[1] |
PATZAY G, KARMAN F H, POTA G. Preliminary investigations of scaling and corrosion in high enthalpy geothermal wells in Hungary[J]. Geothermics, 2003, 32: 627-638.
|
[2] |
FUJII Y. CaCO3 scale problems in the Nigorikawa geothermal area, Hokkaido[J]. Japan Geothermal Association, 1988, 25(4): 54-65.
|
[3] |
KIOKA A, NAKAGAWA M. Theoretical and experimental perspectives in utilizing nanobubbles as inhibitors of corrosion and scale in geothermal power plant[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111373.
|
[4] |
COSMO R P, PEREIRA F, SOARES E J, et al. Addressing the root cause of calcite precipitation that leads to energy loss in geothermal systems[J]. Geothermics, 2022, 98: 102272.
|
[5] |
KOHL B, EISNER M, BAUMANN T. Hydrochemical and operational parameters driving carbonate scale kinetics at geothermal facilities in the Bavarian Molasse Basin[J]. Geothermal Energy, 2020, 8(26): 1-30.
|
[6] |
ABOUIE A, KAZEMI A, KORRANI N, et al. Comprehensive modeling of scale deposition by use of a coupled geochemical and compositional wellbore simulator[J]. SPE Journal, 2017, 22(4): 1225-1241.
|
[7] |
WANNER C, EICHINGER F, JAHRFELD T, et al. Causes of abundant calcite scaling in geothermal wells in the Bavarian Molasse Basin, Southern Germany[J]. Geothermics, 2017, 70: 324-338.
|
[8] |
BARELLI A, CORSI R, Del P G, et al. A two-phase flow model for geothermal wells in the presence of non-condensable gas[J]. Geothermics, 1982, 11(3): 175-191.
|
[9] |
王延欣, 刘世良, 边庆玉, 等. 甘孜地热井结垢分析及防垢对策[J]. 新能源进展, 2015, 3(3): 202-206.
|
[10] |
裴亚东, 段晨阳, 郑秀华, 等. 西藏某温泉输水管道结垢形成条件研究[J]. 新能源进展, 2019, 7(6): 487-492.
|
[11] |
赵平, 金建, 张海政, 等. 西藏羊八井地热田热水的化学组成[J]. 地质科学, 1998, 33(1): 61-70.
|
[12] |
周大吉. 西藏羊八井地热发电站的运行、问题及对策[J]. 电力建设, 2003, 24(10): 1-3, 9.
|
[13] |
李义曼, 庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展, 2018, 6(4): 274-281.
|
[14] |
黄思静, 张雪花, 刘丽红, 等. 碳酸盐成岩作用研究现状与前瞻[J]. 地学前缘, 2009, 16(5): 219-231.
|
[15] |
梁海军, 郭啸峰, 高涛, 等. 河北博野某地热井结垢位置预测及影响因素分析[J]. 石油钻探技术, 2020, 48(5): 105-110.
|
[16] |
张保建, 高宗军, 张凤禹, 等. 华北盆地地下热水的水动力条件及水化学响应[J]. 地学前缘, 2015, 22(6): 217-226
DOI
|
[17] |
鲁锴, 鲍志东, 季汉成, 等. 雄安新区蓟县系雾迷山组岩溶热储特征、主控因素及有利区预测[J]. 古地理学报, 2019, 21(6): 885-900.
|
[18] |
崔付义, 方颖, 杨明, 等. 胜利油田纯九区注水开发过程中无机结垢趋势预测[J]. 地学前缘, 2012, 19(4): 301-306.
|
[19] |
王贵玲, 高俊, 张保建, 等. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 2020, 94(7): 1970-1980.
|
[20] |
LI Y M, PANG Z H, GALECZK I M. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax[J]. Geothermics, 2020, 87: 101844.
|
[21] |
ABDURRAHMAN S, ZULEYHA U, MUSTAFA O. The effect of calcite deposition on geothermal well inflow performance[J]. Geothermics, 1999, 28: 425-444.
|
[22] |
WANGEN M, SAGEN J, BJRNSTAD T, etal. Models for calcium carbonate precipitation in the near-well zone by degassing of CO2[J]. The Open Petroleum Engineering Journal, 2016, 9: 178-194.
|
[23] |
庞忠和, 庞菊梅, 孔彦龙, 等. 大型岩溶热储识别方法与规模化可持续开采技术[J]. 科技促进发展, 2020, 16(3/4): 299-306.
|
[24] |
马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7): 1981-1990.
|
[25] |
庞忠和, 孔彦龙, 庞菊梅, 等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 2017, 32(11): 1224-1230.
|
[26] |
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
DOI
|
[27] |
隋少强, 王延欣, 李海泉, 等. 河北雄安新区蓟县系雾迷山组沉积特征分析[J]. 矿产勘查, 2020, 11(8): 1563-1571.
|
[28] |
庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151.
DOI
|
[29] |
KHASANI D, RYUICHI I. Numerical study of the effects of CO2 gas in geothermal water on the fluid-flow characteristics in production wells[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15: 111-129.
|
[30] |
ORKISZEWSKI J. Predicting two-phase pressure drops in vertical pipe[J]. Journal of Petroleum Technology, 1967, 19: 829-838.
|