Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 229-245.DOI: 10.13745/j.esf.sf.2021.9.30
Previous Articles Next Articles
CHEN Tian1,2(), JIA Yonggang1,3,*(), LIU Tao1,3, LIU Xiaolei1,3, SHAN Hongxian1,3, SUN Zhongqiang1
Received:
2021-01-05
Revised:
2021-03-27
Online:
2022-09-25
Published:
2022-08-24
Contact:
JIA Yonggang
CLC Number:
CHEN Tian, JIA Yonggang, LIU Tao, LIU Xiaolei, SHAN Hongxian, SUN Zhongqiang. Long-term in situ observation of pore pressure in marine sediments: A review of technology development and future outlooks[J]. Earth Science Frontiers, 2022, 29(5): 229-245.
Fig.3 Diagram of piezometer probe structure of USGS in SEASWAB. Modified after [28]. a—NOAA Piezometer; b—NOAA Piezometer II; c—Lehigh Piezometer; d—TAMU-USGS Piezometer。
Fig.4 Diagram of observation patterns of GISP and PUPPI piezometer probes and their structures (a modified after [32]; b modified after [4]; c modified after [33])
设备名称 | 研发单位 | 总长度/m | 传感器 类型 | 测量 量程/kPa | 测量 精度/kPa | 工作 水深/m | 首次海试 | 数据来源 |
---|---|---|---|---|---|---|---|---|
NGI-Illinois压差式孔隙压力观测系统 (NGI-Illinois Differential Piezometer Probe System) | 挪威岩土工程研究所(NGI) 美国伊利诺伊大学(University of Illinois) | 4.9 | 压差式 | 34~294 | ±6.2 | 500 | 1967年6月 | 文献[ |
NOAA孔隙压力观测探杆 (NOAA Piezometer) | 美国国家海洋和大气管理局(NOAA) | 17.12 | 绝对压力 | 689.5 | ±3.5 | — | 1975年9月 | 文献[ |
第二代NOAA孔隙压力观测探杆 (NOAA Piezometer II) | 美国国家海洋和大气管理局(NOAA) | 19.8 | 绝对压力 | 689.5 | ±3.5 | — | 1977年3月 | 文献[ |
压差式 | 137.9 | ±0.7 | ||||||
Lehigh孔隙压力观测探杆 (Lehigh Piezometer) | 美国里海大学(Lehigh University) | 7.3 | 绝对压力 | 344.7 | ±2.0 | — | 1975年9月 | 文献[ |
TAMU-USGS孔隙压力观测探杆 (TAMU-USGS Piezometer) | 美国得克萨斯农工大学(Texas A&M University) 美国地质调查局(USGS) | 约12.5 | 绝对压力 | 689.5 | — | — | 1976年12月 | 文献[ |
GISP孔隙压力观测探杆 (Geotechnical Instrumented Seafloor Probe) | 美国桑迪亚国家实验室 (Sandia National Laboratories) | 10.5 | 绝对压力 | 6200.0 | — | 450 | 1981年8月 | 文献[ |
牛津大学压差式孔隙压力观测探杆 (Oxford Differential Piezometer) | 英国牛津大学(Oxford University) | 约2.0 | 压差式 | 17.5 | 0.03 | — | 1971年 | 文献[ |
PUPPI孔隙压力观测探杆 (Pop Up Pore Pressure Instrument) | 英国海洋科学研究所 (Institute of Oceanographic Sciences) | 6 | 压差式 | 60 | 0.015 | 6 000 | — | 文献[35-38] |
SAPPI孔隙压力观测探杆 (Satellite-linked Autonomous Pore Pressure Instrument) | 德国不来梅大学(University of Bremen) | 约4.7 | 压差式 | — | — | — | 2004年 | 文献[ |
P-lance孔隙压力观测探杆 | 德国不来梅大学(University of Bremen) | 约4 | 压差式 | — | 0.01 | — | — | 文献[49-50] |
Piezometer系列孔隙压力观测探杆 | 法国海洋开发研究院 (French Research Institute for Exploitation of the Sea) | 最大15 | 压差式 | ±200 | ±0.5 | 6 000 | — | 文献[ |
复杂深海工程地质原位长期观测设备SEEGeo (In-situ Surveying Equipment of Engineering Geology in Complex Deep Sea) | 中国海洋大学 | 4 | 压差式 | 100 | 0.1 | 1 500 | 2016年 | 文献[ |
浅海海底沉积物孔隙压力监测探杆 | 自然资源部第一海洋研究所 | 4.2 | 绝对压力 | — | — | — | — | 文献[ |
Table 1 Summary of main in situ long-term observation equipment for pore pressure in seafloor sediments domestic and overseas
设备名称 | 研发单位 | 总长度/m | 传感器 类型 | 测量 量程/kPa | 测量 精度/kPa | 工作 水深/m | 首次海试 | 数据来源 |
---|---|---|---|---|---|---|---|---|
NGI-Illinois压差式孔隙压力观测系统 (NGI-Illinois Differential Piezometer Probe System) | 挪威岩土工程研究所(NGI) 美国伊利诺伊大学(University of Illinois) | 4.9 | 压差式 | 34~294 | ±6.2 | 500 | 1967年6月 | 文献[ |
NOAA孔隙压力观测探杆 (NOAA Piezometer) | 美国国家海洋和大气管理局(NOAA) | 17.12 | 绝对压力 | 689.5 | ±3.5 | — | 1975年9月 | 文献[ |
第二代NOAA孔隙压力观测探杆 (NOAA Piezometer II) | 美国国家海洋和大气管理局(NOAA) | 19.8 | 绝对压力 | 689.5 | ±3.5 | — | 1977年3月 | 文献[ |
压差式 | 137.9 | ±0.7 | ||||||
Lehigh孔隙压力观测探杆 (Lehigh Piezometer) | 美国里海大学(Lehigh University) | 7.3 | 绝对压力 | 344.7 | ±2.0 | — | 1975年9月 | 文献[ |
TAMU-USGS孔隙压力观测探杆 (TAMU-USGS Piezometer) | 美国得克萨斯农工大学(Texas A&M University) 美国地质调查局(USGS) | 约12.5 | 绝对压力 | 689.5 | — | — | 1976年12月 | 文献[ |
GISP孔隙压力观测探杆 (Geotechnical Instrumented Seafloor Probe) | 美国桑迪亚国家实验室 (Sandia National Laboratories) | 10.5 | 绝对压力 | 6200.0 | — | 450 | 1981年8月 | 文献[ |
牛津大学压差式孔隙压力观测探杆 (Oxford Differential Piezometer) | 英国牛津大学(Oxford University) | 约2.0 | 压差式 | 17.5 | 0.03 | — | 1971年 | 文献[ |
PUPPI孔隙压力观测探杆 (Pop Up Pore Pressure Instrument) | 英国海洋科学研究所 (Institute of Oceanographic Sciences) | 6 | 压差式 | 60 | 0.015 | 6 000 | — | 文献[35-38] |
SAPPI孔隙压力观测探杆 (Satellite-linked Autonomous Pore Pressure Instrument) | 德国不来梅大学(University of Bremen) | 约4.7 | 压差式 | — | — | — | 2004年 | 文献[ |
P-lance孔隙压力观测探杆 | 德国不来梅大学(University of Bremen) | 约4 | 压差式 | — | 0.01 | — | — | 文献[49-50] |
Piezometer系列孔隙压力观测探杆 | 法国海洋开发研究院 (French Research Institute for Exploitation of the Sea) | 最大15 | 压差式 | ±200 | ±0.5 | 6 000 | — | 文献[ |
复杂深海工程地质原位长期观测设备SEEGeo (In-situ Surveying Equipment of Engineering Geology in Complex Deep Sea) | 中国海洋大学 | 4 | 压差式 | 100 | 0.1 | 1 500 | 2016年 | 文献[ |
浅海海底沉积物孔隙压力监测探杆 | 自然资源部第一海洋研究所 | 4.2 | 绝对压力 | — | — | — | — | 文献[ |
[1] | BENNETT R H. Hydrodynamic stresses driving pore pressure changes in sandy coastal sediments[R]. Fort Belvoir, VA: Defense Technical Information Center, 1997. |
[2] | SULTAN N, GARZIGLIA S, BOMPAIS X, et al. Transient groundwater flow through a coastal confined aquifer and its impact on nearshore submarine slope instability[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(9): 1-18. |
[3] |
SULTAN N, PLAZA-FAVEROLA A, VADAKKEPULIYAMBATTA S, et al. Impact of tides and sea-level on deep-sea Arctic methane emissions[J]. Nature Communications, 2020, 11(1): 5087.
DOI URL |
[4] |
SCHULTHEISS P J. Pore pressures in marine sediments: an overview of measurement techniques and some geological and engineering applications[J]. Marine Geophysical Researches, 1990, 12(1/2): 153-168.
DOI URL |
[5] |
STROUT J M, TJELTA T I. In situ pore pressures: what is their significance and how can they be reliably measured?[J]. Marine and Petroleum Geology, 2005, 22(1/2): 275-285.
DOI URL |
[6] | SCHULTHEISS P J. In-situ pore-pressure measurements for a detailed geotechnical assessment of marine sediments: state of the art[M]// DEMARSK, CHANEYR.Geotechnical engineering of ocean waste disposal. West Conshohocken, PA: ASTM International, 1990: 190-205. |
[7] |
VANNESTE M, SULTAN N, GARZIGLIA S, et al. Seafloor instabilities and sediment deformation processes: the need for integrated, multi-disciplinary investigations[J]. Marine Geology, 2014, 352: 183-214.
DOI URL |
[8] |
SULTAN N, LAFUERZA S. In situ equilibrium pore-water pressures derived from partial piezoprobe dissipation tests in marine sediments[J]. Canadian Geotechnical Journal, 2013, 50(12): 1294-1305.
DOI URL |
[9] | ROHANI M J, AZAM A R, LUNNE T, et al. Foundation integrity: shallow gas mitigation using the XPP monitoring tool: an offshore Malaysia case history[C]// Proceedings of the Annual Offshore Technology Conference Asia 2014. Malaysia: Offshore Technology Conference (OTC), 2014: 1527-1534. |
[10] | 刘涛, 崔逢, 张美鑫. 深海海床孔隙水压力原位观测技术研究进展[J]. 水利学报, 2015, 46(增刊1): 111-116. |
[11] | ELSWORTH D, LEE D S, LONG H, et al. Penetration-induced pore pressure magnitudes-methods to determine transport parameters from terrestrial and marine penetrometer testing[J]. Elsevier Geo-Engineering Book Series, 2004, 2: 477-482. |
[12] |
WHITTLE A J, SUTABUTR T, GERMAINE J T, et al. Prediction and interpretation of pore pressure dissipation for a tapered piezoprobe[J]. Géotechnique, 2001, 51(7): 601-617.
DOI URL |
[13] |
RICHARDS A F, ØTEN K, KELLER G H, et al. Differential piezometer probe for an in situ measurement of sea-floor[J]. Géotechnique, 1975, 25(2): 229-238.
DOI URL |
[14] |
BENNETT R H. Pore-water pressure measurements: Mississippi delta submarine sediments[J]. Marine Geotechnology, 1977, 2(1/2/3/4): 177-189.
DOI URL |
[15] |
HIRST T J, RICHARDS A F. Excess pore pressure in Mississippi delta front sediments: initial report[J]. Marine Geotechnology, 1976, 1(4): 337-344.
DOI URL |
[16] | SULTAN N, MARSSET B, KER S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B8): B08101. |
[17] |
SULTAN N, VOISSET M, MARSSET B, et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta[J]. Marine Geology, 2007, 237(3/4): 169-190.
DOI URL |
[18] | SULTAN N, RIBOULOT V, KER S, et al. Pore pressure monitoring of active fault-fluid-hydrate system in deep water, Nigeria[C]// Proceedings of the Annual Offshore Technology Conference 2012. Houston: Offshore Technology Conference (OTC), 2012: OTC23260. |
[19] | 刘涛, 柴万里, 郭磊. 基于FBG的深海沉积物孔压观测设备研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(10): 126-133. |
[20] | OSTERMEIER R M, PELLETIER J H, WINKER C D, et al. Trends in shallow sediment pore pressures-deepwater gulf of Mexico[C]// Proceedings of the Drilling Conference. Amsterdam: Society of Petroleum Engineers (SPE), 2001: 177-188. |
[21] |
LIU T, LI S P, KOU H L, et al. Excess pore pressure observation in marine sediment based on Fiber Bragg Grating pressure sensor[J]. Marine Georesources and Geotechnology, 2019, 37(7): 775-782.
DOI URL |
[22] | LIU T, WEI G L, KOU H L, et al. Pore pressure observation: pressure response of probe penetration and tides[J]. Acta Oceanologica Sinica, 2019, 38(7): 107-113. |
[23] |
BENNETT R H, BRYANT W R, DUNLAP W A, et al. Initial results and progress of the Mississippi delta sediment pore water pressure experiment[J]. Marine Geotechnology, 1976, 1(4): 327-335.
DOI URL |
[24] | BENNETT R H, LI H, VALENT P J, et al. In-situ undrained shear strengths and permeabilities derived from piezometer measurements[M]// DEMARSK, CHANEYR. Strength testing of marine sediments:laboratory and in-situ measurements. West Conshohocken, PA: ASTM International, 1985: 83-100. |
[25] | BENNETT R H, LI H, RICHARDSON M D, et al. Geoacoustic and geological characterization of surficial marine sediments by in situ probe and remote sensing techniques[M]// Geyer R A. CRC Handbook of Geophysical Exploration at Sea. Boca Raton, Florida: CRC Press, 2019: 295-350. |
[26] | LI H, WANG M C, BENNETT R H. Significance of pore pressure in marine sediments: measurements and derived properties[M]// GEYER R A. CRC Handbook of Geophysical Exploration at Sea. Boca Raton, Florida: CRC Press, 1992: 339-381. |
[27] |
BENNETT R H, FARIS J R. Ambient and dynamic pore pressures in fine-grained submarine sediments: Mississippi Delta[J]. Applied Ocean Research, 1979, 1(3): 115-123.
DOI URL |
[28] | DUNLAP W A, BRYANT W R, BENNETT R A, et al. Pore pressure measurements in underconsolidated sediments[C]// Proceedings of the Annual Offshore Technology Conference 1978. Houston: Offshore Technology Conference (OTC), 1978: 1049-1056. |
[29] | BENNETT R H, BURNS J T, CLARKE T L, et al. Piezometer probes for assessing effective stress and stability in submarine sediments[M]//FEILD M E. Marine slides and other mass movements. New York: Springer US, 1982: 129-161. |
[30] | BENNETT R H, BURNS J T, LIPKIN J, et al. Piezometer- probe technology for geotechnical investigations in coastal and deep-ocean environments[R]. Melbourne: Naval Ocean Research and Development Activity and Sandia National Labs, 1983. |
[31] |
HIRST T J, RICHARDS A F. In situ pore-pressure measurement in Mississippi delta front sediments[J]. Marine Geotechnology, 1977, 2(1/2/3/4): 191-204.
DOI URL |
[32] | PRINDLE R W, LOPEZ A A. Pore pressures in marine sediments 1981 test of the geotechnically instrumented seafloor probe (GISP)[C]// Proceedings of the Annual Offshore Technology Conference 1983. Houston: Offshore Technology Conference (OTC), 1983: 173-180. |
[33] | SCHULTHEISS P J, MCPHAIL S D, PACKWOOD A R, et al. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore Pressure Instrument (PUPPI)[R]. Wormley: Institute of Oceanographic Sciences, 1985. |
[34] | SILLS G C, THOMAS S D. Pore pressures in soils containing gas[M]// MAIO C D, HUECKELT, LORETB. Chemo-mechanical coupling in clays:from nano-scale to engineering applications. London; New York: Routledge, 2002: 211-222. |
[35] | PACKWOOD A R. Pop-Up Pore Pressure Instrument PUPPI II development. Penetration calculations and hydrodynamics[R]. Wormley: Institute of Oceanographic Sciences, 1983. |
[36] |
BLOUIN A, IMBERT P, SULTAN N, et al. Evolution model for the absheron mud volcano: from in situ observations to numerical modeling[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(3): 766-794.
DOI URL |
[37] |
URGELES R, CANALS M, ROBERTS J, et al. Fluid flow from pore pressure measurements off La Palma, Canary Islands[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3/4): 253-271.
DOI URL |
[38] | MCPHAIL S D, SCHULTHEISS P J. PUPPI: a free-fall seabed piezometer for geotechnical studies[C]// Proceedings of an International Conference. Brighton: Springer, 1986: 249-258. |
[39] |
SCHULTHEISS P J, MCPHAIL S D. Direct indication of pore-water advection from pore pressure measurements in Madeira Abyssal Plain sediments[J]. Nature, 1986, 320(6060): 348-350.
DOI URL |
[40] |
SCHULTHEISS P J, NOEL M. Evidence of pore-water advection in the Madeira Abyssal Plain from pore-pressure and temperature measurements[J]. Geological Society, London, Special Publications, 1987, 31(1): 113-129.
DOI URL |
[41] | HURLEY M T, SCHULTHEISS P J. Sea-bed shear moduli from measurements of tidally induced pore pressures[M]// HOVEMJ M, RICHARDSONM D, STOLLR D. Shear waves in marine sediments. Dordrecht: Springer Netherlands, 1991: 411-418. |
[42] | FANG W W, LANGSETH M G, SCHULTHEISS P J. Analysis and application of in situ pore pressure measurements in marine sediments[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B5): 7921-7938. |
[43] | STROUT J M, TJELTA T I. Excess pore pressure measurement and monitoring for offshore instability problems[C]// Proceedings of the Annual Offshore Technology Conference 2007. Houston: Offshore Technology Conference (OTC), 2007: OTC19706. |
[44] | TJELTA T, SVANØ G, STROUT J M, et al. Gas seepage and pressure buildup at a north sea platform location:gas origin, transport mechanisms, and potential hazards[C]//Proceedings of the Annual Offshore Technology Conference 2007. Houston: Offshore Technology Conference (OTC), 2007: OTC18706. |
[45] | SPARREVIK P, STROUT J. Novel monitoring solutions solving geotechnical problems and offshore installation challenges[M]// VAUGHAN M. Frontiers in offshore geotechnics III. Boca Raton, Florida: CRC Press, 2015: 319-324. |
[46] |
FLEMINGS P B, LONG H, DUGAN B, et al. Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico[J]. Earth and Planetary Science Letters, 2008, 269(3/4): 309-325.
DOI URL |
[47] | SAWYER A H, FLEMINGS P, ELSWORTH D, et al. Response of submarine hydrologic monitoring instruments to formation pressure changes: theory and application to Nankai advanced CORKs[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B1): B01102. |
[48] | KAUL N, VILLINGER H, KRUSE M. Satellite-linked autonomous pore pressure instrument (SAPPI): a step toward a deep-sea observatory for intermediate time spans with automated data transmission into the laboratory[J]. Sea Technology, 2004, 45(8): 54-58. |
[49] |
MENAPACE W, VÖLKER D, SAHLING H, et al. Long-term in situ observations at the Athina mud volcano, eastern Mediterranean: taking the pulse of mud volcanism[J]. Tectonophysics, 2017, 721: 12-27.
DOI URL |
[50] | SAHLING H, LOHER M, MENAPACE W, et al. R/V POSEIDON cruise POS498, recovery of observatories at Athina Mud Volcano, Izmir (Turkey)-Catania (Italy), 18 April-1 May, 2016[R]. Bremen: MARUM-Center for Marine Environmental Sciences, 2016. |
[51] | LUCA G, LUIS G, PAOLO F, et al. MARM2009: marine geological study of the north Anatolian fault beneath the sea of MARMARA[R]. Bologna: ISMAR, 2009. |
[52] |
STEGMANN S, SULTAN N, KOPF A, et al. Hydrogeology and its effect on slope stability along the coastal aquifer of Nice, France[J]. Marine Geology, 2011, 280(1/2/3/4): 168-181.
DOI URL |
[53] | HAFLIDASON H, MORGAN E, L'HEUREUX J S, et al. Finneidfjord: a field laboratory for integrated submarine slope stability assessments and characterization of landslide-prone sediments: a review[C]//Proceedings of the Annual Offshore Technology Conference 2013. Houston: Offshore Technology Conference (OTC), 2013: OTC23967. |
[54] |
SULTAN N, CATTANEO A, SIBUET J C, et al. Deep Sea in situ excess pore pressure and sediment deformation off NW Sumatra and its relation with the December 26, 2004 Great Sumatra-Andaman Earthquake[J]. International Journal of Earth Sciences, 2009, 98(4): 823-837.
DOI URL |
[55] |
RIBOULOT V, CATTANEO A, SULTAN N, et al. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria[J]. Earth and Planetary Science Letters, 2013, 375: 78-91.
DOI URL |
[56] | FISHER A, LANGSETH M, BAKER P, et al. The devil's in the details: hydrogeology of middle valley active venting areas[J]. Eos, Transactions American Geophysical Union, 1997, 78(16): 165. |
[57] | SULTAN N, RIBOULOT V, KER S, et al. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12): B12110. |
[58] | STEGMANN S, SULTAN N, GARZIGLIA S, et al. A long-term monitoring array for landslide precursors: a case study at the Ligurian slope (western Mediterranean Sea)[C]//Proceedings of the Annual Offshore Technology Conference 2012. Houston: Offshore Technology Conference (OTC), 2012: OTC23271. |
[59] |
SULTAN N, BOHRMANN G, RUFFINE L, et al. Pockmark formation and evolution in deep water Nigeria: rapid hydrate growth versus slow hydrate dissolution[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2679-2694.
DOI URL |
[60] | 文明征, 陈天, 胡云壮, 等. 波流作用下海底边界层沉积物再悬浮与影响因素研究[J]. 海洋学报, 2020, 42(3): 97-106. |
[61] | 杜星. 黄河口海底粉土波致孔压精细观测及液化评判方法[D]. 青岛: 国家海洋局第一海洋研究所, 2016: 1-75. |
[62] | 宋玉鹏, 孙永福, 杜星, 等. 波浪作用下海底粉土孔隙水压力响应过程监测研究[J]. 海洋地质与第四纪地质, 2018, 38(2): 208-214. |
[1] | SUN Zhiwen, JIA Yonggang, QUAN Yongzheng, GUO Xiujun, LIU Tao, MENG Qingsheng, SUN Zhongqiang, LI Kai, FAN Zhihan, CHEN Tian, TANG Haoru. Development and application of long-term in situ monitoring system for complex deep-sea engineering geology [J]. Earth Science Frontiers, 2022, 29(5): 216-228. |
[2] | LUO Hongdong,LI Ruidong,ZHANG Bo,CAO Bo. An early warning model system for predicting meteorological risk associated with geological disasters in the Longnan area, Gansu Province based on the information value method [J]. Earth Science Frontiers, 2019, 26(6): 289-297. |
[3] |
.
What happened on the upstream of Minjiang River in Sichuan Province 20 000 years ago [J]. Earth Science Frontiers, 2007, 14(6): 189-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||