Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 1-16.DOI: 10.13745/j.esf.sf.2024.6.11
Previous Articles Next Articles
DING Wenlong1,2,3(), WANG Yao1,2,3,*(), ZHANG Ziyou1,2,3, LIU Tianshun1,2,3, CHENG Xiaoyun1,2,3, GOU Tong1,2,3, WANG Shenghui1,2,3, LIU Tingfeng1,2,3
Received:
2023-11-15
Revised:
2024-06-11
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks[J]. Earth Science Frontiers, 2024, 31(5): 1-16.
Fig.3 Optical and cathodoluminescence characteristics of veins in shale from the first member of the Longmaxi Formation in Yongchuan area. Adapted from [52].
[1] |
金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10.
DOI |
[2] | 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. |
[3] |
郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 2016, 23(1): 29-43.
DOI |
[4] |
何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23(2): 8-17.
DOI |
[5] |
郭旭升. 四川盆地涪陵平桥页岩气田五峰组: 龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
DOI |
[6] | 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220. |
[7] | 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质, 2016, 37(6): 799-808. |
[8] | 余川, 聂海宽, 曾春林, 等. 四川盆地东部下古生界页岩储集空间特征及其对含气性的影响[J]. 地质学报, 2014, 88(7): 1311-1320. |
[9] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
[10] |
龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3): 525-532.
DOI |
[11] | 聂海宽, 何发岐, 包书景. 中国页岩气地质特殊性及其勘探对策[J]. 天然气工业, 2011, 31(11): 111-116, 131-132. |
[12] |
郭彤楼, 刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示: 以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643-651.
DOI |
[13] |
刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28.
DOI |
[14] |
丁文龙, 王垚, 王生晖, 等. 页岩储层非构造裂缝研究进展与思考[J]. 地学前缘, 2024, 31(1): 297-314.
DOI |
[15] |
王玉满, 王宏坤, 张晨晨, 等. 四川盆地南部深层五峰组-龙马溪组裂缝孔隙评价[J]. 石油勘探与开发, 2017, 44(4): 531-539.
DOI |
[16] | 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019, 40(1): 41-49. |
[17] | 丁文龙, 姚佳利, 何建华, 等. 非常规油气储层裂缝识别方法与表征[M]. 北京: 地质出版社, 2015. |
[18] |
曾维特, 丁文龙, 张金川, 等. 渝东南-黔北地区下寒武统牛蹄塘组页岩裂缝有效性研究[J]. 地学前缘, 2016, 23(1): 96-106.
DOI |
[19] | 鞠玮, 牛小兵, 冯胜斌, 等. 页岩油储层现今地应力场与裂缝有效性评价: 以鄂尔多斯盆地延长组长7油层组为例[J]. 中国矿业大学学报, 2020, 49(5): 931-940. |
[20] | 聂舟, 马诗杰, 伍秋姿, 等. 长宁地区海相页岩天然裂缝发育特征及其对含气性的影响[J]. 断块油气田, 2022, 29(5): 591-597. |
[21] | 丁文龙, 许长春, 久凯, 等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144. |
[22] | 代鹏, 丁文龙, 何建华, 等. 地球物理技术在页岩储层裂缝研究中的应用[J]. 地球物理学进展, 2015, 30(3): 1315-1328. |
[23] | 孙炜, 李玉凤, 付建伟, 等. 测井及地震裂缝识别研究进展[J]. 地球物理学进展, 2014, 29(3): 1231-1242. |
[24] | 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. |
[25] | 刘树根, 马文辛, LUBA J, 等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011, 27(8): 2239-2252. |
[26] |
王玉满, 董大忠, 李建忠, 等. 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报, 2012, 33(4): 551-561.
DOI |
[27] | 王濡岳, 胡宗全, 聂海宽, 等. 川东南五峰组-龙马溪组与黔东南牛蹄塘组页岩储层特征对比分析与差异性探讨[J]. 石油实验地质, 2018, 40(5): 639-649. |
[28] | 蒲泊伶, 董大忠, 吴松涛, 等. 川南地区下古生界海相页岩微观储集空间类型[J]. 中国石油大学学报(自然科学版), 2014, 38(4): 19-25. |
[29] | 王玉满, 董大忠, 杨桦, 等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学: 地球科学, 2014, 44(6): 1348-1356. |
[30] | 张琴, 刘畅, 梅啸寒, 等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质, 2015, 36(4): 666-674. |
[31] |
久凯, 丁文龙, 李玉喜, 等. 黔北地区构造特征与下寒武统页岩气储层裂缝研究[J]. 天然气地球科学, 2012, 23(4): 797-803.
DOI |
[32] |
王艿川, 赵靖舟, 丁文龙, 等. 渝东南地区龙马溪组页岩裂缝发育特征[J]. 天然气地球科学, 2015, 26(4): 760-770.
DOI |
[33] | 杨迪, 刘树根, 单钰铭, 等. 四川盆地东南部习水地区上奥陶统-下志留统泥页岩裂缝发育特征[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 543-553. |
[34] | 王玉满, 黄金亮, 李新景, 等. 四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J]. 天然气工业, 2015, 35(9): 8-15. |
[35] | DING W L, ZHU D W, CAI J J, et al. Analysis of the developmental characteristics and major regulating factors of fractures in marine-continental transitional shale-gas reservoirs: a case study of the Carboniferous-Permian strata in the southeastern Ordos Basin, central China[J]. Marine and Petroleum Geology, 2013, 45: 121-133. |
[36] |
王濡岳, 丁文龙, 龚大建, 等. 渝东南-黔北地区下寒武统牛蹄塘组页岩裂缝发育特征与主控因素[J]. 石油学报, 2016, 37(7): 832-845, 877.
DOI |
[37] | 王濡岳, 王兴华, 龚大建, 等. 黔东南地区下寒武统页岩裂缝发育特征与主控因素[J]. 东北石油大学学报, 2018, 42(3): 56-64, 126-127. |
[38] | ZHAO G, DING W L, SUN Y X, et al. Fracture development characteristics and controlling factors for reservoirs in the Lower Silurian Longmaxi Formation marine shale of the Sangzhi Block, Hunan Province, China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106470. |
[39] |
王淑芳, 张子亚, 董大忠, 等. 四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J]. 天然气地球科学, 2016, 27(9): 1619-1628.
DOI |
[40] |
王玉满, 李新景, 董大忠, 等. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.
DOI |
[41] |
丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74.
DOI |
[42] | 胡伟光, 刘珠江, 范春华, 等. 四川盆地J地区志留系龙马溪组页岩裂缝地震预测与评价[J]. 海相油气地质, 2014, 19(4): 25-30. |
[43] | 吴礼明, 丁文龙, 张金川, 等. 渝东南地区下志留统龙马溪组富有机质页岩储层裂缝分布预测[J]. 石油天然气学报, 2011, 33(9): 43-46, 165-166. |
[44] | LIU J S, DING W L, WANG R Y, et al. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: a case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong Block, South China[J]. Marine and Petroleum Geology, 2017, 84: 289-310. |
[45] | LIU J S, DING W L, YANG H M, et al. 3D geomechanical modeling and numerical simulation of in situ stress fields in shale reservoirs: a case study of the Lower Cambrian Niutitang Formation in the Cen’gong Block, South China[J]. Tectonophysics, 2017, 712: 663-683. |
[46] | LIU J S, DING W L, YANG H M, et al. Quantitative prediction of fractures using the finite element method: a case study of the Lower Silurian Longmaxi Formation in northern Guizhou, South China[J]. Journal of Asian Earth Sciences, 2018, 154: 397-418. |
[47] |
邵晓州, 王苗苗, 惠潇, 等. 鄂尔多斯盆地盐池地区裂缝特征、形成期次及发育模式[J]. 天然气地球科学, 2021, 32(10): 1501-1513.
DOI |
[48] | 邓虎成, 周文, 姜文利, 等. 鄂尔多斯盆地麻黄山西区块延长、延安组裂缝成因及期次[J]. 吉林大学学报(地球科学版), 2009, 39(5): 811-817. |
[49] |
范存辉, 秦启荣, 李虎, 等. 四川盆地元坝中部断褶带须家河组储层构造裂缝形成期次[J]. 石油学报, 2017, 38(10): 1135-1143.
DOI |
[50] | 王凯, 王贵文, 徐渤, 等. 克深2井区裂缝分类及构造裂缝期次研究[J]. 地球物理学进展, 2015, 30(3): 1251-1256. |
[51] | 周文, 张银德, 王洪辉, 等. 楚雄盆地北部T3-J地层天然裂缝形成期次确定[J]. 成都理工大学学报(自然科学版), 2008, 35(2): 121-126. |
[52] |
何建华, 李勇, 邓虎成, 等. 川东南永川地区龙马溪组页岩储层构造裂缝特征及期次演化研究[J]. 地学前缘, 2024, 31(3): 298-311.
DOI |
[53] | LORENZ J, TEUFEL L, WARPINSKI N. Regional fractures I: a mechanism for the formation of regional fractures at depth in flat-lying reservoirs (1)[J]. AAPG Bulletin, 1991, 75(11): 1714-1737. |
[54] |
罗涛, 郭小文, 舒志国, 等. 四川盆地焦石坝南部地区五峰组-龙马溪组裂缝脉体流体来源及形成时间[J]. 石油学报, 2021, 42(5): 611-622.
DOI |
[55] | HUANG Y H, HE S, GUO X W, et al. Pressure-temperature-time-composition (p-T-t-x) of paleo-fluid in Permian organic-rich shale of Lower Yangtze Platform, China: insights from fluid inclusions in fracture cements[J]. Marine and Petroleum Geology, 2021, 126: 104936. |
[56] | 任丽华, 林承焰. 构造裂缝发育期次划分方法研究与应用: 以海拉尔盆地布达特群为例[J]. 沉积学报, 2007, 25(2): 253-260. |
[57] | 陈少伟, 刘建章. 含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望[J]. 地质科技通报, 2021, 40(4): 81-92. |
[58] | 孙雅雄, 朱相羽, 邱旭明, 等. 高邮凹陷阜二段页岩油储层裂缝特征及形成期次研究[C]// 西安石油大学. 2022油气田勘探与开发国际会议论文集. 西安, 2022: 187-196. |
[59] |
马军, 房大志, 张培先, 等. 渝东南地区阳春沟构造带五峰组—龙马溪组页岩构造裂缝特征及形成期次解析[J]. 天然气地球科学, 2022, 33(7): 1117-1131.
DOI |
[60] |
陈丽清, 伍秋姿, 范存辉, 等. 四川盆地南部双龙—罗场地区龙马溪组构造裂缝特征及形成期次[J]. 天然气地球科学, 2022, 33(5): 789-798.
DOI |
[61] |
范存辉, 李虎, 钟城, 等. 川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式[J]. 石油学报, 2018, 39(4): 379-390.
DOI |
[62] | 刘冬冬, 郭靖, 潘占昆, 等. 页岩气藏超压演化过程: 来自四川盆地南部五峰组: 龙马溪组裂缝流体包裹体的证据[J]. 天然气工业, 2021, 41(9): 12-22. |
[63] | 何顺, 秦启荣, 周吉羚, 等. 川东南DS地区龙马溪组页岩裂缝发育特征及期次解析[J]. 地质科技情报, 2019, 38(2): 101-109. |
[64] | ZHAO G, JIN Z J, DING W L, et al. Developmental characteristics and formational stages of natural fractures in the Wufeng-Longmaxi Formation in the Sangzhi Block, Hunan Province, China: insights from fracture cements and fluid inclusions studies[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109407. |
[65] | WANG X L, HU W X, QIU Y, et al. Fluid inclusion evidence for extreme overpressure induced by gas generation in sedimentary basins[J]. Geology, 2022, 50(7): 765-770. |
[66] | MORROW D. Diagenesis: dolomite part1: the chemistry of dolomitization and dolomite precipitation[J]. Gesoscience Canada, 1982, 9: 5-13. |
[67] | 蔡春芳, 梅博文, 马亭, 等. 塔里木盆地流体-岩石相互作用研究[M]. 北京: 地质出版社, 1997. |
[68] | GOLDSTEIN R, REYNOLDS T. Systematics of fluid inclusions in diagenetic minerals[M]. Tulsa: SEPM (Society for Sedimentary Geology), 1994. |
[69] | 罗京. 四川盆地东南部下组合多期流体活动与油气成藏过程研究[D]. 武汉: 中国地质大学(武汉), 2022. |
[70] | PING H W, CHEN H H, GEORGE S C. Quantitatively predicting the thermal maturity of oil trapped in fluid inclusions based on fluorescence and molecular geochemical data of oil inclusions in the Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2020, 104(8): 1751-1791. |
[71] | DUAN Z H, MØLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000℃ and 0 to 8000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2605-2617. |
[72] | ZHANG J L, QIAO S H, LU W J, et al. An equation for determining methane densities in fluid inclusions with Raman shifts[J]. Journal of Geochemical Exploration, 2016, 171: 20-28. |
[73] | 施伟军, 席斌斌. 应用包裹体技术恢复气藏古压力[J]. 石油实验地质, 2016, 38(1): 128-134. |
[74] |
席斌斌, 申宝剑, 蒋宏, 等. 天然气藏中CH4-H2O-NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
DOI |
[75] | 王大锐, 张映红. 渤海湾油气区火成岩外变质带储集层中碳酸盐胶结物成因研究及意义[J]. 石油勘探与开发, 2001, 28(2): 40-42, 109-110, 118-119. |
[76] | 刘立, 孙晓明, 董福湘, 等. 大港滩海区沙一段下部方解石脉的地球化学与包裹体特征: 以港深 67井为例[J]. 吉林大学学报(地球科学版), 2004, 34(1): 49-54. |
[77] | 蔡春芳, 李开开, 李斌, 等. 塔河地区奥陶系碳酸盐岩缝洞充填物的地球化学特征及其形成流体分析[J]. 岩石学报, 2009, 25(10): 2399-2404. |
[78] | 胡作维, 黄思静, 王春梅, 等. 锶同位素方法在油气储层成岩作用研究中的应用[J]. 地质找矿论丛, 2009, 24(2): 160-165. |
[79] | SUCHY V, HEIJLEN W, SYKOROVA I, et al. Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif[J]. Sedimentary Geology, 2000, 131(3/4): 201-219. |
[80] | 曹剑, 胡文瑄, 姚素平, 等. 准噶尔盆地石炭-二叠系方解石脉的碳、氧、锶同位素组成与含油气流体运移[J]. 沉积学报, 2007, 25(5): 722-729. |
[81] |
石书缘, 胡素云, 刘伟, 等. 综合运用碳氧同位素和包裹体信息判别古岩溶形成期次[J]. 天然气地球科学, 2015, 26(2): 208-217.
DOI |
[82] | 陈红汉, 董伟良, 张树林, 等. 流体包裹体在古压力模拟研究中的应用[J]. 石油与天然气地质, 2002, 23(3): 207-211. |
[83] | 池国祥, 周义明, 卢焕章. 当前流体包裹体研究和应用概况[J]. 岩石学报, 2003, 19(2): 201-212. |
[84] | 颜亮亮, 胡凯, 曹剑, 等. 柴达木盆地北缘冷湖地区侏罗系—古近系储层流体包裹体特征与油气运移[J]. 东华理工学院学报, 2007, 30(4): 301-308. |
[85] | 李美俊, 王铁冠, 刘菊, 等. 北部湾盆地福山凹陷原油充注方向及成藏特征[J]. 石油实验地质, 2007, 29(2): 172-177. |
[86] | 陈玲, 张微, 佘振兵. 油气成藏时间的确定方法[J]. 新疆石油地质, 2012, 33(5): 550-553. |
[87] | 罗春艳, 罗静兰, 罗晓容, 等. 鄂尔多斯盆地中西部长8砂岩的流体包裹体特征与油气成藏期次分析[J]. 高校地质学报, 2014, 20(4): 623-634. |
[88] | 陶士振, 杨跃明, 庞正炼, 等. 四川盆地侏罗系流体包裹体与致密油形成演化[J]. 岩石学报, 2015, 31(4): 1089-1100. |
[89] | 李文. 涪陵与宜昌地区海相页岩裂缝脉体成因及流体包裹体古温压特征[D]. 武汉: 中国地质大学(武汉), 2018. |
[90] | 席斌斌, 腾格尔, 俞凌杰, 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016, 38(4): 473-479. |
[91] | 李智, 林会喜, 李双建, 等. 川西地区雷口坡组储层流体包裹体特征与成藏期次[J]. 地质科学, 2024, 59(3): 781-791. |
[92] | 郭凯, 曾溅辉, 李元昊, 等. 陇东地区延长组构造裂缝方解石脉特征及其与烃类流体活动的关系[J]. 中国石油大学学报(自然科学版), 2013, 37(2): 36-42, 49. |
[93] | MANGENOT X, LARMIER S, GIRARD J P, et al. Diagenetic history of calcite fractures in Vaca Muerta shales (Argentina) inferred from paired Δ47 and fluid inclusion geothermometry[J]. Marine and Petroleum Geology, 2024, 160: 106630. |
[94] |
沈安江, 赵文智, 胡安平, 等. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J]. 石油勘探与开发, 2021, 48(3): 476-487.
DOI |
[95] |
胡安平, 沈安江, 潘立银, 等. 二元同位素在碳酸盐岩储层研究中的作用[J]. 天然气地球科学, 2018, 29(1): 17-27.
DOI |
[96] | 胡安平, 沈安江, 陈亚娜, 等. 基于U-Pb同位素年龄和团簇同位素(Δ47)温度约束的四川盆地震旦系灯影组构造-埋藏史重建[J]. 石油实验地质, 2021, 43(5): 896-905, 914. |
[97] | 邱楠生, 刘鑫, 熊昱杰, 等. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 2023, 45(5): 891-903. |
[98] |
刘雨晨, 邱楠生, 常健, 等. 碳酸盐团簇同位素在沉积盆地热演化中的应用: 以塔里木盆地顺托果勒地区为例[J]. 地球物理学报, 2020, 63(2): 597-611.
DOI |
[99] | 李平平, 马倩倩, 邹华耀, 等. 团簇同位素的基本原理与地质应用[J]. 古地理学报, 2017, 19(4): 713-728. |
[100] | 邓文峰, 郭炀锐, 韦刚健. 近十年我国团簇同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2020, 39(5): 912-926, 1069. |
[101] | 郭炀锐, 邓文峰, 韦刚健. 碳酸盐成岩作用中的团簇同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 166-174, 184. |
[102] | 赖生华, 余谦, 周文, 等. 楚雄盆地北部上三叠统-侏罗系裂缝发育期次[J]. 石油勘探与开发, 2004, 31(5): 25-29. |
[103] |
李文, 何生, 张柏桥, 等. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018, 39(4): 402-415.
DOI |
[104] | 刘勇, 袁海锋, 高耀, 等. 准噶尔盆地哈山地区石炭系-二叠系裂缝充填方解石的成因机制及石油地质意义[J]. 地质学报, 2017, 91(11): 2573-2583. |
[105] | 谢佳彤. 复杂构造区页岩裂缝及其对页岩气保存的影响: 以川东南东溪-松坎地区龙马溪组为例[D]. 成都: 西南石油大学, 2020. |
[106] | DING W L, DAI P, ZHU D W, et al. Fractures in continental shale reservoirs: a case study of the Upper Triassic strata in the SE Ordos Basin, Central China[J]. Geological Magazine, 2016, 153(4): 663-680. |
[107] | BECKER S P, EICHHUBL P, LAUBACH S E, et al. A 48 m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas Basin[J]. Geological Society of America Bulletin, 2010, 122(7/8): 1081-1093. |
[108] | FALL A, EICHHUBL P, CUMELLA S P, et al. Testing the basin-centered gas accumulation model using fluid inclusion observations: southern Piceance Basin, Colorado[J]. AAPG Bulletin, 2012, 96(12): 2297-2318. |
[109] | GAO J, HE S, ZHAO J X, et al. Geothermometry and geobarometry of overpressured Lower Paleozoic gas shales in the Jiaoshiba field, Central China: insight from fluid inclusions in fracture cements[J]. Marine and Petroleum Geology, 2017, 83: 124-139. |
[110] | MOORBATH S, TAYLOR P N, ORPEN J L, et al. First direct radiometric dating of Archaean stromatolitic limestone[J]. Nature, 1987, 326(6116): 865-867. |
[111] | SMITH P E, FARQUHAR R. Direct dating of Phanerozoic sediments by the 238U-206Pb method[J]. Nature, 1989, 341: 518-521. |
[112] | JAHN B M, BERTRAND-SARFATI J, MORIN N, et al. Direct dating of stromatolitic carbonates from the Schmidtsdrif Formation (Transvaal Dolomite), South Africa, with implications on the age of the Ventersdorp Supergroup[J]. Geology, 1990, 18(12): 1211. |
[113] | FAIREY B, TSIKOS H, CORFU F, et al. U-Pb systematics in carbonates of the Postmasburg Group, Transvaal Supergroup, South Africa: primary versus metasomatic controls[J]. Precambrian Research, 2013, 231: 194-205. |
[114] | JAHN B M. Pb-Pb dating of young marbles from Taiwan[J]. Nature, 1988, 322(6163): 429-432. |
[115] | JAHN B M, CUVELLIER H. Pb-Pb and U-Pb geochronology of carbonate rocks: an assessment[J]. Chemical Geology, 1994, 115(1/2): 125-151. |
[116] | ISRAELSON C, HALLIDAY A N, BUCHARDT B. U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale[J]. Earth and Planetary Science Letters, 1996, 141(1/2/3/4): 153-159. |
[117] | 高劢, 刘敦一, 李永安. 用Pb-Pb同位素方法直接测定石炭系碳酸盐岩珊瑚化石年龄[J]. 地质论评, 1996, 42(1): 22-29. |
[118] | RASBURY E T, COLE J M. Directly dating geologic events: U-Pb dating of carbonates[J]. Reviews of Geophysics, 2009, 47(3): RG3001. |
[119] | WOODHEAD J, PICKERING R. Beyond 500ka: progress and prospects in the U-Pb chronology of speleothems, and their application to studies in palaeoclimate, human evolution, biodiversity and tectonics[J]. Chemical Geology, 2012, 322: 290-299. |
[120] |
沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩-孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074.
DOI |
[121] | PAGEL M, BONIFACIE M, SCHNEIDER D A, et al. Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, δ18Owater and U-Pb age[J]. Chemical Geology, 2018, 481: 1-17. |
[122] | ROBERTS N M W, WALKER R J. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the Northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534. |
[123] | LI Q, PARRISH R R, HORSTWOOD M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376: 76-83. |
[124] | 高键. 渝东地区五峰—龙马溪组页岩裂缝脉体古温压及古流体成因[D]. 武汉: 中国地质大学(武汉), 2018. |
[125] | 魏菊英, 王关玉. 同位素地球化学[M]. 北京: 地质出版社, 1988. |
[126] | CHERNIAK D J, ZHANG X Y, WAYNE N K, et al. Sr, Y, and REE diffusion in fluorite[J]. Chemical Geology, 2001, 181(1/2/3/4): 99-111. |
[127] | LANGMUIR C H, VOCKE R D, HANSON G N, et al. A general mixing equation with applications to Icelandic basalts[J]. Earth and Planetary Science Letters, 1978, 37(3): 380-392. |
[128] | TURNER W A, HEAMAN L M, CREASER R A. Sm-Nd fluorite dating of Proterozoic low-sulfidation epithermal Au-Ag deposits and U-Pb zircon dating of host rocks at Mallery Lake, Nunavut, Canada[J]. Canadian Journal of Earth Sciences, 2003, 40(12): 1789-1804. |
[129] | 段其发, 曹亮, 曾健康, 等. 湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr 定年及地质意义[J]. 地球科学: 中国地质大学学报, 2014, 39(8): 977-986, 999. |
[130] | 孙敬博, 张立明, 陈文, 等. 东天山红石金矿床石英Rb-Sr同位素定年[J]. 地质论评, 2013, 59(2): 382-388. |
[131] | 夏杰, 程顺波, 薛喜林, 等. 湖南清水塘铅锌矿床成因: 来自流体包裹体和石英Rb-Sr定年证据[J]. 中国地质, 2022, 49(6): 1862-1874. |
[132] | 付晓飞, 付广, 赵平伟. 断层封闭机理及主要影响因素研究[J]. 天然气地球科学, 1999, 10(增刊2): 54-62. |
[133] |
吕延防, 李国会, 王跃文, 等. 断层封闭性的定量研究方法[J]. 石油学报, 1996, 17(3): 39-45.
DOI |
[134] | 童亨茂. 断层开启与封闭的定量分析[J]. 石油与天然气地质, 1998, 19(3): 215-220. |
[135] | 周文, 黄辉, 王世泽, 等. 盖层及断裂带的封闭作用评价[M]. 成都: 四川科学技术出版社, 2000. |
[136] | 丁文龙, 金文正, 刘维军. 多信息断层封闭性综合评价系统研究及应用[M]. 北京: 地质出版社, 2012. |
[137] | 田辉, 查明, 石新璞, 等. 断层紧闭指数的计算及其地质意义[J]. 新疆石油地质, 2003, 24(6): 530-532. |
[138] | 丁文龙, 金文正, 樊春, 等. 油藏构造分析[M]. 北京: 石油工业出版社, 2013. |
[139] | 孙松领, 李琦, 李娟, 等. 低渗透砂岩储层构造裂缝预测及开启性分析[J]. 特种油气藏, 2007, 14(1): 30-33, 105. |
[140] | 邓虎成, 周文, 周秋媚, 等. 新场气田须二气藏天然裂缝有效性定量表征方法及应用[J]. 岩石学报, 2013, 29(3): 1087-1097. |
[141] | 朱圣举, 赵向原, 张皎生, 等. 低渗透砂岩油藏天然裂缝开启压力及影响因素[J]. 西北大学学报(自然科学版), 2016, 46(4): 573-578. |
[142] |
王淼, 陈勇, 徐兴友, 等. 泥质岩中纤维状结构脉体成因机制及其与油气活动关系研究进展[J]. 地球科学进展, 2015, 30(10): 1107-1118.
DOI |
[143] | DURNEY D, RAMSAY J. Incremental strains measured by syntectonic crystal growths[M]//JONG K A, SCHOLTEN K. Gravity and tectonics. New York: John Wiley and Sons, 1973: 67-96. |
[144] | RAMSAY J G. The crack-seal mechanism of rock deformation[J]. Nature, 1980, 284: 135-139. |
[145] | COX S F, ETHERIDGE M A, WALL V J. The role of fluids in syntectonic mass transport, and the localization of metamorphic vein-type ore deposits[J]. Ore Geology Reviews, 1987, 2(1/2/3): 65-86. |
[146] | URAI J L, WILLIAMS P F, VAN ROERMUND H L M. Kinematics of crystal growth in syntectonic fibrous veins[J]. Journal of Structural Geology, 1991, 13(7): 823-836. |
[147] | FISHER D M, BRANTLEY S L. Models of quartz overgrowth and vein formation: deformation and episodic fluid flow in an ancient subduction zone[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B13): 20043-20061. |
[148] | HILGERS C, KOEHN D, BONS P D, et al. Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins[J]. Journal of Structural Geology, 2001, 23(6/7): 873-885. |
[149] | COX S F. Antitaxial crack-seal vein microstructures and their relationship to displacement paths[J]. Journal of Structural Geology, 1987, 9(7): 779-787. |
[150] | KIRSCHNER D L, SHARP Z D, TEYSSIER C. Vein growth mechanisms and fluid sources revealed by oxygen isotope laser microprobe[J]. Geology, 1993, 21(1): 85-88. |
[151] | COBBOLD P R, RODRIGUES N. Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (‘beef’ and ‘cone-in-cone’)[J]. Geofluids, 2007, 7(3): 313-322. |
[152] | BONS P D. The formation of veins and their microstructures[J]. Journal of the Virtual Explorer, 2000, 2: 12. |
[153] | 王淼. 东营凹陷深部烃源岩中方解石脉体成因机制及其指示意义[D]. 青岛: 中国石油大学(华东), 2016. |
[154] |
周文, 邓虎成, 单钰铭, 等. 断裂(裂缝)面的开启及闭合压力实验研究[J]. 石油学报, 2008, 29(2): 277-283.
DOI |
[155] | 周新桂, 张林炎, 黄臣军. 华庆探区长63储层破裂压力及裂缝开启压力估测与开发建议[J]. 中南大学学报(自然科学版), 2013, 44(7): 2812-2818. |
[1] | ZHANG Hui, ZHANG Guanjie, XU Ke, YIN Guoqing, WANG Zhimin, LUO Yang, WANG Haiying, ZHANG Binxin, LIANG Jingrui, YUAN Fang, ZHAO Wei, ZHANG Wei, LU Xing. Characteristics of stress state transitions and its geological and mechanical response in the Kuqa Depression [J]. Earth Science Frontiers, 2024, 31(5): 177-194. |
[2] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[3] | DING Wenlong, WANG Yao, WANG Shenghui, LIU Tingfeng, ZHANG Ziyou, GOU Tong, ZHANG Mengyang, HE Xiang. Research progress and insight on non-tectonic fractures in shale reservoirs [J]. Earth Science Frontiers, 2024, 31(1): 297-314. |
[4] | LIU Zhen, ZHU Maolin, PAN Gaofeng, XIA Lu, LU Chaojin, LIU Mingjie, LIU Jingjing, HOU Yingjie. A dissolution porosity increase model for sandstone reservoir in the Yanchang Formation in central and southern Ordos Basin—model building and model applications [J]. Earth Science Frontiers, 2023, 30(2): 96-108. |
[5] | MA Chang, GE Jiawang, ZHAO Xiaoming, LIAO Jin, YAO Zhe, ZHU Jitian, FANG Xiaoyu, XIANG Zhu. Quaternary Qiongdongnan Basin in South China Sea: Shelf-edge trajectory migration and deep-water depositional models [J]. Earth Science Frontiers, 2022, 29(4): 55-72. |
[6] | ZHANG Zili, ZHU Xiaomin, LIAO Fengying, LI Qi, ZHANG Ruifeng, CAO Lanzhu, SHI Ruisheng. Features and control factors of gentle-sloped fluvial sandbodies in rift basins: An example from the Wen’an Slope, Baxian Sag [J]. Earth Science Frontiers, 2021, 28(1): 141-154. |
[7] | LI Yu-Chi, HE Jian-Hua, YIN Shuai, WANG Er-Yue, DAI Feng, DIAO Dong. The multianisotropy of shale oil and gas reservoirs in vertical and its influence on oilgas development. [J]. Earth Science Frontiers, 2016, 23(2): 118-125. |
[8] | DING Wen-Long, CENG Wei-Te, WANG Er-Yue, JIU Kai, WANG Zhe, SUN Ya-Xiong, WANG Xin-Hua. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir. [J]. Earth Science Frontiers, 2016, 23(2): 63-74. |
[9] | . Quantitative prediction of tectonic fractures of Lower Jurassic Ahe Formation sandstones in Dibei gasfield. [J]. Earth Science Frontiers, 2016, 23(1): 240-252. |
[10] | . Study on reservoir space and evolution process of Longmaxi shale in Fenggang area of northern Guizhou. [J]. Earth Science Frontiers, 2016, 23(1): 195-205. |
[11] | JU Wei, HOU Gui-Ting, FENG Sheng-Bin, ZHAO Wen-Tao, ZHANG Ji-Zeng, YOU Yuan, ZHAN Yan, YU Xuan. Quantitative prediction of the Yanchang Formation Chang 63 reservoir tectonic fracture in the QingchengHeshui Area, Ordos Basin. [J]. Earth Science Frontiers, 2014, 21(6): 310-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||