Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 242-261.DOI: 10.13745/j.esf.sf.2023.1.12
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 7) • Previous Articles Next Articles
WANG Genhou1(), LI Dian2, LIANG Xiao1
Received:
2023-01-07
Revised:
2023-01-10
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
WANG Genhou, LI Dian, LIANG Xiao. Structure, composition and evolution of the Indosinian South Qiantang accretionary complex[J]. Earth Science Frontiers, 2023, 30(3): 242-261.
[1] |
CAWOOD P A, KRÖNER A, COLLINS W J, et al. Accretionary orogens through Earth history[J]. Geological Society, London, Special Publications, 2009, 318(1): 1-36.
DOI URL |
[2] |
ZHENG Y F, CHEN R X. Regional metamorphism at extreme conditions: implications for orogeny at convergent plate margins[J]. Journal of Asian Earth Sciences, 2017, 145: 46-73.
DOI URL |
[3] |
ŞENGÖR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307.
DOI |
[4] |
SENGöR A M C, NATAL’IN B A. Turkic-type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 263-337.
DOI URL |
[5] |
XIAO W J, HUANG B C, HAN C M, et al. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18(2/3): 253-273.
DOI URL |
[6] |
XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507.
DOI URL |
[7] | 李继亮. 增生型造山带的基本特征[J]. 地质通报, 2004, 23(9/10): 947-951. |
[8] |
CAWOOD P A, BUCHAN C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 2007, 82(3/4): 217-256.
DOI URL |
[9] | 王根厚, 韩芳林, 杨运军, 等. 藏北羌塘中部晚古生代增生杂岩的发现及其地质意义[J]. 地质通报, 2009, 28(9): 1181-1187. |
[10] | 袁四化, 潘桂棠, 王立全, 等. 大陆边缘增生造山作用[J]. 地学前缘, 2009, 16(3): 31-48. |
[11] |
DICKINSON W R. Widths of modern arc-trench gaps proportional to past duration of igneous activity in associated magmatic arcs[J]. Journal of Geophysical Research, 1973, 78(17): 3376-3389.
DOI URL |
[12] | DICKINSON W R, SEELY D R. Structure and stratigraphy of forearc regions[J]. AAPG Bulletin, 1979, 63(1): 2-31. |
[13] |
HAMILTON W B. Plate tectonics and island arcs[J]. Geological Society of America Bulletin, 1988, 100(10): 1503-1527.
DOI URL |
[14] |
NODA A. Forearc basins: types, geometries, and relationships to subduction zone dynamics[J]. GSA Bulletin, 2016, 128(5/6): 879-895.
DOI URL |
[15] |
MATSUDA T, UYEDA S. On the Pacific-type orogeny and its model: extension of the paired belts concept and possible origin of marginal seas[J]. Tectonophysics, 1971, 11(1): 5-27.
DOI URL |
[16] |
MARUYAMA S. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed[J]. Island Arc, 1997, 6(1): 91-120.
DOI URL |
[17] |
ISOZAKI Y, MARUYAMA S, FURUOKA F. Accreted oceanic materials in Japan[J]. Tectonophysics, 1990, 181(1/2/3/4): 179-205.
DOI URL |
[18] |
WAKITA K, METCALFE I. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asian Earth Sciences, 2005, 24(6): 679-702.
DOI URL |
[19] | SHERVAIS J W, CHOI S H, SHARP W D, et al. Serpentinite matrix mélange: implications of mixted provenance for mélange formation[J]. Geological Society of America Special Papers, 2011, 480: 1-30. |
[20] | WAKITA K. Mappable features of mélanges derived from Ocean Plate Stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes in Southwest Japan[J]. Tectonophysics, 2012, 568: 74-85. |
[21] |
KUSKY T M, WINDLEY B F, SAFONOVA I, et al. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion[J]. Gondwana Research, 2013, 24(2): 501-547.
DOI URL |
[22] |
SAFONOVA I Y, SANTOSH M. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 2014, 25(1): 126-158.
DOI URL |
[23] |
WAKITA K. OPS mélange: a new term for mélanges of convergent margins of the world[J]. International Geology Review, 2015, 57(5/6/7/8): 529-539.
DOI URL |
[24] |
KARIG D E. Material transport within accretionary prisms and the “knocker” problem[J]. The Journal of Geology, 1980, 88(1): 27-39.
DOI URL |
[25] |
MOORES E M. Origin and emplacement of ophiolites[J]. Reviews of Geophysics, 1982, 20(4): 735-760.
DOI URL |
[26] |
MOORE J C, SILVER E A. Continental margin tectonics: submarine accretionary prisms[J]. Reviews of Geophysics, 1987, 25(6): 1305-1312.
DOI URL |
[27] |
VON HUENE R, SCHOLL D W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust[J]. Reviews of Geophysics, 1991, 29(3): 279-316.
DOI URL |
[28] |
MATSUDA T, ISOZAKI Y. Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone[J]. Tectonics, 1991, 10(2): 475-499.
DOI URL |
[29] |
MARUYAMA S, KAWAI T, WINDLEY B F. Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona complex, Anglesey-Lleyn, Wales, UK[J]. Geological Society, London, Special Publications, 2010, 338(1): 55-75.
DOI URL |
[30] |
ŽÁK J, SVOJTKA M, HAJNÁ J, et al. Detrital zircon geochronology and processes in accretionary wedges[J]. Earth-Science Reviews, 2020, 207: 103214.
DOI URL |
[31] |
ERDMAN M E, LEE C T A. Oceanic-and continental-type metamorphic terranes: occurrence and exhumation mechanisms[J]. Earth-Science Reviews, 2014, 139: 33-46.
DOI URL |
[32] |
PLATT J P. Exhumation of high-pressure rocks: a review of concepts and processes[J]. Terra Nova, 1993, 5(2): 119-133.
DOI URL |
[33] |
HACKER B R, GERYA T V. Paradigms, new and old, for ultrahigh-pressure tectonism[J]. Tectonophysics, 2013, 603: 79-88.
DOI URL |
[34] |
BALDWIN S L, MONTELEONE B D, WEBB L E, et al. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea[J]. Nature, 2004, 431: 263-267.
DOI |
[35] |
RUBATTO D, HERMANN J. Exhumation as fast as subduction?[J]. Geology, 2001, 29(1): 3-6.
DOI URL |
[36] |
KAPP P, YIN A, MANNING C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28(1): 19-22.
DOI URL |
[37] |
WU Y W, LI C, XU M J, et al. Petrology, geochemistry, and geochronology of mafic rocks from the Taoxinghu Devonian ophiolite, Longmu Co-Shuanghu-Lancang suture zone, northern Tibet: evidence for an intra-oceanic arc-basin system[J]. International Geology Review, 2016, 58(4): 441-454.
DOI URL |
[38] |
WU H, LI C, CHEN J W, et al. Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China[J]. Lithosphere, 2016, 8(2): 141-149.
DOI URL |
[39] | 翟庆国, 李才, 黄小鹏. 西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J]. 地质通报, 2006, 25(12): 1419-1427. |
[40] | 翟庆国, 李才. 藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义[J]. 地质学报, 2007, 81(6): 795-800. |
[41] | ZHAI Q G, JAHN B M, WANG J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168: 186-199. |
[42] |
ZHAI Q G, JAHN B M, WANG J, et al. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. Geological Society of America Bulletin, 2016, 128(3/4): 355-373.
DOI URL |
[43] | 翟庆国, 王军, 李才, 等. 青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征[J]. 中国科学: 地球科学, 2010, 40(5): 565-573. |
[44] | 李才, 董永胜, 翟庆国, 等. 青藏高原羌塘高压变质带的特征及其构造意义[J]. 地质通报, 2008, 27(1): 27-35. |
[45] | 李才. 青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54(1): 105-119. |
[46] | 王立全, 潘桂棠, 李才, 等. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄: 兼论原-古特提斯洋的演化[J]. 地质通报, 2008, 27(12): 2045-2056. |
[47] |
LIANG X, WANG G H, YUAN G L, et al. Structural sequence and geochronology of the Qomo Ri accretionary complex, central Qiangtang, Tibet: implications for the Late Triassic subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 2012, 22(2): 470-481.
DOI URL |
[48] | 赵政璋, 李永铁, 郭祖军, 等. 青藏高原油气勘探前景[J]. 中国石油勘探, 1997, 2(3): 14-16. |
[49] | 王成善, 伊海生, 李勇. 羌塘盆地地质演化与油气远景评价[M]. 北京: 地质出版社, 2001: 184-251. |
[50] | 和钟铧, 杨德明, 李才. 藏北羌塘盆地褶皱形变研究[J]. 中国地质, 2003, 30(4): 357-360. |
[51] | 王剑, 付修根, 沈利军, 等. 论羌塘盆地油气勘探前景[J]. 地质论评, 2020, 66(5): 1091-1113. |
[52] | KAPP P, YIN A, MANNING C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 2003, 22(4): 1-27. |
[53] |
ŞENGÖR A M C. Plate tectonics and orogenic research after 25 years: a Tethyan perspective[J]. Earth-Science Reviews, 1990, 27(1/2): 1-201.
DOI URL |
[54] | 李才, 程立人, 张以春, 等. 西藏羌塘南部发现奥陶纪—泥盆纪地层[J]. 地质通报, 2004, 23(5): 602-604. |
[55] | 李才, 翟刚毅, 王立全, 等. 认识青藏高原的重要窗口: 羌塘地区近年来研究进展评述(代序)[J]. 地质通报, 2009, 28(9): 1169-1177. |
[56] | 李才, 翟庆国, 董永胜, 等. 青藏高原羌塘中部果干加年山上三叠统望湖岭组的建立及意义[J]. 地质通报, 2007, 26(8): 1003-1008. |
[57] | 李才, 翟庆国, 陈文, 等. 青藏高原龙木错-双湖板块缝合带闭合的年代学证据: 来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约[J]. 岩石学报, 2007, 23(5): 911-918. |
[58] | 王剑, 汪正江, 陈文西, 等. 藏北北羌塘盆地那底岗日组时代归属的新证据[J]. 地质通报, 2007, 26(4): 404-409. |
[59] | 王剑, 付修根, 陈文西, 等. 北羌塘沃若山地区火山岩年代学及区域地球化学对比: 对晚三叠世火山-沉积事件的启示[J]. 中国科学(D辑: 地球科学), 2008, 38(1): 33-43. |
[60] | 黄继钧. 藏北羌塘盆地构造特征及演化[J]. 中国区域地质, 2001, 20(2): 178-186. |
[61] | 王国芝, 王成善. 西藏羌塘基底变质岩系的解体和时代厘定[J]. 中国科学(D辑: 地球科学), 2001, 31(增刊): 77-82. |
[62] |
FAN J J, LI C, WANG M, et al. Features, provenance, and tectonic significance of Carboniferous-Permian glacial marine diamictites in the Southern Qiangtang-Baoshan block, Tibetan Plateau[J]. Gondwana Research, 2015, 28(4): 1530-1542.
DOI URL |
[63] |
LI C, ZHENG A Z. Paleozoic stratigraphy in the Qiangtang region of Tibet: relations of the Gondwana and Yangtze continents and ocean closure near the end of the Carboniferous[J]. International Geology Review, 2010, 35(9): 797-804.
DOI URL |
[64] |
ZHANG Y C, SHEN S Z, ZHAI Q G, et al. Discovery of a Sphaeroschwagerina fusuline fauna from the Raggyorcaka Lake area, northern Tibet: implications for the origin of the Qiangtang Metamorphic Belt[J]. Geological Magazine, 2016, 153(3): 537-543.
DOI URL |
[65] | 梁定益, 聂泽同, 郭铁鹰, 等. 西藏阿里喀喇昆仑南部的冈瓦纳—特提斯相石炭二叠系[J]. 地球科学: 中国地质大学学报, 1983(1): 9-27. |
[66] |
LIANG X, WANG G H, YANG B, et al. Stepwise exhumation of the Triassic Lanling high-pressure metamorphic belt in central Qiangtang, Tibet: insights from a coupled study of metamorphism, deformation, and geochronology[J]. Tectonics, 2017, 36(4): 652-670.
DOI URL |
[67] |
ZHAI Q G, ZHANG R Y, JAHN B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic p-T path[J]. Lithos, 2011, 125(1/2): 173-189.
DOI URL |
[68] | LI D, WANG G H, BONS P D, et al. Subduction reversal in a divergent double subduction zone drives the exhumation of Southern Qiangtang blueschist-bearing mélange, central Tibet[J]. Tectonics, 2020, 39(4): e2019TC006051. |
[69] |
ZHAO Z B, BONS P D, WANG G H, et al. Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet[J]. Solid Earth, 2015, 6(2): 457-473.
DOI URL |
[70] | PULLEN A, KAPP P. Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: insights from the Qiangtang metamorphic belt, central Tibet[J]. Geological Society of America Special Papers, 2014, 507: 71-87. |
[71] |
LIANG X, WANG G H, YUAN G L, et al. Mesozoic and Cenozoic deformations in the Raggyorcaka area, Tibet: implications for the tectonic evolution of the North Qiangtang terrane[J]. Journal of the Geological Society, 2015, 172(5): 614-623.
DOI URL |
[72] | LIANG X, SUN X H, WANG G H, et al. Sedimentary evolution and provenance of the Late Permian-Middle Triassic Raggyorcaka deposits in North Qiangtang (Tibet, western China): evidence for a forearc basin of the Longmu Co-Shuanghu Tethys Ocean[J]. Tectonics, 2020, 39(1): e2019TC005589. |
[73] |
MARAVELIS A G, BOUTELIER D, CATUNEANU O, et al. A review of tectonics and sedimentation in a forearc setting: Hellenic Thrace Basin, North Aegean Sea and northern Greece[J]. Tectonophysics, 2016, 674: 1-19.
DOI URL |
[74] |
ZHANG X Z, DONG Y S, WANG Q, et al. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet[J]. Tectonics, 2016, 35(7): 1670-1686.
DOI URL |
[75] | ZHANG Y C, SHEN S Z, SHI G R, et al. Tectonic evolution of the Qiangtang block, northern Tibet during the Late Cisuralian (late Early Permian): evidence from fusuline fossil records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350: 139-148. |
[76] |
LIU D L, SHI R D, DING L, et al. Survived seamount reveals an in situ origin for the central Qiangtang metamorphic belt in the Tibetan Plateau[J]. Journal of Earth Science, 2019, 30(6): 1253-1265.
DOI |
[77] |
DAN W, WANG Q, WHITE W M, et al. Rapid formation of eclogites during a nearly closed ocean: revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau[J]. Chemical Geology, 2018, 477: 112-122.
DOI URL |
[78] |
ZHAI Q G, JAHN B M, ZHANG R Y, et al. Triassic subduction of the Paleo-Tethys in northern Tibet, China: evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang block[J]. Journal of Asian Earth Sciences, 2011, 42(6): 1356-1370.
DOI URL |
[79] | DAN W, WANG Q, LI X H, et al. Low δ18O magmas in the carboniferous intra-oceanic arc, central Tibet: implications for felsic magma generation and oceanic arc accretion[J]. Lithos, 2019, 326: 28-38. |
[80] | 李典, 王根厚, 刘正勇, 等. 古岛弧地体的俯冲是南羌塘增生杂岩形成的重要机制: 来自日湾茶卡洋岛的证据[J]. 沉积与特提斯地质, 2021, 41(02): 176-189. |
[81] |
ZHANGX Z, DONG Y S, WANG Q, et al. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central Qiangtang, Tibet[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1): 266-279.
DOI URL |
[82] | 孙霄飞. 西藏荣玛乡中奥陶统—泥盆系沉积相及沉积环境研究[D]. 北京: 中国地质大学(北京), 2016. |
[83] | 杨耀, 赵中宝, 苑婷媛, 等. 藏北羌塘奥陶纪平行不整合面的厘定及其构造意义[J]. 岩石学报, 2014, 30(8): 2381-2392. |
[84] |
ZHANG Y C, WANG Y, ZHANG Y J, et al. Artinskian (Early Permian) fusuline fauna from the Rongma area in northern Tibet: palaeoclimatic and palaeobiogeographic implications[J]. Alcheringa: An Australasian Journal of Palaeontology, 2013, 37(4): 529-546.
DOI URL |
[85] | 王忠宝, 高金汉, 王根厚. 西藏尼玛县荣玛乡二叠系龙格组小有孔虫及地质意义[J]. 地层学杂志, 2017, 41(4): 392-400. |
[86] | 聂泽同, 宋志敏. 西藏阿里地区日土县下二叠统茅口阶龙格组的(䗴)类新资料[J]. 地球科学: 中国地质大学学报, 1983(1): 57-68. |
[87] |
XIE C M, LI C, FAN J J, et al. Ordovician sedimentation and bimodal volcanism in the southern Qiangtang terrane of northern Tibet: implications for the evolution of the northern Gondwana margin[J]. International Geology Review, 2017, 59(16): 2078-2105.
DOI URL |
[88] |
LIU H, WANG B D, MA L, et al. Late Triassic syn-exhumation magmatism in central Qiangtang, Tibet: evidence from the Sangehu adakitic rocks[J]. Journal of Asian Earth Sciences, 2016, 132: 9-24.
DOI URL |
[89] | HU P Y, ZHAI Q G, JAHN B M, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: implications for the early Paleozoic tectonic evolution along the Gondwanan Proto-Tethyan margin[J]. Lithos, 2015, 220: 318-338. |
[90] |
WANG M, LI C, FAN J J. Geochronology and geochemistry of the Dabure basalts, central Qiangtang, Tibet: evidence for -550 Ma rifting of Gondwana[J]. International Geology Review, 2015, 57(14): 1791-1805.
DOI URL |
[91] |
PULLEN A, KAPP P, GEHRELS G E, et al. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4): 585-600.
DOI URL |
[92] |
XU W, LIU F L, DONG Y S. Cambrian to Triassic geodynamic evolution of central Qiangtang, Tibet[J]. Earth-Science Reviews, 2020, 201: 103083.
DOI URL |
[93] |
TANG X C, ZHANG K J. Lawsonite-and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review, 2014, 56(2): 150-166.
DOI URL |
[94] | 许王. 藏北香桃湖斜长角闪岩的成因研究: 对羌塘地区构造演化的制约[D]. 长春: 吉林大学, 2016. |
[95] | 白艳萍, 陆济璞, 唐娟红, 等. 藏北红脊山地区变质玄武岩地球化学及其形成构造环境[J]. 桂林理工大学学报, 2011, 31(4): 495-503. |
[96] | 陆济璞, 张能, 黄位鸿, 等. 藏北羌塘中北部红脊山地区蓝闪石+硬柱石变质矿物组合的特征及其意义[J]. 地质通报, 2006, 25(1/2): 70-75. |
[97] | 翟庆国. 藏北羌塘中部榴辉岩岩石学、地球化学特征及构造演化过程[D]. 北京: 中国地质科学院, 2008. |
[98] | 董永胜, 李才. 藏北羌塘中部果干加年山地区发现榴辉岩[J]. 地质通报, 2009, 28(9): 1197-1200. |
[99] | 董永胜, 张修政, 施建荣, 等. 藏北羌塘中部高压变质带中石榴子石白云母片岩的岩石学和变质特征[J]. 地质通报, 2009, 28(9): 1201-1206. |
[100] | 张修政, 董永胜, 王强, 等. 青藏高原羌塘中部高压变质带的研究进展及存在问题[J]. 地质通报, 2018, 37(8): 1406-1416. |
[101] | 王仕林, 杜瑾雪, 王根厚, 等. 蓝岭地区蓝片岩和含硬柱石多硅白云母片岩变质p-T轨迹[J]. 地球科学, 2018, 43(4): 1237-1252. |
[102] | LIANG X, WANG G H, CAO W T, et al. Lithospheric extension of the accretionary wedge: an example from the Lanling high-pressure metamorphic terrane in Central Qiangtang, Tibet[J]. Geological Society of America Bulletin, 2022. https://doi.org/10.1130/B36476.1. |
[103] | 邓希光, 丁林, 刘小汉, 等. 青藏高原羌塘中部冈玛日地区蓝闪石片岩及其40Ar/39Ar年代学[J]. 科学通报, 2000, 45(21): 2322-2326. |
[104] |
JIN X, ZHANG Y X, ZHOU X Y, et al. Protoliths and tectonic implications of the newly discovered Triassic Baqing eclogites, central Tibet: evidence from geochemistry, SrNd isotopes and geochronology[J]. Gondwana Research, 2019, 69: 144-162.
DOI URL |
[105] | ZHANG Y X, JIN X, ZHANG K J, et al. Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise West-East Qiangtang collision[J]. Scientific Reports, 2018, 8(1): 1-12. |
[106] | 董永胜, 张修政, 施建荣, 等. 藏北羌塘中部高压变质带中石榴子石白云母片岩的岩石学和变质特征[J]. 地质通报, 2009, 28(9): 1201-1206. |
[107] | 李才, 翟庆国, 陈文, 等. 青藏高原羌塘中部榴辉岩Ar-Ar定年[J]. 岩石学报, 2006, 22(12): 2843-2849. |
[108] | 李才, 翟庆国, 董永胜, 等. 青藏高原羌塘中部榴辉岩的发现及其意义[J]. 科学通报, 2006, 51(1): 70-74. |
[109] |
PULLEN A, KAPP P, GEHRELS G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 2008, 36(5): 351-354.
DOI URL |
[110] |
ZHAI Q G, LI C, WANG J, et al. SHRIMP U-Pb dating and Hf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtang area, northern Tibet[J]. Chinese Science Bulletin, 2009, 54(13): 2279-2285.
DOI URL |
[111] |
ZHANG Z M, ZHAO G C, SANTOSH M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 2010, 17(4): 615-631.
DOI URL |
[112] | 李才. 西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义[J]. 科学通报, 1997, 42(4): 448. |
[113] | 翟庆国, 李才, 王军, 等. 藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学[J]. 岩石学报, 2009, 25(9): 2281-2288. |
[114] | 张修政, 董永胜, 李才, 等. 青藏高原羌塘中部不同时代榴辉岩的识别及其意义: 来自榴辉岩及其围岩40Ar-39Ar年代学的证据[J]. 地质通报, 2010, 29(12): 1815-1824. |
[115] | 邓希光, 丁林, 刘小汉, 等. 青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义[J]. 岩石学报, 2002, 18(4): 517-525. |
[116] |
ZHANG K J, CAI J X, ZHANG Y X, et al. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications[J]. Earth and Planetary Science Letters, 2006, 245(3/4): 722-729.
DOI URL |
[117] | 张修政, 董永胜, 李才, 等. 羌塘中部晚三叠世岩浆活动的构造背景及成因机制: 以红脊山地区香桃湖花岗岩为例[J]. 岩石学报, 2014, 30(2): 547-564. |
[118] | 邓万明, 尹集祥, 呙中平. 羌塘茶布—双湖地区基性超基性岩和火山岩研究[J]. 中国科学(D辑: 地球科学), 1996, 26(4): 296-301. |
[119] |
LIANG X, WANG G H, GAO J H, et al. A late Permian-Triassic trench-slope basin in the central Qiangtang metamorphic belt, northern Tibet: stratigraphy, sedimentology, syndepositional deformation and tectonic implications[J]. Basin Research, 2021, 33(4): 2383-2410.
DOI URL |
[120] | 熊兴国, 徐安全, 岳龙, 等. 羌塘才玛尔错晚三叠世地层的厘定及其意义[J]. 贵州地质, 2006, 23(1): 29-31. |
[121] |
MOORE G F, KARIG D E. Development of sedimentary basins on the lower trench slope[J]. Geology, 1976, 4(11): 693-697.
DOI URL |
[122] | 李静超, 赵中宝, 郑艺龙, 等. 古特提斯洋俯冲碰撞在南羌塘的岩浆岩证据: 西藏荣玛乡冈塘错花岗岩[J]. 岩石学报, 2015, 31(7): 2078-2088. |
[123] | 胡培远, 李才, 杨韩涛, 等. 青藏高原羌塘中部果干加年山一带晚三叠世花岗岩的特征、锆石定年及其构造意义[J]. 地质通报, 2010, 29(12): 1825-1832. |
[124] |
LI G M, LI J X, ZHAO J X, et al. Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: evidence from U-Pb ages, petrochemistry and Sr-Nd-Hf isotopes[J]. Journal of Asian Earth Sciences, 2015, 105: 443-455.
DOI URL |
[125] | LI X R, WANG J, CHENG L L, et al. New insights into the Late Triassic Nadigangri Formation of northern Qiangtang, Tibet, China: constraints from U-Pb ages and Hf isotopes of detrital and magmatic zircons[J]. Acta Geologica Sinica(English Edition), 2018, 92(4): 1451-1467. |
[126] | WANG J, FU X G, CHEN W X, et al. Chronology and geochemistry of the volcanic rocks in Woruo Mountain region, northern Qiangtang depression: implications to the Late Triassic volcanic-sedimentary events[J]. Science in China Series D: Earth Sciences, 2008, 51(2): 194-205. |
[127] |
ZHANG K J, TANG X C, WANG Y, et al. Geochronology, geochemistry, and Nd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China: constraints on the exhumation of the central Qiangtang metamorphic belt[J]. Lithos, 2011, 121(1/2/3/4): 167-175.
DOI URL |
[128] |
GAO R, CHEN C, LU Z, et al. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling[J]. Tectonophysics, 2013, 606: 160-170.
DOI URL |
[129] |
NIU X, HE R Z, ZHENG H G, et al. In-situ central Qiangtang metamorphic belt in western Tibet as a typical suture zone: evidence of crust-mantle structural footprints from P-wave receiver function analyses[J]. Tectonophysics, 2022, 838: 229484.
DOI URL |
[130] |
LI D, WANG G H, GAO J H, et al. The continental subduction in the evolution of central Qiangtang mélange belt and its tectonic significance[J]. International Geology Review, 2018, 61(9): 1143-1170.
DOI URL |
[131] | 钟大赉. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998, 1-231. |
[132] |
SONE M, METCALFE I. Parallel Tethyan sutures in mainland Southeast Asia: new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008, 340(2/3): 166-179.
DOI URL |
[133] |
HATCHER JR R D, WILLIAMS R T. Mechanical model for single thrust sheets Part I: taxonomy of crystalline thrust sheets and their relationships to the mechanical behavior of erogenic belts[J]. Geological Society of America Bulletin, 1986, 97(8): 975-985.
DOI URL |
[134] |
KOONS P O. Two-sided orogen: collision and erosion from the sandbox to the Southern Alps, New Zealand[J]. Geology, 1990, 18(8): 679-682.
DOI URL |
[135] |
WILLETT S, BEAUMONT C, FULLSACK P. Mechanical model for the tectonics of doubly vergent compressional orogens[J]. Geology, 1993, 21(4): 371-374.
DOI URL |
[136] | 刘本培, 冯庆来. 滇西古特提斯多岛洋的结构及其南北延伸[J]. 地学前缘, 2002, 9(3): 161-171. |
[137] | 潘桂棠, 王立全, 尹福光, 等. 从多岛弧盆系研究实践看板块构造登陆的魅力[J]. 地质通报, 2004, 23(9/10): 933-939. |
[138] |
PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14.
DOI URL |
[139] | 王根厚, 李典, 梁晓, 等. 造山带双层结构的厘定及意义[J]. 地质力学学报, 2022, 28(5): 705-727. |
[140] |
李典, 王根厚, 刘正勇, 等. 西藏南羌塘晚三叠世陆缘俯冲增生造山带的褶皱-冲断与增生杂岩双层结构厘定[J]. 地学前缘, 2022, 29(4): 231-248.
DOI |
[141] |
JU Q, ZHANG Y C, YUAN D X, et al. Permian foraminifers from the exotic limestone blocks within the central Qiangtang metamorphic belt, Tibet and their geological implications[J]. Journal of Asian Earth Sciences, 2022, 239: 105426.
DOI URL |
[1] | LI Zhuoqi, XU Cheng, WEI Chunwan. Outgassing processes of carbon in deep Earth: A review [J]. Earth Science Frontiers, 2024, 31(6): 304-319. |
[2] | HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones [J]. Earth Science Frontiers, 2024, 31(6): 282-303. |
[3] | LAN Chunyuan, ZHANG Lifei, TAO Renbiao, HU Han, ZHANG Lijuan, WANG Chao. Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review [J]. Earth Science Frontiers, 2024, 31(1): 64-76. |
[4] | XING Huilin, WANG Jianchao, PANG Shuo, WANG Ruize, LIU Dongyu, MA Zihan, ZHANG Yuling, TAN Yuyang. Deep sea-lithosphere fluid exchange in subduction zones and its effects: A critical review [J]. Earth Science Frontiers, 2022, 29(5): 246-254. |
[5] | LI Dian, WANG Genhou, LIU Zhengyong, LI Pengsheng, FENG Yipeng, TANG Yu, LI Chao, LI Yang. Fold-thrust belt of South Qiangtang, Tibet and the double-layer structure of the South Qiangtang accretionary complex [J]. Earth Science Frontiers, 2022, 29(4): 231-248. |
[6] | YANG Xiaoping, ZHONG Hui, YANG Yajun, JIANG Bing, QIAN Cheng, MA Yongfei, ZHANG Chao. Research progress on the subduction-accretion complex: Reconstruction of the tectonic framework of the Great Xing’an Range [J]. Earth Science Frontiers, 2022, 29(2): 94-114. |
[7] | LIU Yong, LI Tingdong, XIAO Qinghui, ZHANG Kexin, ZHU Xiaohui, DING Xiaozhong. Progress in geological study of oceanic plates [J]. Earth Science Frontiers, 2022, 29(2): 79-93. |
[8] | ZHANG Jin, QU Junfeng, ZHAO Heng, ZHANG Beihang, LIU Jianfeng, ZHENG Rongguo, YANG Yaqi, NIU Pengfei, HUI Jie, ZHAO Shuo, ZHANG Yiping. Deformation in subduction-accretionary complex belts: Characteristics, mechanism and differentiation from late-stage event [J]. Earth Science Frontiers, 2022, 29(2): 56-78. |
[9] | LI Dian, WANG Genhou, LIU Zhengyong, LI Pengsheng, FENG Yipeng, TANG Yu, LI Chao, LI Yang. Subduction reversal in the accretion complex drives the exhumation of deep subducted mélange in southern Qiangtang, Tibet: Insights from the Mao'ershan detachment fault [J]. Earth Science Frontiers, 2021, 28(6): 205-226. |
[10] | MENG Fancong, BAI Shengjin, Alexander B. MAKEYEV, Ksenia V. KULIKOVA. Genetic mineralogy of jadeitite from Polar Urals, Russia [J]. Earth Science Frontiers, 2020, 27(5): 88-98. |
[11] | LI Sanzhong,SUO Yanhui,LIU Bo,LIU Yongjiang,LI Xiyao,ZHAO Shujuan,ZHU Junjiang,WANG Guangzeng,ZHANG Guowei. Microplate tectonics theory: insights from microblocks in the global oceans and continental margins [J]. Earth Science Frontiers, 2018, 25(5): 323-356. |
[12] | . Seamounts in West Junggar ocean and its geological effects on the subduction zone. [J]. Earth Science Frontiers, 2015, 22(6): 233-240. |
[13] | MAO Xiao-Chang, WANG Gen-Hou, LIANG Xiao, ZHANG Feng, LIU Xiang, LIU Jun-Beng, ZHENG Yi-Long. Practice and exploration of 1∶50000 geological mapping in accretionary complex belt: An example from Qomo Ri area of Central Qiangtang, Tibet. [J]. Earth Science Frontiers, 2015, 22(3): 382-393. |
[14] | . A review of the mechanism of deep earthquakes:Current situation and problems. [J]. Earth Science Frontiers, 2012, 19(4): 15-29. |
[15] | MA Zong-Jin, DU Pin-Ren, GAO Xiang-Lin, JI Wen-Hua, LI Xiao-Li. Analysis of earthquake distributions in East Asia and in the world. [J]. Earth Science Frontiers, 2010, 17(5): 215-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||