Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 246-254.DOI: 10.13745/j.esf.sf.2021.9.16
Previous Articles Next Articles
XING Huilin1,2,3(), WANG Jianchao1,3,*(), PANG Shuo1,2,3, WANG Ruize1,3, LIU Dongyu1,3, MA Zihan1,3, ZHANG Yuling1,3, TAN Yuyang1,2,3
Received:
2021-05-11
Revised:
2021-08-21
Online:
2022-09-25
Published:
2022-08-24
Contact:
WANG Jianchao
CLC Number:
XING Huilin, WANG Jianchao, PANG Shuo, WANG Ruize, LIU Dongyu, MA Zihan, ZHANG Yuling, TAN Yuyang. Deep sea-lithosphere fluid exchange in subduction zones and its effects: A critical review[J]. Earth Science Frontiers, 2022, 29(5): 246-254.
Fig.1 Hydration fault channels in the uplift area at the trench front detected by various geophysical methods. a,b,d modified after [41]; c modified after [33]; e modified after [47].
[1] | STERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38. |
[2] |
ISACKS B, OLIVER J, SYKES L R, Seismology and the new global tectonics[J]. Journal of Geophysical Research, 1968, 73(18), 5855-5899.
DOI URL |
[3] |
TATSUMI Y. The subduction factory: how it operates in the evolving Earth[J]. GSA Today, 2005, 15(7): 4-10.
DOI URL |
[4] | PEACOCK S M. Thermal and petrologic structure of subduction zones[M]// Subduction Top to Bottom. Washington D C: American Geophysical Union, 2013: 119-133. |
[5] | BEBOUT G E, SCHOLL D W, STERN R J, et al. Twenty years of subduction zone science: subduction top to bottom 2 (ST2B-2)[J]. GSA Today, 2018: 4-10. |
[6] |
FACCENDA M. Water in the slab: a trilogy[J]. Tectonophysics, 2014, 614: 1-30.
DOI URL |
[7] |
ZHENG Y F, CHEN R X, XU Z, et al. The transport of water in subduction zones[J]. Science China Earth Sciences, 2016, 59(4): 651-682.
DOI URL |
[8] |
GAO X, WANG K. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature, 2017, 543(7645): 416-419.
DOI URL |
[9] |
CAPPA F, SCUDERI M M, COLLETTINI C, et al. Stabilization of fault slip by fluid injection in the laboratory and in situ[J]. Science Advances, 2019, 5(3): eaau4065.
DOI URL |
[10] |
COOPER G F, MACPHERSON C G, BLUNDY J D, et al. Variable water input controls evolution of the Lesser Antilles volcanic arc[J]. Nature, 2020, 582(7813): 525-529.
DOI URL |
[11] | HACKER B R, PEACOCK S M, ABERS G A, et al. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 11-1-11-16. |
[12] | VAN KEKEN P E, HACKER B R, SYRACUSE E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide[J]. Journal of Geophysical Research Atmospheres, 2011, 116(B1): B01401. |
[13] |
WILSON C R, SPIEGELMAN M, VAN KEKEN P E, et al. Fluid flow in subduction zones: the role of solid rheology and compaction pressure[J]. Earth and Planetary Science Letters, 2014, 401: 261-274.
DOI URL |
[14] |
PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394.
DOI URL |
[15] | VAN AVENDONK H J A, HOLBROOK W S, LIZARRALDE D, et al. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): 1-23. |
[16] |
CONTRERAS-REYES E, GREVÜEMEYER I, WATTS A B, et al. Deep seismic structure of the Tonga subduction zone: implications for mantle hydration, tectonic erosion, and arc magmatism[J]. Journal of Geophysical Research Atmospheres, 2011, 116(B10): B10103.
DOI URL |
[17] |
ALT J C, SCHWARZENBACH E M, FRÜH-GREEN G L, et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism[J]. Lithos, 2013, 178: 40-54.
DOI URL |
[18] |
GUILLOT S, SCHWARTZ S, REYNARD B, et al. Tectonic significance of serpentinites[J]. Tectonophysics, 2015, 646: 1-19.
DOI URL |
[19] |
WIENS D A, MCGUIRE J J, SHORE P J. Evidence for transformational faulting from a deep double seismic zone in Tonga[J]. Nature, 1993, 364(6440): 790-793.
DOI URL |
[20] |
BEKINS B A, MCCAFFREY A M, DREISS S J. Episodic and constant flow models for the origin of low-chloride waters in a modern accretionary complex[J]. Water Resources Research, 1995, 31(12): 3205-3215.
DOI URL |
[21] | JARRARD R D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(5): 8905. |
[22] | SAHLING H, MASSON D G, RANERO C R, et al. Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05S05. |
[23] |
ZHENG Y F, HERMANN J. Geochemistry of continental subduction-zone fluids[J]. Earth, Planets and Space, 2014, 66(1): 93.
DOI URL |
[24] |
HASEGAWA A, NAKAJIMA J. Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes[J]. Progress in Earth and Planetary Science, 2017, 4: 12
DOI URL |
[25] |
ULMER P, TROMMSDORFF V. Serpentine stability to mantle depths and subduction-related magmatism[J]. Science, 1995, 268(5212): 858-861.
DOI URL |
[26] |
STAUDIGEL H, DAVIES G R, HART S R, et al. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418[J]. Earth and Planetary Science Letters, 1995, 130(1/2/3/4): 169-185.
DOI URL |
[27] |
DIXON J E, LEIST L, LANGMUIR C, et al. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt[J]. Nature, 2002, 420(6914): 385-389.
DOI URL |
[28] |
SMITH D. Mantle spread across the sea floor[J]. Nature Geoscience, 2013, 6(4): 247-248.
DOI URL |
[29] |
BONATTI E, HONNOREZ J. Sections of the earth's crust in the equatorial Atlantic[J]. Journal of Geophysical Research Atmospheres, 1976, 81(23): 4104-4116.
DOI URL |
[30] |
GREGG P M, LIN J, BEHN M D, et al. Spreading rate dependence of gravity anomalies along oceanic transform faults[J]. Nature, 2007, 448(7150): 183-187.
DOI URL |
[31] | SENO T, YAMANAKA Y. Double seismic zones, compressional deep trench-outer rise events, and superplumes[M]// Subduction Top to Bottom. Washington D C: American Geophysical Union, 2013: 347-355. |
[32] |
RANERO C R, SALLARES V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench[J]. Geology, 2004, 32(7): 549-552.
DOI URL |
[33] |
RANERO C R, PHIPPS MORGAN J, MCINTOSH K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature, 2003, 425(6956): 367-373.
DOI URL |
[34] |
FACCENDA M, GERYA T V, BURLINI L. Deep slab hydration induced by bending-related variations in tectonic pressure[J]. Nature Geoscience, 2009, 2(11): 790-793.
DOI URL |
[35] |
KOBAYASHI K, NAKANISHI M, TAMAKI K, et al. Outer slope faulting associated with the western Kuril and Japan trenches[J]. Geophysical Journal International, 1998, 134(2): 356-372.
DOI URL |
[36] | BILLEN M I, GURNIS M. Constraints on subducting plate strength within the Kermadec trench[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B5): B05407. |
[37] |
KIRBY S. Interslab earthquakes and phase changes in subducting lithosphere[J]. Reviews of Geophysics, 1995, 33(S1): 287-297.
DOI URL |
[38] |
GREVEMEYER I, RANERO C R, FLUEH E R, et al. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 528-542.
DOI URL |
[39] |
HUTCHINSON J, KAO H, SPENCE G, et al. Seismic characteristics of the Nootka fault zone: results from the seafloor earthquake array Japan-Canada cascadia experiment (SeaJade)[J]. Bulletin of the Seismological Society of America, 2019, 109(6): 2252-2276.
DOI URL |
[40] | CONTRERAS-REYES E, OSSES A. Lithospheric flexure modelling seaward of the Chile trench: implications for oceanic plate weakening in the Trench Outer Rise region[J]. Geophysical Journal International, 2010, 182(1): 97-112. |
[41] |
SHILLINGTON D J, BÉCEL A, NEDIMOVI M R, et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska[J]. Nature Geoscience, 2015, 8(12): 961-964.
DOI URL |
[42] |
CAI C, WIENS D A, SHEN W, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data[J]. Nature, 2018, 563(7731): 389-392.
DOI URL |
[43] |
WAN K Y, LIN J, XIA S H, et al. Deep seismic structure across the southernmost Mariana trench: implications for arc rifting and plate hydration[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(5): 4710-4727.
DOI URL |
[44] |
GREVEMEYER I, RANERO C R, IVANDIC M. Structure of oceanic crust and serpentinization at subduction trenches[J]. Geosphere, 2018, 14(2): 395-418.
DOI URL |
[45] |
WORZEWSKI T, JEGEN M, KOPP H, et al. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone[J]. Nature Geoscience, 2011, 4(2): 108-111.
DOI URL |
[46] |
KEY K, CONSTABLE S, MATSUNO T, et al. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench[J]. Earth and Planetary Science Letters, 2012, 351/352: 45-53.
DOI URL |
[47] |
NAIF S, KEY K, CONSTABLE S, et al. Water-rich bending faults at the Middle America Trench[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2582-2597.
DOI URL |
[48] | RANERO C R, VILLASEÑOR A, PHIPPS MORGAN J, et al. Relationship between bend-faulting at trenches and intermediate-depth seismicity[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): Q12002. |
[49] | FUJIE G, KODAIRA S, SATO T, et al. Along-trench variation in water contents within the incoming Pacific plate offshore northeastern Japan[C]. Chicago: AGU Fall Meeting Abstracts, 2012: T11A-2525. |
[50] |
NALIBOFF J B, BILLEN M I, GERYA T, et al. Dynamics of outer-rise faulting in oceanic-continental subduction systems[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2310-2327.
DOI URL |
[51] | ZHENG Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4): 1223-54. |
[52] |
REYNARD B. Serpentine in active subduction zones[J]. Lithos, 2013, 178: 171-185.
DOI URL |
[53] |
RALEIGH C B, PATERSON M S. Experimental deformation of serpentinite and its tectonic implications[J]. Journal of Geophysical Research, 1965, 70(16): 3965-3985.
DOI URL |
[54] | HASEGAWA A. Seismicity, Subduction Zone[M]// GUPTAH K. Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer Netherlands, 2011: 1305-1315. |
[55] |
SCAMBELLURI M, FIEBIG J, MALASPINA N, et al. Serpentinite subduction: implications for fluid processes and trace-element recycling[J]. International Geology Review, 2004, 46(7): 595-613.
DOI URL |
[56] | 吴凯, 袁洪林, 吕楠, 等. 蛇纹石化和俯冲带蛇纹岩变质脱水过程中流体活动性元素的行为[J]. 岩石学报, 2020, 36(1): 141-153. |
[57] |
POLI S, SCHMIDT M W. Petrology of subducted slabs[J]. Annual Review of Earth and Planetary Sciences, 2002, 30: 207-235.
DOI URL |
[58] |
GREEN H W, HOUSTON H. The mechanics of deep earthquakes[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 169-213.
DOI URL |
[59] |
DOBSON D P, MEREDITH P G, BOON S A. Simulation of subduction zone seismicity by dehydration of serpentine[J]. Science, 2002, 298(5597): 1407-10.
DOI URL |
[60] |
SAWAI M, KATAYAMA I, HAMADA A, et al. Dehydration kinetics of antigorite using in situ high-temperature infrared microspectroscopy[J]. Physics and Chemistry of Minerals, 2013, 40(4): 319-330.
DOI URL |
[61] |
CHERNAK L J, HIRTH G. Deformation of antigorite serpentinite at high temperature and pressure[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 23-33.
DOI URL |
[62] | AMIGUET E, REYNARD B, CARACAS R, et al. Creep of phyllosilicates at the onset of plate tectonics[J]. Earth and Planetary Science Letters, 2012, 345/346/347/348: 142-150. |
[63] |
BARCHECK C G, WIENS D A, VAN KEKEN P E, et al. The relationship of intermediate- and deep-focus seismicity to the hydration and dehydration of subducting slabs[J]. Earth and Planetary Science Letters, 2012, 349/350: 153-160.
DOI URL |
[64] |
MCKENZIE D. The generation and compaction of partially molten rock[J]. Journal of Petrology, 1984, 25(3): 713-765.
DOI URL |
[65] |
JUNG H, GREEN II H W, DOBRZHINETSKAYA L F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change[J]. Nature, 2004, 428(6982): 545-549.
DOI URL |
[66] |
PROCTOR B, HIRTH G. Role of pore fluid pressure on transient strength changes and fabric development during serpentine dehydration at mantle conditions: implications for subduction-zone seismicity[J]. Earth and Planetary Science Letters, 2015, 421: 1-12.
DOI URL |
[67] |
HEALY D, REDDY S M, TIMMS N E, et al. Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs[J]. Earth and Planetary Science Letters, 2009, 283(1/2/3/4): 75-86.
DOI URL |
[68] |
DAVIES J H. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism[J]. Nature, 1999, 398(6723): 142-145.
DOI URL |
[69] |
OKAMOTO A, SHIMIZU H, FUKUDA J I, et al. Reaction-induced grain boundary cracking and anisotropic fluid flow during prograde devolatilization reactions within subduction zones[J]. Contributions to Mineralogy and Petrology, 2017, 172(9): 1-23.
DOI URL |
[70] |
KONRAD-SCHMOLKE M, O'BRIEN P J, ZACK T. Fluid migration above a subducted slab-constraints on amount, pathways and major element mobility from partially overprinted eclogite-facies rocks (sesia zone, western Alps)[J]. Journal of Petrology, 2011, 52(3): 457-486.
DOI URL |
[71] |
ZHENG J P, XIONG Q, ZHAO Y, et al. Subduction-zone peridotites and their records of crust-mantle interaction[J]. Science China Earth Sciences, 2019, 62(7): 1033-1052.
DOI URL |
[72] |
FULTON P M, BRODSKY E E. In situ observations of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone[J]. Geology, 2016, 44(10): 851-854.
DOI URL |
[73] |
TUNG S, MASTERLARK T, DOVOVAN T. Transient poroelastic stress coupling between the 2015 M7.8 Gorkha, Nepal earthquake and its M7.3 aftershock[J]. Tectonophysics, 2018, 733: 119-131.
DOI URL |
[74] |
BEINLICH A, JOHN T, VRIJMOED J C, et al. Instantaneous rock transformations in the deep crust driven by reactive fluid flow[J]. Nature Geoscience. 2020, 13(4): 307-311.
DOI URL |
[75] | KISER E, ISHII M, LANGMUIR C H, et al. Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases[J]. Journal of Geophysical Research Atmospheres, 2011, 116(B6): B06310. |
[76] |
HESSE M A, SCHIEMENZ A R, LIANG Y, et al. Compaction-dissolution waves in an upwelling mantle column[J]. Geophysical Journal International, 2011, 187(3): 1057-1075.
DOI URL |
[77] | LIANG Y, SCHIEMENZ A, HESSE M A, et al. Waves, channels, and the preservation of chemical heterogeneities during melt migration in the mantle[J]. Geophysical Research Letters, 2011, 38(20): L20308. |
[78] |
WASSMANN S, STÖCKHERT B. Rheology of the plate interface-Dissolution precipitation creep in high pressure metamorphic rocks[J]. Tectonophysics, 2013, 608: 1-29.
DOI URL |
[79] |
BÜRGMANN R. The geophysics, geology and mechanics of slow fault slip[J]. Earth and Planetary Science Letters, 2018, 495: 112-134.
DOI URL |
[80] | FASOLA S L, BRUDZINSKI M R, HOLTKAMP S G, et al. Earthquake swarms and slow slip on a sliver fault in the Mexican subduction zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15): 7198-7206. |
[81] |
SAFFER D M, TOBIN H J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 157-186.
DOI URL |
[82] |
DESCHAMPS F, GODARD M, GUILLOT S, et al. Geochemistry of subduction zone serpentinites: a review[J]. Lithos, 2013, 178: 96-127.
DOI URL |
[83] |
HUGHES K L H, MASTERLARK T, MOONEY W D. Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra-Andaman earthquake[J]. Earth and Planetary Science Letters, 2010, 293(3/4): 289-299.
DOI URL |
[1] | MENG Fancong, BAI Shengjin, Alexander B. MAKEYEV, Ksenia V. KULIKOVA. Genetic mineralogy of jadeitite from Polar Urals, Russia [J]. Earth Science Frontiers, 2020, 27(5): 88-98. |
[2] | LI Sanzhong,SUO Yanhui,LIU Bo,LIU Yongjiang,LI Xiyao,ZHAO Shujuan,ZHU Junjiang,WANG Guangzeng,ZHANG Guowei. Microplate tectonics theory: insights from microblocks in the global oceans and continental margins [J]. Earth Science Frontiers, 2018, 25(5): 323-356. |
[3] | . Seamounts in West Junggar ocean and its geological effects on the subduction zone. [J]. Earth Science Frontiers, 2015, 22(6): 233-240. |
[4] | . A review of the mechanism of deep earthquakes:Current situation and problems. [J]. Earth Science Frontiers, 2012, 19(4): 15-29. |
[5] | MA Zong-Jin, DU Pin-Ren, GAO Xiang-Lin, JI Wen-Hua, LI Xiao-Li. Analysis of earthquake distributions in East Asia and in the world. [J]. Earth Science Frontiers, 2010, 17(5): 215-233. |
[6] | BENG Gui-Dong, FU Xiao-Fei, HU Cai-Zhi. Research status of polygonal fault systems. [J]. Earth Science Frontiers, 2010, 17(4): 50-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||