Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (5): 88-98.DOI: 10.13745/j.esf.sf.2020.5.39
Previous Articles Next Articles
MENG Fancong1(), BAI Shengjin1,2, Alexander B. MAKEYEV3, Ksenia V. KULIKOVA4
Received:
2020-04-15
Revised:
2020-05-28
Online:
2020-09-25
Published:
2020-09-25
CLC Number:
MENG Fancong, BAI Shengjin, Alexander B. MAKEYEV, Ksenia V. KULIKOVA. Genetic mineralogy of jadeitite from Polar Urals, Russia[J]. Earth Science Frontiers, 2020, 27(5): 88-98.
[1] | HARLOW G E, SORENSEN S S. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections[J]. International Geology Review, 2005, 47:113-146. |
[2] | 施光海, 崔文元. 不同产地硬玉岩的共性与个性[J]. 地学前缘, 2000, 7(1):42. |
[3] | 李旭平, 张立飞. 蛇纹岩体中的硬玉岩与异剥钙榴岩[J]. 岩石学报, 2004, 20(6):1477-1484. |
[4] |
HARLOW G E, TSUJIMORI T, SORENSEN S S. Jadeitites and plate tectonics[J]. Annual Reviews of Earth and Planetary Sciences, 2015, 43:105-138.
DOI URL |
[5] |
TSUJIMORI T, HARLOW G E. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: a review[J]. European Journal of Mineralogy, 2012, 24:371-390.
DOI URL |
[6] |
TSUJIMORI T, HARLOW G E. Jadeitite (jadeite jade) from Japan: history, characteristics, and perspectives[J]. Journal of Mineralogical and Petrological Sciences, 2017, 112:184-196.
DOI URL |
[7] | 施光海, 崔文元, 王长秋, 等. 缅甸帕敢地区硬玉岩中流体包裹体[J]. 科学通报, 2000, 45(13):1433-1437. |
[8] | 施光海, 崔文元, 刘晶, 等. 缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究[J]. 岩石学报, 2001, 17(3):483-490. |
[9] |
SHI G H, STOCKHERT B, CUI W Y. Kosmochlor and chromoan jadeite aggregates from Myanmar area[J]. Mineralogical Magazine, 2005, 69:1059-1075.
DOI URL |
[10] |
SHI G H, TROPPER P, CUI W Y, et al. Methane (CH4)-bearing fluid inclusions in Myanmar jadeites[J]. Geochemical Journal, 2005, 39:503-516.
DOI URL |
[11] | SHI G H, CUI W Y, CAO S M, et al. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite[J]. Journal of the Geological Society, London, 2008, 165:221-234. |
[12] | SHI G H, JIANG N, LIU Y. Zircon Hf isotope signature of the depleted mantle in the Myanmar jadeitite: implications for Mesozoic intra-oceanic subduction between the Eastern Indian Plate and the Burmese Platelet[J]. Lithos, 2009, 112:342-350. |
[13] |
HARLOW G E. Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala[J]. Journal of Metamorphic Geology, 1994, 12:49-68.
DOI URL |
[14] |
JOHNSON C A, HARLOW G H. Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids within a subduction zone[J]. Geology, 1999, 27(7):629-632.
DOI URL |
[15] |
HARLOW G E, HEMMING S R, LALLEMANT A, et al. Two high-pressure-low-temperature serpentinite-matrix mélange belt, Motagua fault zone, Guatemala: a record of Aptian and Maastrichtian collisions[J]. Geology, 2004, 32(1):17-20.
DOI URL |
[16] |
COLEMAN R G. Jadeite deposit of the Clear Creek area, New Idridistrict, San Benito County, California[J]. Journal of Petrology, 1961, 2(2):209-247.
DOI URL |
[17] |
TSUJIMORI T, LIOU J G, WOODEN J, et al. U-Pb dating of large zircon in low-temperature jadeitite from the Osayama serpentinite melange, Southwest Japan: insights into the timing of Serpentinization[J]. International Geology Review, 2005, 47(11):1048-1057.
DOI URL |
[18] |
MORISHIATA T. Occurrence and chemical composition of barian felspars in a jadeitite from the Itoogawa-Ohmi district in the Renge high-P/T-type metamorphic belt, Japan[J]. Mineralogical Magazine, 2005, 69:39-52.
DOI URL |
[19] | MORISHITA T, ARAI S, ISHIDA Y. Trace element compositions of jadeite (+omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: implications for fliud processes in subduction zones[J]. Island Arc, 2007, 16:40-56. |
[20] | MORKOVKINA V F. Jadeites in the hyperbasites of the Polar Urals[J]. Izvectiya Akademia Nauk SSSR(seriya geologicacheskaya), 1960(4):103-108(in Russian). |
[21] |
DOBRETSOV N L, PONOMAREVA L G. Comparative characteristics of jadeite and associated rocks from Polar Ural and Prebalkhash region[J]. International Geology Review, 1968, 10:221-242.
DOI URL |
[22] |
OKAY. Jadeite±K-feldspar rocks and jadeitites from northwest Turkey[J]. Mineralogical Magazine, 1997, 61:835-844.
DOI URL |
[23] | COMPAGNONI R, ROLFO F, MANAVELLA F, et al. Jadeitite in the Monviso meta-ophiolite, Piemonte Zone, Italian western Alps[J]. Periodico di Mineralogia, 2007, 76(2/3):79-89. |
[24] | DOBRETSOV N L. Jadeite and the problem of ophiolite[J]. Geology and Geophysics, 1984, 12:80-88(in Russian). |
[25] | 欧阳秋眉, 曲懿华. 俄罗斯西萨彦岭翡翠矿床特征[J]. 宝石和宝石学杂志, 1999, 1(2):5-11. |
[26] | KOVALENKO I V, SVIRIDENKO A F. Tectonic conditions for the formation of the jadeite fields of the Balkhash region and the Polar Urals[J]. Vestnik Moskovskogo Universitesta, Geology, 1981, 36:52-59(in Russian). |
[27] | KAZAK A P, DOBRETSOV N L, MOLDAVANTSEV Y E. Blueschist, jadeitite, vezuvianite and nephrite from ultramafic massif Rai-Iz[J]. Geology and Geophysics, 1976, (2):60-66(in Russian). |
[28] | FISHMAN A M. Gems in the north Ural and Timan[M]. Geoprint, Syktyvkar, 2006: 1-88(in Russian). |
[29] | OBERHANSLI R, BOUSQUET R, MOINZADEH H, et al. The field of stability of blue jadeite: a new occurrence of jadeitite at Sorkhan, Iran, as a case study[J]. The Canadian Mineralogist, 2007, 45:1501-1509. |
[30] |
CARIA-CASCO A, VEGA A R, PARRAGA J C, et al. A New jadeitite jade locality (Sierra del Convento, Cuba): first report and some petrological and archeological implications[J]. Contributions to Mineralogy and Petrology, 2009, 158:1-16.
DOI URL |
[31] |
SCHERTL H P, MARESCH W V, STANEK K P, et al. New occurrences of jadeitite, jadeite quartzite and jadeite-lawsonite quartzite in the Dominican Republic, Hispaniola: petrological and geochronological overview[J]. European Journal of Mineralogy, 2012, 24(2):199-216.
DOI URL |
[32] |
SORENSEN S, HARLOW G E, RUMBLE D III. The origion of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence[J]. American Mineralogist, 2006, 91:979-996.
DOI URL |
[33] | SAVELIEVA G N, NESBITT R W. A synjournal of the stratigraphic and tectonic setting of the Uralian ophiolites[J]. Journal of the Geological Society, London, 1996, 153:525-537. |
[34] | MENG F C, FAN Y Z, SHMELEV V R, et al. Constraints of eclogites from the Marun-Keu metamorphic complex on the tectonic history of the Polar Urals (Russia)[J]. Journal of Asian Earth Sciences, 2020, 187:104087. |
[35] | EDWARDS R L, WASSERBURG G J. The age and emplacement of obducted oceanic crust in the Urals from Sm-Nd and Rb-Sr systematics[J]. Earth and Planetary Science Letters, 1985, 72:389-404. |
[36] | UDOVKINA N G. The eclogites of the Polar Urals[M]. Moscow: Nauka Press, 1971: 1-191(in Russian). |
[37] | UDOVKINA N G. Eclogites of the SSSR[M]. Moscow: Nauka Press, 1985: 1-285(in Russian). |
[38] |
DOBRETSOV N L. Blueschists and eclogites: a possible plate tectonic mechanism for their emplacement from the upper mantle[J]. Tectophysics, 1991, 186:253-268.
DOI URL |
[39] | MOLINA J F, AUSTRHEIM H, GLODNY J, et al. The eclogite of the Marun-Keu complex, Polar Urals (Russia): fluid control on reaction kinetics and metasomatism during high P metamorphism[J]. Lithos, 2002, 61:55-78. |
[40] |
MOLINA J F, POLI S, AUSTRHEIM H, et al. Eclogite-facies vein systems in the Marun-Keu complex (Polar Urals, Russia): textural, chemical and thermal constraints for patterns of fliud in the lower crust[J]. Contributions to Mineralogy and Petrology, 2004, 147:484-504.
DOI URL |
[41] |
GLODNY J, AUSTRHEIM H, MOLINA J F, et al. Rb/Sr record of fluid-rock interaction in eclogites: the Marun-Keu complex, Polar Urals, Russia[J]. Geochimica et Cosmochimica Acta, 2003, 67(22):4353-4371.
DOI URL |
[42] | SHATSKY V S, SIMONOV V A, JAGOUTZ E, et al. New data on the age of eclogites from the Polar Urals[J]. Doklady Earth Sciences, 2000, 371A:534-538. |
[43] |
GLODNY J, PEASE V L, MONTERO P, et al. Protolith ages of eclogites, Marun-keu complex, Polar Urals, Russia: implications for the pre-and early Uralian evolution of the northeastern European continental margin[J]. Geological Society, London, Memoirs, 2004, 30:87-105.
DOI URL |
[44] | MAKEYEV A B. Mineralogy of alpine-type ultramafics in the Urals[M]. St. Petersburg: Nauka, 1992: 1-195(in Russian). |
[45] | GURSKAYA L I, SMELOVA L V. PGE mineral formation and the structure of the Syum-Keu Massif (Polar Urals)[J]. Geology of Ore Deposits, 2003, 45:309-325 (in Russian). |
[46] | BRYANCHANINOVA N I, DUBININA E O, MAKEYEV A B. Hydrogen isotope geochemistry of chromite-bearing ultramafic rocks in the Urals[J]. Doklady Earth Sciences, 2004, 395(3):392-396(in Russian). |
[47] | ANDREICHEV V L. Isotopic geochronology of ultramafic-mafic and granitic rocks in the eastern slope, Polar Ural, Russia[M]. Syktyvkar: Geoprint, 2004: 1-43(in Russian). |
[48] | 孟繁聪, МАКЕЕВ А Б, 杨经绥, 等. 俄罗斯极地乌拉尔Сыум-Кеу超基性岩体中的硬玉岩[J]. 岩石学报, 2007, 23(11):2766-2774. |
[49] | MAKEYEV A B, BRAYNCHANINOVA N I. Topomineralogy of ultramafics in the Polar Urals[M]. St. Petersburg: Nauka, 1999: 1-122 (in Russian). |
[50] |
MENG F C, YANG H J, MAKEYEV A B, et al. Jadeitite in the Syum-Keu ultramafic complex from Polar Urals, Russia: insights into fluid activity in subduction zones[J]. European Journal of Mineralogy, 2016, 28:1079-1097.
DOI URL |
[51] |
MENG F C, MAKEYEV A B, YANG J S. Zircon U-Pb dating of jadeitite from the Syum-Keu ultramafic complex, Polar Urals, Russia: constraints for subduction initiation[J]. Journal of Asian Earth Science, 2011, 42:596-606.
DOI URL |
[52] | MCDONOUGH W F, FREY F A. Rare earth elements in Upper mantle rocks[M]// LIPIN B R, MCKAY G A. Geochemistry and mineralogy of rare earth elements. Reviews in mineralogy, 1989, 21:99-139. |
[53] | ROLLINSON H R. Using geochemical data: evaluation, presentation, interpretation[M]. London: Longman Group UK, 1993: 1-343. |
[54] | WILSON M. Igneous petrogenesis[M]. London: Chapman & Hall, 1989: 153-190. |
[55] |
ZINDLER A, HART S R. Chemical geodynamics[J]. Annual Reviews of Earth and Planetary Sciences, 1986, 14:493-571.
DOI URL |
[56] | DEPAOLO D J. Neodymium isotope geochemistry: an introduction[M]. Berlin, Heidelberg: Springer-Verlag, 1988: 1-181. |
[57] | ANDREICHEV V L, RONKIN Y L, SEROV P A, et al. New data on the Precambrian age of Marunkeu eclogites (Polar Urals)[J]. Doklady Earth Sciences, 2007, 413A:347-350. |
[58] |
YUI T F, MAKI K, USUKI T, et al. Genesis of Guatemala jadeitite and related fluid characteristics: insight from zircon[J]. Chemical Geology, 2010, 270:45-55.
DOI URL |
[59] |
TAKAHASHI N, TSUJIMORI T, CHANG Q, et al. In-situ lithium isotope geochemistry for a veined jadeitite from the New Idria serpentinite body,California: constraints on slab-derived fluid and fluid-rock interaction[J]. Lithos, 2018: 318/319:376-385.
DOI URL |
[60] |
KAWAMOTO T, HERTWIG A, SCHERTL H P, et al. Fluid inclusions in jadeitite and jadeite-rich rock from serpentinite mélanges in northern Hispaniola: trapped ambient fluids in a cold subduction channel[J]. Lithos, 2018, 308/309:227-241.
DOI URL |
[61] | CHEN A X, LI Y H, CHEN Y, et al. Silicon isotope composition of subduction zone fluids as recorded by jadeitites from Myanmar[J]. Contributions to Mineralogy and Petrology, 2020, 175:6. |
[62] | CHEN Y, HUANG F, SHI G H, et al. Magnesium isotope composition of subduction zone fluids as constrained by jadeitites from Myanmar[J]. Journal of Geophysical Research: Solid Earth, 2018, 123:7566-7585. |
[63] | SIMONS K K, HARLOW G E, SORENSEN S S, et al. Lithium isotopes in Guatemala and Franciscan HP-LT Rocks: insights into the role of sediment-derived fluids during subduction[J]. Geochimica et Cosmochimica Acta, 2010, 74:3621-3641. |
[64] |
PEACOCK S M. Fluid processes in subduction zone[J]. Science, 1990, 248:329-336.
DOI URL |
[65] |
SCAMBELLURI M, PHILIPPOT. Deep fluids in subduction zones[J]. Lithos, 2001, 55:213-227.
DOI URL |
[66] |
MANNING C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223:1-16.
DOI URL |
[67] | 高俊. 古俯冲带的流体作用综述[J]. 地质科技情报, 1997, 16(1):17-22. |
[68] |
GAO J, KLEMD R. Primary fluids entrapped at blueschist to eclogite transition: evidence from the Tianshan meta-subduction complex in northwestern China[J]. Contributions to Mineralogy and Petrology, 2001, 142:1-14.
DOI URL |
[69] | GAO J, JOHN T, KLEMD A, et al. Mobilization of Ti-Nb-Ta during subduction: evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China[J]. Geochimica et Cosmoschimica Acta, 2007, 71:4974-4996. |
[70] |
JOHN T, GAO J, KLEMD A, et al. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: constraints from an eclogite-facies transport vein in blueschist (Tianshan, China)[J]. Lithos, 2008, 103:1-24.
DOI URL |
[71] |
SHI G H, CUI W Y, TROPPER P, et al. The petrology of a complex sodic and sodic-calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma[J]. Contributions to Mineralogy and Petrology, 2003, 145:355-376.
DOI URL |
[72] | LEI W, SHI D, SANTOSH M, et al. Trace element features of hydrothermal and inherited igneous zircon grains in mantle wedge environment: a case study from the Myanmar jadeitite[J]. Lithos, 2016, 266/267:16-27. |
[73] |
FU B, VALLEY J W, KITA N T, et al. Multiple origins of zircons in jadeitite[J]. Contributions to Mineralogy and Petrology, 2010, 159:769-780.
DOI URL |
[74] |
FLORES K E, MARTENS U C, HARLOW G E, et al. Jadeitite formed during subduction: in situ zircon geochronology constraints from two different tectonic events within the Guatemala Suture Zone[J]. Earth and Planetary Science Letters, 2013, 371/372:67-81.
DOI URL |
[75] |
MORI Y, ORIHASHI Y, MIYAMOTO T, et al. Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks, Kyushu, Japan[J]. Journal of Metamorphic Geology, 2011, 29:673-684.
DOI URL |
[76] |
RUBATTO D. Zircon: the metamorphic mineral[J]. Review in Mineralogy and Geochemistry, 2017, 83:261-295.
DOI URL |
[77] | KONOVALOV A L, SERGEEV S A. Towards the age of zircons from jadeitites of Syumkeu ultramafic massif in the Main Uralian Fault zone (Polar Urals)[J]. Regional Geology and Metallogeny, 2015, 64:41-47 (in Russian). |
[78] |
QIU Z L, WU F Y, YANG S F, et al. Age and genesis of the Myanmar jadeite: constraints from U-Pb ages and Hf isotopes of zircon inclusions[J]. Chinese Science Bulletin, 2009, 54:658-668.
DOI URL |
[79] | YUI T F, FUKUYAMA M, IIZUKA Y, et al. Is Myanmar jadeitite of Jurassic age? A result from incompletely recrystallized inherited zircon[J]. Lithos, 2013, 160/161:268-282. |
[80] |
HERTWIG A, MCCLELLAND W C, KITAJIMA K. et al. Inherited igneous zircons in jadeitite predate high-pressure metamorphism and jadeitite formation in the Jagua Clara Serpentinite Mélange of the Rio San Juan Complex (Dominican Republic)[J]. Contributions to Mineralogy and Petrology, 2016, 71:1-26.
DOI URL |
[81] |
SCHERTL H P, HERTWIG A, MARESCH W V. Cathodoluminescence microscopy of zircon in HP-and UHP metamorphic rocks: a fundamental technique for assessing the problem of inclusions versus seudo-inclusions[J]. Journal of Earth Science, 2019, 30:1095-1107.
DOI URL |
[82] |
DODSON M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 40:259-274.
DOI URL |
[83] |
BRUECKNER H K, AVE LALLEMANT H G, SISSON V B, et al. Metamorphic reworking of a high pressure-low temperature mélange along the Motagua fault, Guatemala: a record of Necomian and Maastrichtian transpressional tectonics[J]. Earth and Planetary Science Letters, 2009, 284:228-235.
DOI URL |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[3] | WU Jiawang, YAO Shengnan, Amalia FILIPPIDI, LIU Zhifei, Gert J. DE LANGE. Terrigenous detrital inputs and hydroclimate changes in the Holocene eastern Mediterranean Sea: A basin-wide geochemical view [J]. Earth Science Frontiers, 2022, 29(4): 156-167. |
[4] | DONG Hongkun, WAN Shiming, LIU Chang, ZHAO Debo, ZENG Zhigang, LI Anchun. Mineralogical and geochemical constraints on the origin of rhythmic layering of Late Miocene reddish-brown and greenish-gray sediments in the northern South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 42-54. |
[5] | WANG Guangcai, WANG Yanxin, LIU Fei, GUO Huaming. Advances and trends in hydrogeochemical studies: Insights from bibliometric analysis [J]. Earth Science Frontiers, 2022, 29(3): 25-36. |
[6] | ZHOU Changsong, ZOU Shengzhang, FENG Qiyan, ZHU Danni, LI Jun, WANG Jia, XIE Hao, DENG Rixin. Progress in hydrogeochemical study of Karst Critical Zone: A critical review [J]. Earth Science Frontiers, 2022, 29(3): 37-50. |
[7] | ZHANG Liang, ZHANG Heng, GONG Chengqiang, DING Xiaozhong, ZHANG Chuanheng, LIU Yong, GAO Linzhi, LIU Yanxue. Geological characteristics and tectonic background of the Mesoproterozoic ophiolite mélange in central and southern Yunnan [J]. Earth Science Frontiers, 2022, 29(2): 180-197. |
[8] | KOU Caihua, LIU Yanxue, LI Jiang, LI Tingdong, DING Xiaozhong, LIU Yong, JIN Shengkai. Geochronology and geochemistry of 830 Ma gabbro in the western segment of the Jiangnan Orogen and constraint on its petrogenesis [J]. Earth Science Frontiers, 2022, 29(2): 218-233. |
[9] | ZHU Xiaohui, CHEN Danling, FENG Yimin, REN Yunfei, ZHANG Xin. Granitic magmatism and tectonic evolution in the Qilian Mountain Range in NW China: A review [J]. Earth Science Frontiers, 2022, 29(2): 241-260. |
[10] | WAN Yusheng, DONG Chunyan, LI Pengchuan, MIAO Peisen, WANG Huichu, LI Jianrong. Formation age of the Gaofan Group in Wutai area: New evidence from SHRIMP U-Pb zircon dating [J]. Earth Science Frontiers, 2022, 29(2): 45-55. |
[11] | NIU Xinsheng, HUANG Hua, ZHENG Mianping. Geochemical characteristics and distribution patterns of subsurface brines in the Qianjiang Depression, Jianghan Basin [J]. Earth Science Frontiers, 2021, 28(6): 56-65. |
[12] | SHI Kangxing, WANG Changming, DU Bin, CHEN Qi, ZHU Jiaxuan, RAO Shicheng, DUAN Hongyu. Ca. 1.90-1.80 Ga continent-continent collision in southeastern North China Craton: Evidence from the granite-greenstone belt in the Jiaobei Terrane [J]. Earth Science Frontiers, 2021, 28(6): 295-317. |
[13] | LIU Yanjun, MA Teng, DU Yao, LIU Rui. Compaction of clay aquitard: Principle, technology and hydrogeological significanc [J]. Earth Science Frontiers, 2021, 28(5): 59-67. |
[14] | HUANG Haiyong, XU Yang, YIN Xuwei, YANG Kunguang, LIU Yu. Geochronology, petrogenesis and tectonic implications of the Qiaodian granite porphyry from the western Dabie Orogenic Belt, Central China [J]. Earth Science Frontiers, 2021, 28(5): 380-412. |
[15] | ZHANG Jibiao, DING Xiaozhong, LIU Yanxue. Petrogenesis and tectonic significance of OIB- and arc-type volcanic rocks in the western Yangtze Block: From intracontinental rifting to subduction [J]. Earth Science Frontiers, 2021, 28(4): 250-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||