Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 451-462.DOI: 10.13745/j.esf.sf.2023.6.4
Previous Articles Next Articles
ZHANG Xiong1,2(), PAN Lijuan1,2,*(
), LI Liang1,2, FANG Junwei1,2, WEI Zhongjin3, YANG Juncheng3, ZHOU Fengshan3
Received:
2022-10-11
Revised:
2023-05-09
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
ZHANG Xiong, PAN Lijuan, LI Liang, FANG Junwei, WEI Zhongjin, YANG Juncheng, ZHOU Fengshan. Mechanism of action and evaluation of chelating agents on barite removal[J]. Earth Science Frontiers, 2023, 30(6): 451-462.
中文名称 | 英文名称 | 分子式 | 分子量 | 缩写代号 |
---|---|---|---|---|
氮川三乙酸 | Nitrilotri-Acetic Acid | C6H9NO6 | 191 | NTA |
乙二胺四乙酸 | Ethylenediaminetetra-Acetic Acid | C10H16N2O8 | 292 | EDTA |
乙二胺四乙酸二钠盐 | Ethylenediaminetetra-Acetic Acid Disodium Salt | C10H14N2Na2O8 | 336 | EDTA-2Na2 |
环己烯二硝基乙酸 | Cyclohexylenedinitrilotetra-Acetic Acid | C14H22N2O8 | 346 | DOTA |
二乙烯三胺五乙酸 | Diethylene Triamine Penta-Acetic Acid | C14H23N3O10 | 393 | DTPA |
二氧辛烷乙基二硝基四乙酸 | Dioxaoctane Ethylenedinitrilo Tetra-Acetic Acid | C14H24N2O10 | 380 | DOCTA |
环己二胺四乙酸 | Trans-l,2-cyclohexylenediaminetetraacetic Acid | C14H22N2O8 | 389 | CDTA |
羟乙基乙二胺四乙酸酯 | (Hydroxyethyl)-Ethylene-Diamine-Tetra-Acetate | C10H15Na3N2O7 | 278 | HEDTA |
三乙烯四胺六乙酸 | Triethylene-Theremin-Hexa-Acetic Acid | C10H30N4O12 | 494 | TTHA |
羟乙基亚氨基二乙酸 | Hydroxyethyliminodiacetic Acid | C6H11NO5 | 177 | HEIDA |
L-谷氨酸-N,N-二乙酸 | L-Glutamic Acid N, N-Diacetic Acid | C9H13NO8 | 263 | GLDA |
甲基甘氨酸二乙酸 | Methylglycinediacetic Acid | C7H11NO6 | 205 | MGDA |
Table 1 Commonly used chelating agents for barite removal
中文名称 | 英文名称 | 分子式 | 分子量 | 缩写代号 |
---|---|---|---|---|
氮川三乙酸 | Nitrilotri-Acetic Acid | C6H9NO6 | 191 | NTA |
乙二胺四乙酸 | Ethylenediaminetetra-Acetic Acid | C10H16N2O8 | 292 | EDTA |
乙二胺四乙酸二钠盐 | Ethylenediaminetetra-Acetic Acid Disodium Salt | C10H14N2Na2O8 | 336 | EDTA-2Na2 |
环己烯二硝基乙酸 | Cyclohexylenedinitrilotetra-Acetic Acid | C14H22N2O8 | 346 | DOTA |
二乙烯三胺五乙酸 | Diethylene Triamine Penta-Acetic Acid | C14H23N3O10 | 393 | DTPA |
二氧辛烷乙基二硝基四乙酸 | Dioxaoctane Ethylenedinitrilo Tetra-Acetic Acid | C14H24N2O10 | 380 | DOCTA |
环己二胺四乙酸 | Trans-l,2-cyclohexylenediaminetetraacetic Acid | C14H22N2O8 | 389 | CDTA |
羟乙基乙二胺四乙酸酯 | (Hydroxyethyl)-Ethylene-Diamine-Tetra-Acetate | C10H15Na3N2O7 | 278 | HEDTA |
三乙烯四胺六乙酸 | Triethylene-Theremin-Hexa-Acetic Acid | C10H30N4O12 | 494 | TTHA |
羟乙基亚氨基二乙酸 | Hydroxyethyliminodiacetic Acid | C6H11NO5 | 177 | HEIDA |
L-谷氨酸-N,N-二乙酸 | L-Glutamic Acid N, N-Diacetic Acid | C9H13NO8 | 263 | GLDA |
甲基甘氨酸二乙酸 | Methylglycinediacetic Acid | C7H11NO6 | 205 | MGDA |
逐级脱质子 化学反应 | 氨基多羧酸螯合剂脱质子反应平衡常数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
NTA | EDTA | HEDTA | DTPA | HEIDA | GLDA | DOTA | CDTA | MGDA | |
pKa1 | 9.7 | 10.2 | 9.8 | 10.5 | 8.7 | 9.4 | 404 | 364 | 205 |
pKa2 | 2.5 | 6.1 | 5.4 | 8.5 | 2.2 | 5.0 | 11.9 | 11.7 | 10.5 |
pKa3 | 1.8 | 2.7 | 2.6 | 4.3 | 3.5 | 9.72 | 6.12 | 2.5 | |
pKa4 | 1.0 | 2.0 | 2.6 | 2.6 | 4.6 | 3.52 | 1.6 | ||
pKa5 | 1.5 | 1.8 | 4.13 | 2.43 |
Table 2 Comparison of acidity constants for APCAs at 25 ℃. Adapted from [18-19].
逐级脱质子 化学反应 | 氨基多羧酸螯合剂脱质子反应平衡常数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
NTA | EDTA | HEDTA | DTPA | HEIDA | GLDA | DOTA | CDTA | MGDA | |
pKa1 | 9.7 | 10.2 | 9.8 | 10.5 | 8.7 | 9.4 | 404 | 364 | 205 |
pKa2 | 2.5 | 6.1 | 5.4 | 8.5 | 2.2 | 5.0 | 11.9 | 11.7 | 10.5 |
pKa3 | 1.8 | 2.7 | 2.6 | 4.3 | 3.5 | 9.72 | 6.12 | 2.5 | |
pKa4 | 1.0 | 2.0 | 2.6 | 2.6 | 4.6 | 3.52 | 1.6 | ||
pKa5 | 1.5 | 1.8 | 4.13 | 2.43 |
金属离子 | 氨基多羧酸与金属离子配位形成的螯合物的稳定性常数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
NTA | EDTA | HEDTA | DTPA | HEIDA | GLDA | DOTA | CDTA | MGDA | |
Ca2+ | 6.4 | 10.7 | 8.4 | 10.9 | 4.8 | 5.9 | 17.2 | 12.5 | 7 |
Mg2+ | 5.4 | 8.7 | 7.0 | 9.3 | 3.46 | 5.2 | 11.85 | 10.32 | 5.8 |
Fe2+ | 8.8 | 14.3 | 12.2 | 16.5 | 6.8 | 8.7 | 16.27 | 8.1 | |
Fe3+ | 15.8 | 25.7 | 19.8 | 28 | 11.6 | 15.2 | 28.05 | 16.5 | |
Ba2+ | 4.8 | 7.7 | 6.2 | 8.6 | 2.8 | 3.5 | 12.87 | 8.69 | 4.9 |
Sr2+ | 5.0 | 8.6 | 6.92 | 9.7 | 3.8 | 4.1 | 15 | 10.54 | 5.2 |
Al3+ | 11.4 | 16.1 | 15.6 | 18.4 | 7.74 | 12.2 |
Table 3 Comparison of stability constants of metal-APCA chelate complexes at 25 ℃. Adapted from [18-19].
金属离子 | 氨基多羧酸与金属离子配位形成的螯合物的稳定性常数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
NTA | EDTA | HEDTA | DTPA | HEIDA | GLDA | DOTA | CDTA | MGDA | |
Ca2+ | 6.4 | 10.7 | 8.4 | 10.9 | 4.8 | 5.9 | 17.2 | 12.5 | 7 |
Mg2+ | 5.4 | 8.7 | 7.0 | 9.3 | 3.46 | 5.2 | 11.85 | 10.32 | 5.8 |
Fe2+ | 8.8 | 14.3 | 12.2 | 16.5 | 6.8 | 8.7 | 16.27 | 8.1 | |
Fe3+ | 15.8 | 25.7 | 19.8 | 28 | 11.6 | 15.2 | 28.05 | 16.5 | |
Ba2+ | 4.8 | 7.7 | 6.2 | 8.6 | 2.8 | 3.5 | 12.87 | 8.69 | 4.9 |
Sr2+ | 5.0 | 8.6 | 6.92 | 9.7 | 3.8 | 4.1 | 15 | 10.54 | 5.2 |
Al3+ | 11.4 | 16.1 | 15.6 | 18.4 | 7.74 | 12.2 |
试验方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
滤饼溶蚀率 | 静态试验,结果直观 | 实验过程烦琐,不能直接反映重晶石的溶蚀特性,实验结果容易受泥饼制备方法的影响 | [ |
滤饼元素组成变化 | 静态实验,结果直观 | 实验过程烦琐,实验器材昂贵,不能直接反映重晶石的溶蚀特性 | [ |
重晶石表面微观形貌变化 | 静态实验,结果直观 | 实验器材昂贵,实验成本高,不能定量表述重晶石的溶蚀结果 | [ |
岩心流动渗透率实验 | 动态实验,结果直观,实验器材标准 | 实验过程耗时长,实验成本高,人造岩心质量容易影响实验结果,不能直接提供重晶石的溶解效能 | [ |
高温动态溶解率评价方法 | 动态实验,评价溶解潜力全面,实验器材标准、简单,实验方法快捷,实验成本低,实验结果直观 | 此实验方法未考虑不同商品化重晶石解堵剂的最佳适用范围可能有差别的情况 | 本文 |
Table 4 Comparison of experimental evaluation methods
试验方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
滤饼溶蚀率 | 静态试验,结果直观 | 实验过程烦琐,不能直接反映重晶石的溶蚀特性,实验结果容易受泥饼制备方法的影响 | [ |
滤饼元素组成变化 | 静态实验,结果直观 | 实验过程烦琐,实验器材昂贵,不能直接反映重晶石的溶蚀特性 | [ |
重晶石表面微观形貌变化 | 静态实验,结果直观 | 实验器材昂贵,实验成本高,不能定量表述重晶石的溶蚀结果 | [ |
岩心流动渗透率实验 | 动态实验,结果直观,实验器材标准 | 实验过程耗时长,实验成本高,人造岩心质量容易影响实验结果,不能直接提供重晶石的溶解效能 | [ |
高温动态溶解率评价方法 | 动态实验,评价溶解潜力全面,实验器材标准、简单,实验方法快捷,实验成本低,实验结果直观 | 此实验方法未考虑不同商品化重晶石解堵剂的最佳适用范围可能有差别的情况 | 本文 |
Fig.9 Effect of XBS-2 concentration on barite dissolution rate (left), and solubility difference between barium sulfate and barite in XBS-2 solution showing ~3%-5% solubility difference due to mineral impurities in barite (right)
[1] | 崔付义, 方颖, 杨明, 等. 胜利油田纯九区注水开发过程中无机结垢趋势预测[J]. 地学前缘, 2012, 19(4): 301-306. |
[2] | ODDO J E, THOMSON M B. Algorithms can predict; inhibitors can control NORM scale[J]. Oil & Gas Journal, 1994, 92: 33-37. |
[3] |
BENTON W J, COLLINS I R, GRIMSEY I M, et al. Nucleation, growth and inhibition of barium sulfate-controlled modification with organic and inorganic additives[J]. Faraday Discussions, 1993, 95: 281-297.
DOI URL |
[4] |
HAARBERG T, SELM I, GRANBAKKEN D B, et al. Scale formation in reservoir and production equipment during oil recovery: an equilibrium model[J]. SPE Production Engineering, 1992, 7(1): 75-84.
DOI URL |
[5] | DUN N. Study of chemical dissolution for controlling barium sulfate scale deposit[D]. Los Angeles: University of Southern California, 1998. |
[6] | 天工. 青海油田涩北气田 “首秀” 疏松砂岩酸化解堵工艺[J]. 天然气工业, 2019(7): 158. |
[7] | 许定达, 任坤峰, 赵林, 等. 海上稠油区块高效复合酸化解堵技术研究与应用[J]. 科学技术与工程, 2016, 16(27): 157-160. |
[8] |
SONG S, DENG F, YUN B, et al. Application of acidizing and plugging removal technology in Chang 2 Reservoir of CH Oilfield[J]. IOP Conference Series Earth and Environmental Science, 2019, 252: 042101.
DOI URL |
[9] | 周风山, 崔付义, 方颖, 等. 注聚调驱井聚合物堵塞物的矿物复合结构形貌及组成特征[J]. 地学前缘, 2012, 19(2): 151-156. |
[10] | BAGERI B S, ALMAJED A A, ALMUTAIRI S H, et al. Evaluation of filter cake mineralogy in extended reach and maximum reservoir contact wells in sandstone reservoirs[C]. SPE drilling conference. Amsterdam, 2013. |
[11] | PAUL J M, FIELER E R. A new solvent for oilfield scales[C]. SPE annual technical conference and exhibition. Washington, 1992. |
[12] | BAGERI B S, MAHMOUD M, ALMAJED A A, et al. Water base barite filter cake removal using non-corrosive agents[C]. SPE Middle East oil & gas show and conference. Manama, 2017. |
[13] | PAUL J M, MORRIS R L. Method for removing an alkaline earth metal sulfate scale: US5093020[P]. 1992. |
[14] | PUTNIS A, PUTNIS C V, PAUL J M. The efficiency of a DTPA-based solvent in the dissolution of barium sulfate scale deposits[C]. SPE international symposium on oilfield chemistry. San Antonio, 1995. |
[15] | MORRIS R L, PAUL J M. Method for removing alkaline sulfate scale: US04980077A[P]. 1990. |
[16] | FREDERICK C B, VERONA N J. Method of treating boilers: US2396938[P]. 1944. |
[17] | SAHAR R N R, MOHAMAD W A, RUSTAM E F, et al. Selection of barium sulphate/barite dissolver chemical through establishment of standard laboratory screening protocols[C]. Abu Dhabi international petroleum exhibition & conference. Abu Dhabi, 2019. |
[18] | ALMUBARAK T, NG J H, NASRELDIN H. Oilfield scale removal by chelating agents: an aminopolycarboxylic acids review[C]. SPE Western Regional Meeting. Los Angeles, 2017. |
[19] | ALMUBARAK T, NG J H, NASRELDIN H. Chelating agents in productivity enhancement: a review[C]. SPE Oklahoma City oil and gas symposium. Oklahoma, 2017. |
[20] |
RICHARD F C, BENJAMIN N G, CHARLES F W, et al. Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: adsorption and dissolution[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3241-3257.
DOI URL |
[21] |
WANG K S, RESCH R, DUNN K, et al. Dissolution of the barite (001) surface by the chelating agent DTPA as studied with non-contact atomic force microscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 160: 217-227.
DOI URL |
[22] |
ANDREW P, JODI L J R, MICHAEL F H J. Dissolution of barite by a chelating ligand: an atomic force microscopy study[J]. Geochimica et Cosmochimica Acta, 1995, 59(22): 4623-4632.
DOI URL |
[23] | ALJABERI J B, BAGERI B S, BARRI A, et al. Insight into secondary posterior formation damage during barite filter cake removal in Calcite Formations[C]. International petroleum technology conference. Dhahran, 2020. |
[24] | 蒋林宏, 陈彦清. 一种螯合型钡锶垢解堵剂实验研究[J]. 内江科技, 2016, 37(8): 42. |
[25] | BAGERI B S, MAHMOUD M A, SHAWABKEH R A A. Barite filter cake removing composition and method: US20170145289[P]. 2015. |
[26] | ALDHUFAIRI M A, ALTHABIT S A. Removal of barite weighted mud: US20180244979[P]. 2018. |
[27] | ALAAMRI J, ALDAHLAN M, MALOTAIBI F, et al. Evaluation of a new barium sulfate dissolver and the effect of the presence of calcium carbonate in the dissolution rate[C]. Abu Dhabi international petroleum exhibition & conference. Abu Dhabi, 2019. |
[28] |
PUTNIS C V, KOWACZ M, PUTNIS A. The mechanism and kinetics of DTPA-promoted dissolution of barite[J]. Applied Geochemistry, 2008, 23: 2778-2788.
DOI URL |
[29] | NASRELDIN H A, ALMUTAIRI S H, ALHAJJI H H, et al. Evaluation of a new barite dissolver: lab studies[C]. SPE international symposium and exhibition on formation damage control. Baton Rouge, 2004. |
[30] | 刘峰, 范白涛, 刘宝生, 等. 重晶石解堵工艺技术在科学探索井储层改造中的应用[J]. 钻井液与完井液, 2013, 30(3): 54-56. |
[31] | 王春雷. 低孔裂缝性气藏非酸解堵工艺研究[D]. 成都: 西南石油大学, 2017. |
[32] | 赵丽萍, 刘音希, 刘志新. 用于油气井重晶石污染的解堵剂组合物及其制备方法: 201710178290.2[P]. 2017. |
[33] | 刘豇瑜, 袁学芳, 冯觉勇, 等. 解除重晶石深度污染技术[J]. 天然气勘探与开发, 2016, 39(3): 66-69. |
[34] | 黄菲, 高尚, 刘佳, 等. 耿庄金矿含FeS2晶须环带重晶石巨晶的特征及成因意义[J]. 地学前缘, 2013, 20(3): 110-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||