 0.003 9 | 0.004 1 | 0.005 6 | 7.5E-05 | 0.003 3 | 0.005 4 | 0.007 4 | - | - | |||||||||||||||
14~<15 | 0.042 | 0.002 2 | 0.001 1 | 0.001 2 | 0.001 9 | 0.000 38 | 9.8E-05 | 0.002 2 | 0.005 5 | 0.004 2 | - | 0.006 1 | 9.8E-05 | 0.003 5 | 0.005 8 | 0.007 9 | 0.000 18 | - | |||||||||||||||
15~<16 | 0.043 | 0.002 0 | 0.001 1 | 0.001 1 | 0.001 8 | 0.000 22 | 6.2E-05 | 0.002 0 | 0.005 4 | 0.004 0 | 0.003 4 | 0.005 8 | 9.2E-05 | 0.003 4 | 0.005 6 | 0.007 6 | - | - | |||||||||||||||
16~<17 | 0.050 | 0.002 9 | 0.001 3 | 0.001 4 | 0.002 2 | 0.000 20 | 4.0E-05 | 0.002 6 | 0.006 3 | 0.005 1 | - | 0.007 2 | 3.9E-05 | 0.004 2 | 0.007 0 | 0.009 6 | 5.9E-05 | - | |||||||||||||||
17~<18 | 0.043 | 0.002 5 | 0.001 6 | - | 0.002 1 | 0.000 30 | 3.8E-05 | 0.002 5 | 0.005 8 | 0.004 9 | 0.005 7 | 0.006 8 | 3.8E-05 | 0.004 0 | 0.006 7 | - | - | - | |||||||||||||||
18~<19 | 0.046 | 0.002 8 | 0.001 4 | 0.001 3 | 0.002 0 | 0.000 27 | 5.4E-05 | 0.002 3 | 0.006 0 | 0.004 7 | - | 0.006 6 | - | 0.003 8 | 0.006 4 | 0.008 7 | 0.000 13 | - | |||||||||||||||
19~≤20 | 0.028 | 0.001 7 | 0.000 80 | 0.000 78 | 0.001 2 | 0.000 14 | 3.2E-05 | 0.001 4 | 0.003 5 | 0.002 8 | - | 0.004 1 | - | 0.002 3 | 0.003 8 | 0.005 3 | - | - |
矿化过程 | 化学反应 |
---|---|
有氧呼吸 | (CH2O)106(NH3)16(H3PO4)+138O2→106CO2+16HNO3+H3PO4+122H2O |
硝酸盐还原 | ① (CH2O)106(NH3)16(H3PO4)+94.4HNO3→H3PO4+177.2H2O+106CO2+55.2N2 ② (CH2O)106(NH3)16(H3PO4)+84.8HNO3→H3PO4+148.4H2O+106CO2+42.4N2+16NH3 |
铁还原 | ① (CH2O)106(NH3)16(H3PO4)+212Fe2O3+848H+→H3PO4+530H2O+106CO2+16NH3+424Fe2+ ② (CH2O)106(NH3)16(H3PO4)+424FeOOH+848H+→424Fe2++106CO2+16NH3+H3PO4+742H2O |
锰还原 | (CH2O)106(NH3)16(H3PO4)+472H++236MnO2→H3PO4+106CO2+236Mn2++8N2+366H2O |
硫酸盐还原 | (CH2O)106(NH3)16(H3PO4) +53S |
Table 4 Sediment mineralization and related chemical reactions. Adapted from [37].
矿化过程 | 化学反应 |
---|---|
有氧呼吸 | (CH2O)106(NH3)16(H3PO4)+138O2→106CO2+16HNO3+H3PO4+122H2O |
硝酸盐还原 | ① (CH2O)106(NH3)16(H3PO4)+94.4HNO3→H3PO4+177.2H2O+106CO2+55.2N2 ② (CH2O)106(NH3)16(H3PO4)+84.8HNO3→H3PO4+148.4H2O+106CO2+42.4N2+16NH3 |
铁还原 | ① (CH2O)106(NH3)16(H3PO4)+212Fe2O3+848H+→H3PO4+530H2O+106CO2+16NH3+424Fe2+ ② (CH2O)106(NH3)16(H3PO4)+424FeOOH+848H+→424Fe2++106CO2+16NH3+H3PO4+742H2O |
锰还原 | (CH2O)106(NH3)16(H3PO4)+472H++236MnO2→H3PO4+106CO2+236Mn2++8N2+366H2O |
硫酸盐还原 | (CH2O)106(NH3)16(H3PO4) +53S |
PLFA种类 | TON | TOC | TOC/TON | NO3-N | NO2-N | NH4-N | pH值 |
---|---|---|---|---|---|---|---|
总PLFA | 0.933** | 0.942** | 0.769** | 0.698** | 0.464 | 0.198 | -0.334 |
SSFA | 0.822** | 0.840** | 0.692** | 0.622** | 0.346 | 0.162 | -0.444 |
BSFA | 0.955** | 0.956** | 0.774** | 0.674** | 0.515 | 0.179 | -0.272 |
MUFA | 0.951** | 0.958** | 0.779** | 0.740** | 0.485 | 0.228 | -0.298 |
PUFA | 0.910** | 0.945** | 0.796** | 0.747** | 0.433 | 0.257 | -0.247 |
Table 5 Correlation coefficients between sediment physio-chemical properties and PLFAs
PLFA种类 | TON | TOC | TOC/TON | NO3-N | NO2-N | NH4-N | pH值 |
---|---|---|---|---|---|---|---|
总PLFA | 0.933** | 0.942** | 0.769** | 0.698** | 0.464 | 0.198 | -0.334 |
SSFA | 0.822** | 0.840** | 0.692** | 0.622** | 0.346 | 0.162 | -0.444 |
BSFA | 0.955** | 0.956** | 0.774** | 0.674** | 0.515 | 0.179 | -0.272 |
MUFA | 0.951** | 0.958** | 0.779** | 0.740** | 0.485 | 0.228 | -0.298 |
PUFA | 0.910** | 0.945** | 0.796** | 0.747** | 0.433 | 0.257 | -0.247 |
[1] | PROVOOST P, BRAECKMAN U, VAN GANSBEKE D, et al. Modelling benthic oxygen consumption and benthic-pelagic coupling at a shallow station in the southern North Sea[J]. Estuarine, Coastal and Shelf Science, 2013, 120: 1-11. |
[2] | GUO J, YUAN H, SONG J, et al. Hypoxia, acidification and nutrient accumulation in the Yellow Sea Cold Water of the South Yellow Sea[J]. Science of the Total Environment, 2020, 745: 141050. |
[3] | 宋金明, 李学刚. 海洋沉积物/颗粒物在生源要素循环中的作用及生态学功能[J]. 海洋学报, 2018, 40(10): 1-13. |
[4] | 朱茂旭, 史晓宁, 杨桂朋, 等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364. |
[5] | TOUSSAINT E, DE BORGER E, BRAECKMAN U, et al. Faunal and environmental drivers of carbon and nitrogen cycling along a permeability gradient in shallow North Sea sediments[J]. Science of the Total Environment, 2021, 767: 144994. |
[6] | GUO J, YUAN H, SONG J, et al. Evaluation of sedimentary organic carbon reactivity and burial in the Eastern China Marginal Seas[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2021JC017207. |
[7] | 尹美玲, 段丽琴, 宋金明, 等. 长江口邻近海域表层沉积物中的细菌藿多醇及对低氧区的响应判别[J]. 环境科学, 2021, 42(3): 1343-1353. |
[8] | SINKKO H, LUKKARI K, SIHVONEN L M, et al. Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea[J]. PLoS One, 2013, 8(6): e67061. |
[9] | WUNDERLICH A, HEIPIEPER H J, ELSNER M, et al. Solvent stress-induced changes in membrane fatty acid composition of denitrifying bacteria reduce the extent of nitrogen stable isotope fractionation during denitrification[J]. Geochimica et Cosmochimica Acta, 2018, 239: 275-283. |
[10] | ATASHGAHI S, SANCHEZ-ANDREA I, HEIPIEPER H J, et al. Prospects for harnessing biocide resistance for bioremediation and detoxification[J]. Science, 2018, 360(6390): 743-746. |
[11] | FOSTER A L, MUNK L, KOSKI R A, et al. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska[J]. Applied Geochemistry, 2008, 23(2): 279-307. |
[12] | 李冬梅, 施雪华, 孙丽欣, 等. 磷脂脂肪酸谱图分析方法及其在环境微生物学领域的应用[J]. 科技导报, 2012, 30(2): 65-69. |
[13] | 张一鸣, 黄咸雨, 谢树成. 微生物磷脂脂肪酸单体碳同位素示踪碳循环过程[J]. 第四纪研究, 2021, 41(4): 877-892. |
[14] | 郭景腾. 15万年来热带西太平洋表层pH和pCO2演化及其影响因素[D]. 青岛: 中国科学院研究生院(海洋研究所), 2015. |
[15] |
马骏, 宋金明, 李学刚, 等. 西太平洋Y3海山对营养盐的影响及其生态环境效应[J]. 地学前缘, 2020, 27(4): 322-331.
DOI |
[16] | 李学刚, 宋金明, 牛丽凤, 等. 近海沉积物中氮磷的同时测定及其在胶州湾沉积物中的应用[J]. 岩矿测试, 2007, 2: 87-92. |
[17] | 王丽莎, 石晓勇, 张传松. 东海赤潮高发区沉积物中有机碳、有机氮的分布及其来源[J]. 海洋环境科学, 2010, 29: 165-169. |
[18] | 卢凤艳, 安芷生. 鹤庆钻孔沉积物总有机碳、氮含量测定的前处理方法及其环境意义[J]. 地质力学学报, 2010, 16(4): 393-401. |
[19] | HU B, LI J, ZHAO J, et al. Late Holocene elemental and isotopic carbon and nitrogen records from the East China Sea inner shelf: implications for monsoon and upwelling[J]. Marine Chemistry, 2014, 162: 60-70. |
[20] | LUPWAYI N Z, LARNEY F J, BLACKSHAW R E, et al. Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations[J]. Soil and Tillage Research, 2017, 168: 1-10. |
[21] | PETERSEN S O, KLUG M J. Effects of sieving, storage, and incubation temperature on the phospholipid Fatty Acid profile of a soil microbial community[J]. Applied Environmental Microbiology, 1994, 60(7): 2421-2430. |
[22] | VESTAL J R, WHITE D C. Lipid analysis in microbial ecology[J]. BioScience, 1989, 39(8): 535-541. |
[23] | 孙和泰, 华伟, 祁建民, 等. 利用磷脂脂肪酸(PLFAs)生物标记法分析人工湿地根际土壤微生物多样性[J]. 环境工程, 2020, 38(11): 103-109. |
[24] | 颜慧, 蔡祖聪, 钟文辉. 磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J]. 土壤学报, 2006, 5: 851-859. |
[25] | 陈振翔, 于鑫, 夏明芳, 等. 磷脂脂肪酸分析方法在微生物生态学中的应用[J]. 生态学杂志, 2005(7): 828-832. |
[26] | SHI Y, XIANG X, SHEN C, et al. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities[J]. Applied Environmental Microbiology, 2015, 81(2): 492-501. |
[27] | WU H, LI Y, ZHANG J, et al. Sediment bacterial communities in a eutrophic lake influenced by multiple inflow-rivers[J]. Environmental Science and Pollution Research, 2017, 24(24): 19795-19806. |
[28] | 邓延慧, 丁润楠. 湖泊沉积物氮矿化及其影响因素研究进展[J]. 环境生态学, 2020, 2(11): 91-95. |
[29] | 欧阳媛, 王圣瑞, 金相灿, 等. 外加氮源对滇池沉积物氮矿化影响的研究[J]. 中国环境科学, 2009, 29(8): 879-884. |
[30] | 张嘉雯, 魏健, 刘利, 等. 衡水湖沉积物营养盐形态分布特征及污染评价[J]. 环境科学, 2020, 41(12): 5389-5399. |
[31] |
田东凡, 李学刚, 宋金明, 等. 海洋最小含氧带氮流失过程与机制[J]. 应用生态学报, 2019, 30(3): 1047-1056.
DOI |
[32] | TIAN D, WANG Y, XING J, et al. Nitrogen loss process in hypoxic seawater based on the culture experiment[J]. Marine Pollution Bulletin, 2020, 152: 110912. |
[33] | WAKEHAM S G. Organic biogeochemistry in the oxygen-deficient ocean: a review[J]. Organic Geochemistry, 2020, 149: 104096. |
[34] | ZHANG X, CHEN Q, WANG C, et al. Characteristic analysis of phospholipid fatty acids (PLFAs) in typical nutrient polluted lake sediment in Wuhan[J]. International Journal of Sediment Research, 2021, 36(2): 221-228. |
[35] | WIESENBERG G L B, DORODNIKOV M, KUZYAKOV Y. Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping[J]. Geoderma, 2010, 156(3/4): 267-277. |
[36] | ESPINOSA L F, PANTOJA S, PINTO L A, et al. Water column distribution of phospholipid-derived fatty acids of marine microorganisms in the Humboldt Current system off northern Chile[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2009, 56(16): 1063-1072. |
[37] | FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075-1090. |
[38] | 吴雪停, 刘丽华, 吴能友, 等. 海洋沉积物中早期成岩作用地球化学研究进展[J]. 海洋地质前沿, 2015, 31(12): 17-26. |
[39] | PIMENOV N V, LUNINA O N, PRUSAKOVA T S, et al. Biological fractionation of stable carbon isotopes at the aerobic/anaerobic water interface of meromictic water bodies[J]. Microbiology, 2008, 77(6): 751-759. |
[40] | LEHMANN M F, BERNASCONI S M, BARBIERI A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis[J]. Geochimica et Cosmochimica Acta, 2002, 66: 3573-3584. |
[41] | RAVENSCHLAG K, SAHM K, AMANN R. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard)[J]. Applied Environmental Microbiology, 2001, 67(1): 387-395. |
[42] | 高爱国, 陈皓文, 林学政. 加拿大海盆与楚科奇海柱状沉积物中硫酸盐还原菌的分布状况[J]. 环境科学学报, 2008(5): 1014-1020. |
[43] | WILLERS C, JANSEN VAN RENSBURG P J, CLAASSENS S. Phospholipid fatty acid profiling of microbial communities: a review of interpretations and recent applications[J]. Journal of Applied Microbiology, 2015, 119(5): 1207-1218. |
[44] | MILLS C T, DIAS R F, GRAHAM D, et al. Determination of phospholipid fatty acid structures and stable carbon isotope compositions of deep-sea sediments of the Northwest Pacific, ODP site 1179[J]. Marine Chemistry, 2006, 98(2/3/4): 197-209. |
[45] | SUN H, WU Y, BING H, et al. Available forms of nutrients and heavy metals control the distribution of microbial phospholipid fatty acids in sediments of the Three Gorges Reservoir, China[J]. Environmental Science and Pollution Research, 2018, 25(6): 5740-5751. |
[46] | ZHAO J, WANG P, YU X, et al. Structure and composition of sediment: associated bacterial and eukaryotic communities in the river-lake system of Poyang Lake, China[J]. Geomicrobiology Journal, 2019, 36(8): 727-736. |
[47] | LI S, XIAO X, YIN X, et al. Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica[J]. Extremophiles, 2006, 10(5): 461-467. |
[1] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[2] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[3] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[4] | CHENG Qiuming. Long-range effects of mid-ocean ridge dynamics on earthquakes, magmatic activities, and mineralization events in plate subduction zones [J]. Earth Science Frontiers, 2024, 31(1): 1-14. |
[5] | YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications [J]. Earth Science Frontiers, 2024, 31(1): 239-266. |
[6] | GAO Wei, HU Ruizhong, LI Qiuli, LIU Jianzhong, LI Xianhua. Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China [J]. Earth Science Frontiers, 2024, 31(1): 267-283. |
[7] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[8] | LI Jiankang, LI Peng, HUANG Zhibiao, ZHOU Fangchun, ZHANG Liping, HUANG Xiaoqiang. Geological features and formation mechanism of pegmatite-type rare-metal deposits in the Renli orefield, northern Hunan, China—an overview [J]. Earth Science Frontiers, 2023, 30(5): 1-25. |
[9] | RAO Can, WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites [J]. Earth Science Frontiers, 2023, 30(5): 106-114. |
[10] | HUANG Chunmei, LI Guangming, FU Jiangang, LIANG Wei, ZHANG Zhi, WANG Yiyun. Early Miocene leucogranitic magmatism in Cuonadong, southern Tibet: Constraints from whole-rock geochemical and mineralogical characteristics [J]. Earth Science Frontiers, 2023, 30(5): 74-92. |
[11] | WANG Tao, LI Jiqing, HAN Jie, WANG Taishan, LI Yulong, YUAN Bowu. Geochemistry, geochronology and Hf isotopic characteristics of rare earth-bearing quartz syenite in eastern Dashuigou, East Kunlun [J]. Earth Science Frontiers, 2023, 30(4): 283-298. |
[12] | DONG Xiaoyu, KONG Ruoyan, YAN Danping, QIU Liang, QIU Junting. Origin and gold mineralization significance of Late Triassic syn-tectonic dykes in the Qingchengzi area, Liaodong Peninsula [J]. Earth Science Frontiers, 2023, 30(2): 215-238. |
[13] | CHEN Tian, JIA Yonggang, LIU Tao, LIU Xiaolei, SHAN Hongxian, SUN Zhongqiang. Long-term in situ observation of pore pressure in marine sediments: A review of technology development and future outlooks [J]. Earth Science Frontiers, 2022, 29(5): 229-245. |
[14] | FAN Chaoxi, XU Cheng, CUI Ying, WEI Chunwan, KUANG Guangxi, SHI Aiguo, LI Zhuoqi. Carbonatite magma and crustal metasomatism: A review [J]. Earth Science Frontiers, 2022, 29(4): 330-344. |
[15] | DENG Miao, WEI Chunwan, XU Cheng, SHI Aiguo, LI Zuoqi, FAN Chaoxi, KUANG Guangxi. Rare earth mineralization in Bayan Obo super-large deposit: A review [J]. Earth Science Frontiers, 2022, 29(1): 14-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||