Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 81-95.DOI: 10.13745/j.esf.sf.2022.2.67
Previous Articles Next Articles
LIU Xiaolei1,2(), LI Weijia1, LU Yang1, LI Xingyu1, ZHANG Shuyu1, YU Heyu1
Received:
2022-01-24
Revised:
2022-03-21
Online:
2023-03-25
Published:
2023-01-05
CLC Number:
LIU Xiaolei, LI Weijia, LU Yang, LI Xingyu, ZHANG Shuyu, YU Heyu. Distribution characteristics and formation mechanism of sediment waves on the continental margin of the northern South China Sea—a literature research[J]. Earth Science Frontiers, 2023, 30(2): 81-95.
研究区 | 水深/m | 波长/km | 波高/m | 发育坡度/(°) | 波峰特征 | 数据来源 |
---|---|---|---|---|---|---|
台西南 海域 | 3 000~3 200 | 0.5~4(平均2.6) | 7~117(平均28) | 1.6 | SW-NE | 文献[ |
3 200~3 400 | 1.5~5.4(平均1.9) | 平均80 | 0.3 | 整体平行等深线 | ||
2 400~2 680 | 2~27 | 35 | 平均0.28 | NEE-SWW | 文献[ | |
2 230~2 820 | 3.9~14 | 36 | 平均0.31 | NEE-SWW | ||
2 920~3 350 | 5.5~27.8 | 30 | 平均0.46 | NEE-SWW | ||
2 950~3 250 | 7.2~11 | 60 | 平均0.51 | NNE-SSW | ||
2 700~3 400 | 0.3~5.5(平均3.2) | 5~50 | 0.57 | NEE-SWW | 文献[ | |
2 800~3 700 | 0.46~5.8(平均3.5) | 3.43 | 近E-W | |||
2 250~2 840 | 1.2~3.7 | 30~47 | 平均0.5 | 近W-E | 文献[ | |
3 150~3 500 | 1.5~5.4 | 50~110 | 0.57 | |||
珠江口 海域 | 600~900 | 1~2 | 20~50 | 1~5 | 整体平行等深线 | 文献[ |
<1 300 | 1.3~3.6 | 50~80 | 大约2 | |||
500~900 | 1.4~2 | 30~50 | 3~5 | NE-SW | 文献[ | |
160~600 | 0.016 | 0.35 | 0.65 | 文献[ | ||
琼东南海域 | 2 200~3 400 | 4 | 30 | 0.5~1 | 文献[ |
Table 1 Characteristics of sediment-wave development in the northern continental margin of the South China Sea
研究区 | 水深/m | 波长/km | 波高/m | 发育坡度/(°) | 波峰特征 | 数据来源 |
---|---|---|---|---|---|---|
台西南 海域 | 3 000~3 200 | 0.5~4(平均2.6) | 7~117(平均28) | 1.6 | SW-NE | 文献[ |
3 200~3 400 | 1.5~5.4(平均1.9) | 平均80 | 0.3 | 整体平行等深线 | ||
2 400~2 680 | 2~27 | 35 | 平均0.28 | NEE-SWW | 文献[ | |
2 230~2 820 | 3.9~14 | 36 | 平均0.31 | NEE-SWW | ||
2 920~3 350 | 5.5~27.8 | 30 | 平均0.46 | NEE-SWW | ||
2 950~3 250 | 7.2~11 | 60 | 平均0.51 | NNE-SSW | ||
2 700~3 400 | 0.3~5.5(平均3.2) | 5~50 | 0.57 | NEE-SWW | 文献[ | |
2 800~3 700 | 0.46~5.8(平均3.5) | 3.43 | 近E-W | |||
2 250~2 840 | 1.2~3.7 | 30~47 | 平均0.5 | 近W-E | 文献[ | |
3 150~3 500 | 1.5~5.4 | 50~110 | 0.57 | |||
珠江口 海域 | 600~900 | 1~2 | 20~50 | 1~5 | 整体平行等深线 | 文献[ |
<1 300 | 1.3~3.6 | 50~80 | 大约2 | |||
500~900 | 1.4~2 | 30~50 | 3~5 | NE-SW | 文献[ | |
160~600 | 0.016 | 0.35 | 0.65 | 文献[ | ||
琼东南海域 | 2 200~3 400 | 4 | 30 | 0.5~1 | 文献[ |
Fig.1 Distribution and genesis of sediment waves in the northern continental margin of the South China Sea. Modified after [19,36]. Basemap from [37].
沉积物波区 | 地理位置/代号 | 波域面积/km2 | 物源 | 成因控制因素 |
---|---|---|---|---|
台西南海域 | 东沙陆坡东南翼的下陆坡/B1 | 263 | 台湾岛南部及滨海地区 狭窄的陆架; 西侧的东沙隆起 | 浊流、北太平洋底流、台湾造山运动以及水合物分解 |
台湾峡谷两侧与澎湖峡谷西侧/T2 | 4 240 | |||
马尼拉海沟的北端/T2 | 12 500 | |||
Damuth[ | 25 000 | |||
珠江口海域 | 珠江海谷下陆坡段的东翼/T3 | 3 640 | 白云凹陷陆坡区;古珠江 | 浊流、底流、沉积变形(气体渗漏、底辟活动以及存在水合物)及内波 |
神狐海域的中陆坡— | 670 | |||
神狐海域中、下陆坡的过渡区位/B2 | 2 707 | |||
神狐海域上、中陆坡,毗邻峡谷/D1 | 1 940 | |||
东沙群岛的西南翼,毗邻峡谷/D2 | 259 | |||
中下陆坡,珠江海谷的西翼和南翼/C1 | 1 387 | |||
琼东南海域 | 西沙海槽陆坡的中下陆坡/— | 2 350 | 中央峡谷浊流 | 浊流、底流 |
琼东南盆地长昌凹陷北部斜坡/T5 | 400 |
Table 2 Provenance of and genetic factors controlling sediment waves in the northern continental margin of the South China Sea. Adapted from [14,19,45-46].
沉积物波区 | 地理位置/代号 | 波域面积/km2 | 物源 | 成因控制因素 |
---|---|---|---|---|
台西南海域 | 东沙陆坡东南翼的下陆坡/B1 | 263 | 台湾岛南部及滨海地区 狭窄的陆架; 西侧的东沙隆起 | 浊流、北太平洋底流、台湾造山运动以及水合物分解 |
台湾峡谷两侧与澎湖峡谷西侧/T2 | 4 240 | |||
马尼拉海沟的北端/T2 | 12 500 | |||
Damuth[ | 25 000 | |||
珠江口海域 | 珠江海谷下陆坡段的东翼/T3 | 3 640 | 白云凹陷陆坡区;古珠江 | 浊流、底流、沉积变形(气体渗漏、底辟活动以及存在水合物)及内波 |
神狐海域的中陆坡— | 670 | |||
神狐海域中、下陆坡的过渡区位/B2 | 2 707 | |||
神狐海域上、中陆坡,毗邻峡谷/D1 | 1 940 | |||
东沙群岛的西南翼,毗邻峡谷/D2 | 259 | |||
中下陆坡,珠江海谷的西翼和南翼/C1 | 1 387 | |||
琼东南海域 | 西沙海槽陆坡的中下陆坡/— | 2 350 | 中央峡谷浊流 | 浊流、底流 |
琼东南盆地长昌凹陷北部斜坡/T5 | 400 |
Fig.2 Schematic illustration of sediment-wave development in a canyon system. (a) Generalized continental margin turbidite sedimentary system (modified after [9]). (b) Hydraulic jump of a single cyclic step (modified after [47]). (c) Flow pattern over a series of cyclic steps generated by turbidity currents (modified after [48]). (d) Geometric parameters for sediment waves (modified after [51]). (e) Map view of channel-lobe transition zone (modified after [9]). (f) Re-distribution of coarse sediment waves in channel-lobe transition zone due to underflow (adapted from [52]).
Fig.3 Multi-beam bathymetric map of the northeastern slope canyon of the South China Sea (modified after [54]), with insert maps showing the Taiwan Canyon (a) and Western Penghu Canyon (b) cyclic step areas. Gray areas outline the four sediment-wave areas discovered by Kuang et al. (modified after [17]).
Fig.5 (a) Lee-wave model for sediment wave propagation (modified after [43]), and (b) two-dimensional seismic profile of bottom-current sediment waves in Beijiao Sag, Qiongdongnan Basin (modified after [61]).
Fig.7 Formation of sediment waves by sediment deformation. (a) Sediment waves with broad peaks and narrow troughs with commonly occurring faults, formed by creep deformation initiated on gentle slopes (< 0.5°) by external triggers such as earthquakes (modified after [13]). (b) Seismic profile (adapted from [72]) of sediment waves in Baiyun Sag, Pearl River Mouth Basin (yellow lines indicate interfaces between sediment-wave groups; blue line indicates BSR (bottom simulating reflector)).
Fig.8 Composite sediment waves formed by interaction of gravity and contour currents on the west and south wings of the Pearl River Valley. Adapted from [13].
Fig.9 Distribution of sediment waves in the South China Sea. (a) Three dimensional bathymetric map of sediment waves around the Taiwan and Penghu Canyons. (b) Schematic diagram summarizing the major depositional processes in diferent regions of the southwestern Taiwan. (c,d) High- resolution seismic profiles showing the differences in geometry,morphology and seismic reflection configuration between sediment waves in fields 1 and 2. Modified after [24].
[1] |
WYNN R B, STOW D A V. Classification and characterisation of deep-water sediment waves[J]. Marine Geology, 2002, 192(1/2/3): 7-22.
DOI URL |
[2] | 马永. 南海台西南盆地沉积物波特征及其成因机制研究[D]. 南京: 南京大学, 2016. |
[3] | 李华, 马良涛, 严世帮, 等. 深水大型沉积物波的成因机制[J]. 海洋地质动态, 2007, 23(12): 1-7. |
[4] | 高平, 何幼斌. 深海大型沉积物波的研究现状与展望[J]. 海洋科学, 2009, 33(5): 92-97. |
[5] |
钟广法, 李前裕, 郝沪军, 等. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
DOI |
[6] |
ZHANG G X, CHEN F, YANG S X, et al. Accumulation and exploration of gas hydrate in deep-sea sediments of northern South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(5): 876-888.
DOI URL |
[7] |
BAI C Y, ZHANG G X, LU J A, et al. Deep-water sediment waves as a special gas hydrate reservoirs in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2019, 101: 476-485.
DOI URL |
[8] |
WYNN R B, HUVENNE V A I, LE BAS T P, et al. Autonomous Underwater Vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352: 451-468.
DOI URL |
[9] |
COVAULT J A, KOSTIC S, PAULL C K, et al. Cyclic steps and related supercritical bedforms: building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2017, 393: 4-20.
DOI URL |
[10] |
DAMUTH J E. Migrating sediment waves created by turbidity currents in the northern South China Basin[J]. Geology, 1979, 7(11): 520.
DOI URL |
[11] |
REEDER D B, MA B B, YANG Y J. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves[J]. Marine Geology, 2011, 279: 12-18.
DOI URL |
[12] |
DROGHEI R, FALCINI F, CASALBORE D, et al. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait[J]. Scientific Reports, 2016, 6: 36376.
DOI PMID |
[13] |
SYMONS W O, SUMNER E J, TALLING P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148.
DOI URL |
[14] | 王海荣, 王英民, 邱燕, 等. 南海北部大陆边缘深水环境的沉积物波[J]. 自然科学进展, 2007, 17(9): 1235-1243. |
[15] | 王海荣, 王英民, 邱燕, 等. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报, 2008, 26(1): 39-45. |
[16] |
FOX P J, HEEZEN B C, HARIAN A M. Abyssalanti-dunes[J]. Nature, 1968, 220(5166): 470-472.
DOI URL |
[17] |
KUANG Z G, ZHONG G F, WANG L L, et al. Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79: 540-551.
DOI URL |
[18] | 丁巍伟, 李家彪, 韩喜球, 等. 南海东北部海底沉积物波的形态、 粒度特征及物源、 成因分析[J]. 海洋学报, 2010, 32(2): 96-105. |
[19] |
JIANG T, XIE X N, WANG Z F, et al. Seismic features and origin of sediment waves in the Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4): 281-294.
DOI URL |
[20] | SARNTHEIN M, PFLAUMANN U, WANG P X, et al. Preliminary report on SONNE-95 Cruise ‘Monitor Monsoon’ to the South China Sea[R]. Germany: Kiel University, 1994. |
[21] | LÜDMANN T, WONG H K, BERGLAR K. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophysical Research Letters, 2005, 32(5): L05614. |
[22] | SHAO L, LI X H, WEI G J, et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea[J]. Science in China Series D: Earth Sciences, 2001, 44(10): 919-925. |
[23] |
HSIUNG K H, YU H S. Morpho-sedimentary evidence for a canyon-channel-trench interconnection along the Taiwan-Luzon plate margin, South China Sea[J]. Geo-Marine Letters, 2011, 31(4): 215-226.
DOI URL |
[24] |
GONG C L, WANG Y M, PENG X C, et al. Sediment waves on the South China Sea Slope off southwestern Taiwan: implications for the intrusion of the Northern Pacific Deep Water into the South China Sea[J]. Marine and Petroleum Geology, 2012, 32(1): 95-109.
DOI URL |
[25] | DING W W, LI J B, HAN X Q, et al. Morphotectonics and formation of the Taiwan Bank Canyon, Southwest offshore Taiwan Island[J]. Journal of Oceanography and Marine Science, 2010, 1(4): 65-78. |
[26] | 殷绍如, 王嘹亮, 郭依群, 等. 东沙海底峡谷的地貌沉积特征及成因[J]. 中国科学: 地球科学, 2015, 45(3): 275-289. |
[27] |
LI W, LI S, ALVES T M, et al. The role of sediment gravity flows on the morphological development of a large submarine canyon (Taiwan Canyon), northeast South China Sea[J]. Sedimentology, 2021, 68(3): 1091-1108.
DOI URL |
[28] |
QIAO S H, SU M, KUANG Z G, et al. Canyon-related undulation structures in the Shenhu area, northern South China Sea[J]. Marine Geophysical Research, 2015, 36(2/3): 243-252.
DOI URL |
[29] |
CHEN H J, ZHAN W H, LI L Q, et al. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea[J]. Journal of Earth System Science, 2017, 126(5): 1-28.
DOI URL |
[30] |
SU M, XIE X N, LI J L, et al. Gravity flow on slope and abyssal systems in the Qiongdongnan Basin, northern South China Sea[J]. Acta Geologica Sinica: English Edition, 2011, 85(1): 243-253.
DOI URL |
[31] |
王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
DOI |
[32] | 许小勇, 吕福亮, 王大伟, 等. 周期性阶坎的特征及其对深水沉积研究的意义[J]. 海相油气地质, 2018, 23(4): 1-14. |
[33] |
KOSTIC S. Modeling of submarine cyclic steps: controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304.
DOI URL |
[34] |
WYNN R B, PIPER D J W, GEE M J R. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel-lobe transition zones[J]. Marine Geology, 2002, 192(1/2/3): 59-78.
DOI URL |
[35] | 李俞锋, 蒲仁海, 张功成. 琼东南盆地晚中新世以来底流流向及沉积侵蚀特征[J]. 地球物理学进展, 2018, 33(6): 2546-2554. |
[36] |
WANG H R, YU C Q, HUO Z P. Origin of deep-water sediment wave fields in the Northern Continental Slope, South China Sea[J]. Arabian Journal of Geosciences, 2021, 14(13): 1-16.
DOI URL |
[37] | GEBCO Bathymetric Compilation Group 2021. The GEBCO_2021 Grid: a continuous terrain model of the global oceans and land[Z]. British: NERC EDS British Oceanographic Data Centre NOC, 2021. |
[38] |
LI H, WANG Y M, ZHU W L, et al. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea[J]. Marine and Petroleum Geology, 2013, 43: 370-380.
DOI URL |
[39] | 王龙樟, 姚永坚, 林卫兵, 等. 南海南部沉积物波: 软变形及其触发机制[J]. 地球科学, 2018, 43(10): 3462-3470. |
[40] |
CHEN H, XIE X N, MAO K N, et al. Depositional characteristics and formation mechanisms of deep-water canyon systems along the northern South China Sea margin[J]. Journal of Earth Science, 2020, 31(4): 808-819.
DOI URL |
[41] | 王长盛, 朱俊江, 赵冬冬, 等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿, 2021, 37(3): 1-15. |
[42] |
FAUGÈRES J C, GONTHIER E, MULDER T, et al. Multi-process generated sediment waves on the Landes Plateau (Bay of Biscay, North Atlantic)[J]. Marine Geology, 2002, 182(3/4): 279-302.
DOI URL |
[43] |
FLOOD R D. A lee wave model for deep-sea mudwave activity[J]. Deep Sea Research Part A Oceanographic Research Papers, 1988, 35(6): 973-983.
DOI URL |
[44] |
KARL H A, CACCHIONE D A, CARLSON P R. Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon head, Bering Sea[J]. Journal of Sedimentary Research, 1986, 58(4): 769-773.
DOI URL |
[45] | 李占东, 赵佳彬, 张日新, 等. 台湾大地构造格局及其对油气的地质意义[J]. 地球物理学进展, 2019, 34(5): 1776-1784. |
[46] |
丁巍伟, 李家彪, 李军, 等. 南海珠江口外海底峡谷形成的控制因素及过程[J]. 热带海洋学报, 2013, 32(6): 63-72.
DOI |
[47] |
CARTIGNY M J B, POSTMA G, VAN DEN BERG J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/2/3/4): 40-56.
DOI URL |
[48] |
SEQUEIROS O E, SPINEWINE B, GARCIA M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. part I. documentation of the flow[J]. Journal of Sedimentary Research, 2009, 79(8): 593-607.
DOI URL |
[49] | 余和雨, 刘晓磊, 陆杨. 海底碎屑流运动特性研究的若干进展[J]. 地质科技情报, 2019, 38(6): 25-32. |
[50] |
PARKER G, GARCIA M, FUKUSHIMA Y, et al. Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research, 1987, 25(1): 123-147.
DOI URL |
[51] |
RIBÓ M, PUIG P, MUÑOZ A, et al. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)[J]. Geomorphology, 2016, 253: 22-37.
DOI URL |
[52] | 孙辉, 刘少治, 马宏霞, 等. 东非鲁武马盆地海底水道—朵体体系粗粒浊流沉积物波特征及主控因素[J]. 沉积学报, 2017, 35(4): 763-771. |
[53] |
NORMARK W R, HESS G R, STOW D A V, et al. Sediment waves on the Monterey fan levee: a preliminary physical interpretation[J]. Marine Geology, 1980, 37(1/2): 1-18.
DOI URL |
[54] |
ZHONG G F, CARTIGNY M J B, KUANG Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. Geological Society of America Bulletin, 2015, 127(5/6): 804-824.
DOI URL |
[55] |
DIETRICH P, GHIENNE J F, NORMANDEAU A, et al. Upslope-migrating bedforms in A proglacial sandur delta: cyclic steps from river-derived underflows?[J]. Journal of Sedimentary Research, 2016, 86(2): 113-123.
DOI URL |
[56] |
操应长, 杨田, 王艳忠, 等. 超临界沉积物重力流形成演化及特征[J]. 石油学报, 2017, 38(6): 607-621.
DOI |
[57] |
CASTRO I P, SNYDER W H. Experiments on wave breaking in stratified flow over obstacles[J]. Journal of Fluid Mechanics, 1993, 255: 195.
DOI URL |
[58] |
NAKAJIMA T, SATOH M. The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel, Japan Sea[J]. Sedimentology, 2001, 48(2): 435-463.
DOI URL |
[59] |
MANLEY P L, FLOOD R D. Paleoflow history determined from mudwave migration: Argentine Basin[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1993, 40(4/5): 1033-1055.
DOI URL |
[60] |
BLUMSACK S L, WEATHERLY G L. Observations of the nearby flow and a model for the growth of mudwaves[J]. Deep Sea Research Part A Oceanographic Research Papers, 1989, 36(9): 1327-1339.
DOI URL |
[61] |
LI Y F, PU R H, ZHANG G C, et al. Characteristics and origins of ridges and troughs on the top of the Middle Miocene strata in the Beijiao Sag of the Qiongdongnan Basin, northern South China Sea[J]. Interpretation, 2021, 9(2): SB1-SB15.
DOI URL |
[62] |
田壮才, 郭秀军, 余乐, 等. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
DOI |
[63] | 黄晓冬. 南海内孤立波的空间分布与时间变化特征研究[D]. 青岛: 中国海洋大学, 2013. |
[64] | 方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005. |
[65] | LAFOND E L. Internal waves, part 1[J]. Physical Oceanography, 1962, 1: 731-763. |
[66] |
MUENCH R D, LEBLOND P H, HACHMEISTER L E. On some possible interactions between internal waves and sea ice in the marginal ice zone[J]. Journal of Geophysical Research Atmospheres, 1983, 88(C5): 2819.
DOI URL |
[67] |
HE Y B, GAO Z Z, LUO J X, et al. Characteristics of internal-wave and internal-tide deposits and their hydrocarbon potential[J]. Petroleum Science, 2008, 5(1): 37-44.
DOI URL |
[68] | GAO Z Z, HE Y B, LI X D, et al. Review of research in internal-wave and internal-tide deposits of China[J]. Journal of Palaeogeography, 2013, 2(1): 56-65. |
[69] | ZHANG Y P, ZANG Z P, YI Q, et al. Simulation of Migration of Sand Waves Under Currents Induced by Internal Waves[C]//Proceedings of the 10th International Conference on Asian and Pacific Coasts. Hanoi: Thuyloi University, 2020: 457-462. |
[70] |
KARL H A, CARLSON P R. Large sand waves in Navarinsky Canyon head, Bering Sea[J]. Geo-Marine Letters, 1982, 2(3/4): 157-162.
DOI URL |
[71] | 高胜美, 卓海腾, 王英民, 等. 南海北部白云峡谷群富有孔虫砂层沉积特征及发育机制[J]. 沉积学报, 2019, 37(4): 798-811. |
[72] | 王真真. 南海北部白云凹陷陆坡迁移峡谷沉积体系特征及对天然气水合物成藏的影响[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014. |
[73] |
LEE H J, SYVITSKI J P M, PARKER G, et al. Distinguishing sediment waves from slope failure deposits: field examples, including the ‘Humboldt slide’, and modelling results[J]. Marine Geology, 2002, 192(1/2/3): 79-104.
DOI URL |
[74] |
COVAULT J A, KOSTIC S, PAULL C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054.
DOI URL |
[75] |
HOLBROOK W S, LIZARRALDE D, PECHER I A, et al. Escape of methane gas through sediment waves in a large methane hydrate Province[J]. Geology, 2002, 30(5): 467.
DOI URL |
[76] | 邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学D辑: 地球科学, 2007, 37(6): 771-777. |
[77] | 汪品先, 赵泉鸿, 翦知湣, 等. 南海三千万年的深海记录[J]. 科学通报, 2003, 48(21): 2206-2215. |
[78] |
TIAN Z C, JIA Y G, CHEN J X, et al. Internal solitary waves induced deep-water nepheloid layers and seafloor geomorphic changes on the continental slope of the northern South China Sea[J]. Physics of Fluids, 2021, 33(5): 053312.
DOI URL |
[79] |
XIE X N, MÜLLER R D, REN J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3/4): 129-144.
DOI URL |
[80] | 田媛媛. 珠江口盆地荔湾凹陷中新统丘形反射的成因探讨[D]. 西安: 西北大学, 2012. |
[81] | 陈天, 贾永刚, 刘涛, 等. 海底沉积物孔隙压力原位长期观测技术回顾和展望[J]. 地学前缘, 2021, 5(1): 1-16. |
[1] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[2] | GAO Yuqiao, HUA Caixia, CAI Xiao, BAI Luanxi, LU Jia. Fracture formation mechanism in shale oil reservoirs, Qintong Depression, North Jiangsu Basin and its influence on hydrocarbon occurrence [J]. Earth Science Frontiers, 2024, 31(5): 35-45. |
[3] | ZENG Shuai, QIU Nansheng, LI Huili, MA Anlai, ZHU Xiuxiang, JIA Jingkun, ZHANG Mengfei. Differential overpressure distribution in Ordovician carbonates, Shuntuoguole area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 305-315. |
[4] | RAO Can, WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites [J]. Earth Science Frontiers, 2023, 30(5): 106-114. |
[5] | LI Xi, ZHU Guangyou, LI Tingting, AI Yifei, ZHANG Yan, WANG Shan, CHEN Zhiyong, TIAN Lianjie. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence [J]. Earth Science Frontiers, 2023, 30(4): 352-375. |
[6] | DUAN Wei, TIAN Jinqiang, LI Sanzhong, YU Qiang, CHEN Ruixue, LONG Zulie. Crude oil in the uplifts of the Huizhou depression, Pearl River Mouth Basin, South China Sea: Source and formation mechanisms [J]. Earth Science Frontiers, 2022, 29(5): 176-187. |
[7] | JIA Zhongjia, ZHU Junjiang, OU Xiaolin, ZHANG Shengsheng, HUANG Chang, CHEN Ruixue, ZHANG Shaoyu, LI Sanzhong, JIA Yonggang, LIU Yongjiang. Focal mechanism solutions for global tsunami earthquakes and future tsunami threat to China [J]. Earth Science Frontiers, 2022, 29(5): 203-215. |
[8] | DONG Hongkun, WAN Shiming, LIU Chang, ZHAO Debo, ZENG Zhigang, LI Anchun. Mineralogical and geochemical constraints on the origin of rhythmic layering of Late Miocene reddish-brown and greenish-gray sediments in the northern South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 42-54. |
[9] | WANG Mingjian, PAN Jun, GAO Hongfang, HUANG Long, LI Xia. Mesozoic basin evolution and hydrocarbon potential in the northern South China Sea and southern East China Sea [J]. Earth Science Frontiers, 2022, 29(2): 294-302. |
[10] | SUN Qiliang, XIE Xinong, WU Shiguo. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives [J]. Earth Science Frontiers, 2021, 28(2): 258-270. |
[11] | LÜ Xiaoli, LIU Jingtao, ZHOU Bing, ZHU Liang, ZHANG Yuxi. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin [J]. Earth Science Frontiers, 2021, 28(2): 426-436. |
[12] | TANG Huafeng, WANG Hanfei, Ben KENNEDY, ZHANG Xinyu, Marcos ROSSETTI, Alan Patrick BISCHOFF, Andrew NICOL. Characteristics and controlling factors of volcanic reservoirs of subaqueous pyroclastic rocks: An analysis of the Miocene Kora Volcano in the Taranaki Basin, New Zealand [J]. Earth Science Frontiers, 2021, 28(1): 375-387. |
[13] | LI Shun, WU Cong, CHEN Chixin, JING Xia, LI Xuejie, CAI Guanqiang, ZHONG Hexian, ZHANG Jiangyong, LI Bo, ZHANG Jinpeng. High-resolution spatial distributions of diatoms in surface sediments and their correlations with environmental factors in the central and northern South China Sea [J]. Earth Science Frontiers, 2020, 27(6): 241-254. |
[14] | YU Xiaoyan, ZHENG Yuyu, ZHANG Tingya, GUO Hongshu, LONG Zhengyu, WAN Jiaxin, ZHANG Cun. The genesis of color zonation of emerald from Dayakou, Yunnan Province: implication for multi-stage mineralization [J]. Earth Science Frontiers, 2020, 27(5): 116-125. |
[15] | HOU Zengqian, YANG Zhiming, WANG Rui, ZHENG Yuanchuan. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland [J]. Earth Science Frontiers, 2020, 27(2): 20-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||