Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 216-228.DOI: 10.13745/j.esf.sf.2021.9.15
Previous Articles Next Articles
SUN Zhiwen1,2(), JIA Yonggang1,2,*(), QUAN Yongzheng1,2,*(), GUO Xiujun1,2, LIU Tao1,2, MENG Qingsheng1,2, SUN Zhongqiang1,2, LI Kai1,2, FAN Zhihan1,2, CHEN Tian1,2, TANG Haoru1,2
Received:
2020-07-26
Revised:
2020-11-10
Online:
2022-09-25
Published:
2022-08-24
Contact:
JIA Yonggang,QUAN Yongzheng
CLC Number:
SUN Zhiwen, JIA Yonggang, QUAN Yongzheng, GUO Xiujun, LIU Tao, MENG Qingsheng, SUN Zhongqiang, LI Kai, FAN Zhihan, CHEN Tian, TANG Haoru. Development and application of long-term in situ monitoring system for complex deep-sea engineering geology[J]. Earth Science Frontiers, 2022, 29(5): 216-228.
接收通道 | 声速/(m·s-1) | 方差值 | ||
---|---|---|---|---|
最小值 | 最大值 | 平均值 | ||
CH1 | 1 516 | 1 560 | 1 533 | 145 |
CH2 | 1 561 | 1 614 | 1 586 | 404 |
CH3 | 1 567 | 1 598 | 1 587 | 51 |
CH4 | 1 656 | 1 830 | 1 784 | 1 253 |
CH5 | 1 607 | 1 803 | 1 735 | 1 052 |
CH6 | 1 641 | 1 897 | 1 831 | 2 108 |
Table 1 Summary of six channel sound velocity of seafloor sediments
接收通道 | 声速/(m·s-1) | 方差值 | ||
---|---|---|---|---|
最小值 | 最大值 | 平均值 | ||
CH1 | 1 516 | 1 560 | 1 533 | 145 |
CH2 | 1 561 | 1 614 | 1 586 | 404 |
CH3 | 1 567 | 1 598 | 1 587 | 51 |
CH4 | 1 656 | 1 830 | 1 784 | 1 253 |
CH5 | 1 607 | 1 803 | 1 735 | 1 052 |
CH6 | 1 641 | 1 897 | 1 831 | 2 108 |
[1] |
RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168.
DOI URL |
[2] |
BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215.
DOI URL |
[3] |
CACCHIONE D A, DRAKE D E. A new instrument system to investigate sediment dynamics on continental shelves[J]. Marine Geology, 1979, 30(3/4): 299-312.
DOI URL |
[4] | KOPP H, LANGE D, HANNEMANN K, et al. RV SONNE Fahrtbericht/Cruise Report SO244/2, GeoSEA: geodetic earthquake observatory on the seafloor, Antofagasta (Chile)-Antofagasta (Chile), 27.11.-13.12.2015[R/OL]. [2020-11-17]. Kiel: GEOMAR Helmholtz Centre for Ocean Research, 2016: 1-86. https://oceanrep.geomar.de/34821/ |
[5] |
CHEE S, LEOKPRASIRTKUL T, KANNO T, et al. A deepwater sandface monitoring system for offshore gas hydrate[C/OL]. Offshore Technology Conference, Houston, Texas, USA, 2014[2014-05-05]. https://doi.org/10.4043/25328-MS. 10.4043/25328-MS.
DOI URL |
[6] |
KONNO Y, FUJII T, SATO A, et al. Key findings of the world's first offshore methane hydrate production test off the coast of Japan: toward future commercial production[J]. Energy and Fuels, 2017, 31(3): 2607-2616.
DOI URL |
[7] |
YAMAMOTO K, KANNO T, WANG X X, et al. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation[J]. RSC Advances, 2017, 7(10): 5554-5577.
DOI URL |
[8] |
YAMAMOTO K, WANG X X, TAMAKI M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances, 2019, 9(45): 25987-26013.
DOI URL |
[9] |
LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16.
DOI URL |
[10] |
YE J L, QIN X W, QIU H J, et al. Preliminary results of environmental monitoring of the natural gas hydrate production test in the South China Sea[J]. China Geology, 2018, 1(2): 202-209.
DOI URL |
[11] |
YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209.
DOI URL |
[12] | 侯正瑜, 郭常升, 王景强, 等. 利用Gassmann方程预测海底沉积物孔隙度[J]. 地球科学, 2016, 41(7): 1198-1205. |
[13] |
BUCKINGHAM M J. Compressional and shear wave properties of marine sediments: comparisons between theory and data[J]. The Journal of the Acoustical Society of America, 2005, 117(1): 137-152.
DOI URL |
[14] |
JACKSON D R, RICHARDSON M D, ISAKSON M J, et al. High-frequency seafloor acoustics[J]. The Journal of the Acoustical Society of America, 2008, 122(5): 2497.
DOI URL |
[15] | KAN G M, CAO G L, WANG J Q, et al. Shear wave speed of shallow seafloor sediments in the northern South China Sea and their correlations with physical parameters[J]. Earth and Space Science, 2020, 7(3): e2019EA000950. |
[16] | 郭秀军, 刘涛, 贾永刚, 等. 土的工程力学性质与其电阻率关系实验研究[J]. 地球物理学进展, 2003, 18(1): 151-155. |
[17] | 王秀娟, 吴时国, 刘学伟, 等. 基于电阻率测井的天然气水合物饱和度估算及估算精度分析[J]. 现代地质, 2010, 24(5): 993-999. |
[18] |
ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62.
DOI URL |
[19] |
CAI J C, WEI W, HU X Y, et al. Electrical conductivity models in saturated porous media: a review[J]. Earth-Science Reviews, 2017, 171: 419-433.
DOI URL |
[20] |
SCHULTHEISS P J. Pore pressures in marine sediments: an overview of measurement techniques and some geological and engineering applications[J]. Marine Geophysical Researches, 1990, 12(1/2): 153-168.
DOI URL |
[21] |
BENNETT R H, LI H, BURNS J T, et al. Application of piezometer probes to determine engineering properties and geological processes in marine sediments[J]. Applied Clay Science, 1989, 4(4): 337-355.
DOI URL |
[22] |
SCHULTHEISS P J, MCPHAIL S D. Direct indication of pore-water advection from pore pressure measurements in madeira abyssal plain sediments[J]. Nature, 1986, 320(6060): 348-350.
DOI URL |
[23] | SULTAN N, RIBOULOT V, KER S, et al. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater nigeria[J/OL]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12)[2021-03-23]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JB008218 |
[24] | 刘涛, 柴万里, 郭磊. 基于FBG的深海沉积物孔压观测设备研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(10): 126-133. |
[25] | 高峰, 朱川林, 李昊, 等. 海口湾海洋水动力自然灾害评估分析[J]. 中国海洋大学学报(自然科学版), 2019, 49(9): 130-138. |
[26] | 常永国, 张飞, 郭永刚, 等. 南海深海海底观测网试验系统海底动力观测数据集[J]. 中国科学数据, 2019, 4(4): 48-55. |
[27] | 芦永红, 丁飞, 贾永刚, 等. 从原理及特点出发探讨海水电池的应用前景[J]. 电源技术, 2020, 44(11): 1697-1700. |
[28] |
陈玉凤, 李栋梁, 梁德青, 等. 南海沉积物天然气水合物饱和度与电阻率的关系[J]. 石油学报, 2013, 34(3): 507-512.
DOI |
[29] | 李冬, 叶银灿, 陈培雄, 等. 宁波外海陆架沉积物电阻率特性研究[J]. 工程勘察, 2010, 38(5): 19-22. |
[30] |
ZAINAL ABIDIN M H, SAAD R, WIJEYESEKERA D, et al. The influences of basic physical properties of clayey silt and silty sand on its laboratory electrical resistivity value in loose and dense conditions[J]. Sains Malaysiana, 2017, 46(10): 1959-1969.
DOI URL |
[31] | BERNABÉ Y, LI M, MAINEULT A. Permeability and pore connectivity: a new model based on network simulations[J/OL]. Journal of Geophysical Research: Solid Earth, 2010, 115(B10)[2021-03-29]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JB007444 |
[32] |
BIELLA G, LOZEJ A, TABACCO I. Experimental study of some hydrogeophysical properties of unconsolidated porous media[J]. Groundwater, 1983, 21(6): 741-751.
DOI URL |
[33] |
KAMEL M H. An approach for estimating formation factor parameter from transit time data in clean sand formation[J]. Journal of Petroleum Science and Engineering, 2001, 30(2): 83-89.
DOI URL |
[34] |
SIDDIQUI F I, OSMAN S B A B S. Simple and multiple regression models for relationship between electrical resistivity and various soil properties for soil characterization[J]. Environmental Earth Sciences, 2013, 70(1): 259-267.
DOI URL |
[35] |
ALLÈGRE V, BRODSKY E E, XUE L, et al. Using earth-tide induced water pressure changes to measure in situ permeability: a comparison with long-term pumping tests[J]. Water Resources Research, 2016, 52(4): 3113-3126.
DOI URL |
[36] |
BENNETT R H. Pore-water pressure measurements: Mississippi delta submarine sediments[J]. Marine Geotechnology, 1977, 2(1/2/3/4): 177-189.
DOI URL |
[37] | HURLEY M T, SCHULTHEISS P J. Sea-bed shear moduli from measurements of tidally induced pore pressures[M/OL]// HOVEMJ M, RICHARDSONM D, STOLLR D. Shear waves in marine sediments. Dordrecht: Springer, 1991: 411-418[2021-03-22]. https://doi.org/10.1007/978-94-011-3568-9_47 |
[38] | LONG H. Interpreting pore pressure in marine mudstones with pore pressure penetrometers, in situ data, and laboratory measurements[D/OL]. State College: The Pennsylvania State University, 2007[2007-08-03]. http://www.pqdtcn.com/thesisDetails/7D3F3E7120718FCDBA89915B8EFE7EC4 |
[39] |
STEGMANN S, SULTAN N, KOPF A, et al. Hydrogeology and its effect on slope stability along the coastal aquifer of Nice, France[J]. Marine Geology, 2011, 280(1/2/3/4): 168-181.
DOI URL |
[40] |
URGELES R, CANALS M, ROBERTS J, et al. Fluid flow from pore pressure measurements off La Palma, Canary Islands[J]. Journal of Volcanology and Geothermal Research, 2000, 101(3/4): 253-271.
DOI URL |
[41] | XU W, GERMANOVICH L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach[J/OL]. Journal of Geophysical Research: Solid Earth, 2006, 111(B1)[2020-02-09]. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2004JB003600 |
[42] | 张炜, 李新仲, 李清平, 等. 天然气水合物分解超孔隙压力研究[J]. 西南石油大学学报 (自然科学版), 2015, 37(4):107-116. |
[43] |
LI G B, WANG J Q, LIU B H, et al. In situ acoustic properties of fine-grained sediments on the northern continental slope of the South China Sea[J]. Ocean Engineering, 2020, 218: 108244.
DOI URL |
[1] | CHEN Tian, JIA Yonggang, LIU Tao, LIU Xiaolei, SHAN Hongxian, SUN Zhongqiang. Long-term in situ observation of pore pressure in marine sediments: A review of technology development and future outlooks [J]. Earth Science Frontiers, 2022, 29(5): 229-245. |
[2] | XUE Shuai, LU Zhanwu, LI Wenhui, WANG Guangwen, WANG Haiyan, LIANG Hongda. Electrical resistivity structure beneath the central Cona-Oiga rift, southern Tibet, and its implications for regional dynamics [J]. Earth Science Frontiers, 2022, 29(2): 393-401. |
[3] | ZHANG Zhenyu, XU Weiwei, DENG Yaping, REN Jinghua, SHI Xiaoqing, WU Jichun. Complex resistivity properties and spectral parameters of TCE contaminated soils [J]. Earth Science Frontiers, 2021, 28(5): 114-124. |
[4] | LI Zaohong,CHENG Xiaodao,JIANG Hong,ZHENG Fengyun,YUAN Shengqiang,LIU Bang,LIU Jiguo,WANG Yuhua. Genetic mechanism of lowresistivity oil zones and comprehensive identification technology for well logging in the Termit Basin, Niger. [J]. Earth Science Frontiers, 2018, 25(2): 99-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||