Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 426-436.DOI: 10.13745/j.esf.sf.2020.10.29
LÜ Xiaoli1,2(), LIU Jingtao1,*(), ZHOU Bing1, ZHU Liang1, ZHANG Yuxi1
Received:
2019-02-14
Revised:
2020-06-28
Online:
2021-03-25
Published:
2021-04-04
Contact:
LIU Jingtao
CLC Number:
LÜ Xiaoli, LIU Jingtao, ZHOU Bing, ZHU Liang, ZHANG Yuxi. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436.
样品情况及指标参数值类型 | ρ/(mg·L-1) | pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F- | TDS | 总硬度 | | | Cl- | Mg2+ | K++Na+ | Ca2+ | ||||
标准值 | 1 | 1 000 | 450 | 250 | 250 | 50 | 200 | 400 | 6.5~8.5 | |||
潜水 | 山前 (n=25) | 最小值 | ND | 198.0 | 143.6 | 172.8 | 10.92 | 0.35 | 6.16 | 6.16 | 41.72 | 7.12 |
最大值 | 3.10 | 1 116.0 | 552.4 | 471.2 | 511.80 | 114.30 | 36.79 | 205.60 | 176.90 | 8.47 | ||
平均值 | 0.89 | 507.7 | 272.1 | 253.5 | 156.95 | 27.68 | 19.04 | 68.76 | 77.56 | 7.68 | ||
超标率/% | 32 | 8 | 12 | 20 | 0 | 0 | 4 | 0 | 0 | |||
平原区 (n=46) | 最小值 | ND | 161.6 | 120.6 | 78.5 | 14.30 | 0.40 | 4.40 | 6.14 | 41.00 | 6.93 | |
最大值 | 4.70 | 3 881.0 | 1 237.0 | 519.5 | 2 082.00 | 404.41 | 130.10 | 770.80 | 281.10 | 8.21 | ||
平均值 | 0.60 | 793.9 | 401.7 | 275.00 | 305.00 | 48.60 | 31.00 | 109.40 | 109.70 | 7.50 | ||
超标率/% | 4.3 | 21.3 | 29.8 | 40.4 | 2.1 | 8.5 | 14.9 | 0 | 0 | |||
承压水 | 平原区 (n=9) | 最小值 | 0.16 | 228.4 | 165.6 | 158.30 | 34.49 | 1.05 | 9.06 | 9.38 | 45.32 | 7.59 |
最大值 | 0.90 | 1 289.0 | 528.4 | 277.90 | 533.30 | 184.60 | 44.67 | 236.70 | 137.90 | 8.01 | ||
平均值 | 0.39 | 478.5 | 252.7 | 208.50 | 145.98 | 40.90 | 20.04 | 66.20 | 68.11 | 7.81 | ||
超标率/% | 0 | 9 | 9 | 18 | 0 | 0 | 9 | 0 | 0 |
Table 1 Groundwater fluoride concentrations and hydrochemical characteristics for different geographic locations
样品情况及指标参数值类型 | ρ/(mg·L-1) | pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F- | TDS | 总硬度 | | | Cl- | Mg2+ | K++Na+ | Ca2+ | ||||
标准值 | 1 | 1 000 | 450 | 250 | 250 | 50 | 200 | 400 | 6.5~8.5 | |||
潜水 | 山前 (n=25) | 最小值 | ND | 198.0 | 143.6 | 172.8 | 10.92 | 0.35 | 6.16 | 6.16 | 41.72 | 7.12 |
最大值 | 3.10 | 1 116.0 | 552.4 | 471.2 | 511.80 | 114.30 | 36.79 | 205.60 | 176.90 | 8.47 | ||
平均值 | 0.89 | 507.7 | 272.1 | 253.5 | 156.95 | 27.68 | 19.04 | 68.76 | 77.56 | 7.68 | ||
超标率/% | 32 | 8 | 12 | 20 | 0 | 0 | 4 | 0 | 0 | |||
平原区 (n=46) | 最小值 | ND | 161.6 | 120.6 | 78.5 | 14.30 | 0.40 | 4.40 | 6.14 | 41.00 | 6.93 | |
最大值 | 4.70 | 3 881.0 | 1 237.0 | 519.5 | 2 082.00 | 404.41 | 130.10 | 770.80 | 281.10 | 8.21 | ||
平均值 | 0.60 | 793.9 | 401.7 | 275.00 | 305.00 | 48.60 | 31.00 | 109.40 | 109.70 | 7.50 | ||
超标率/% | 4.3 | 21.3 | 29.8 | 40.4 | 2.1 | 8.5 | 14.9 | 0 | 0 | |||
承压水 | 平原区 (n=9) | 最小值 | 0.16 | 228.4 | 165.6 | 158.30 | 34.49 | 1.05 | 9.06 | 9.38 | 45.32 | 7.59 |
最大值 | 0.90 | 1 289.0 | 528.4 | 277.90 | 533.30 | 184.60 | 44.67 | 236.70 | 137.90 | 8.01 | ||
平均值 | 0.39 | 478.5 | 252.7 | 208.50 | 145.98 | 40.90 | 20.04 | 66.20 | 68.11 | 7.81 | ||
超标率/% | 0 | 9 | 9 | 18 | 0 | 0 | 9 | 0 | 0 |
水质参数 | 各主成分相关关系 | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | ||
Na+ | 0.945 | 0.233 | 0.076 | |
Cl- | 0.940 | 0.111 | 0.110 | |
| 0.935 | 0.253 | 0.155 | |
TDS | 0.921 | 0.334 | 0.151 | |
浓度 | Mg2+ | 0.845 | 0.395 | 0.176 |
F- | 0.735 | -0.062 | -0.345 | |
Ca2+ | 0.730 | 0.527 | 0.224 | |
| 0.275 | 0.841 | -0.083 | |
偏硅酸 | 0.138 | 0.112 | 0.928 | |
pH | -0.107 | -0.830 | -0.239 | |
特征值 | 6.370 | 1.408 | 0.892 | |
方差贡献率/% | 53.912 | 20.876 | 11.901 | |
累计贡献率/% | 53.912 | 74.788 | 86.689 |
Table 2 Principal component analysis of the major ions in groundwater of the Tacheng Basin
水质参数 | 各主成分相关关系 | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | ||
Na+ | 0.945 | 0.233 | 0.076 | |
Cl- | 0.940 | 0.111 | 0.110 | |
| 0.935 | 0.253 | 0.155 | |
TDS | 0.921 | 0.334 | 0.151 | |
浓度 | Mg2+ | 0.845 | 0.395 | 0.176 |
F- | 0.735 | -0.062 | -0.345 | |
Ca2+ | 0.730 | 0.527 | 0.224 | |
| 0.275 | 0.841 | -0.083 | |
偏硅酸 | 0.138 | 0.112 | 0.928 | |
pH | -0.107 | -0.830 | -0.239 | |
特征值 | 6.370 | 1.408 | 0.892 | |
方差贡献率/% | 53.912 | 20.876 | 11.901 | |
累计贡献率/% | 53.912 | 74.788 | 86.689 |
[1] | 吴初, 武雄, 张艳帅, 等. 秦皇岛牛心山高氟地下水分布特征及成因[J]. 地学前缘, 2018,25(4):307-315. |
[2] | 朱其顺, 许光泉. 中国地下水氟污染的现状及研究进展[J]. 环境科学与管理, 2009,34(1):42-51. |
[3] |
MEENAKSHI G V K, KAVITAL R M A. Groundwater quality in some villages of Garyana, India: focus on fluoride and fluorosis[J]. Journal of Hazardous Materials, 2004,106(1):55-58.
DOI URL |
[4] | 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2006. |
[5] |
FORDYCE F M, VRANA K, ZHOVINSKY E, et al. A health risk assessment for fluoride in Central Europe[J]. Environmental Geochemistry and Health, 2007,29(2):83-102.
DOI URL |
[6] | 任福弘, 曾溅辉, 刘文生, 等. 高氟地下水的水文地球化学环境及赋存形式与地氟病患病率的关系: 以华北平原为例[J]. 地球学报, 1996,17(1):85-96. |
[7] | 杨诺. 配体交换絮凝剂的制备及其从含氟水中除氟研究[D]. 西安: 长安大学, 2011. |
[8] | 张超杰, 周琪. 含氟水治理研究进展[J]. 给水排水, 2002,28(12):26-29. |
[9] | 韩占涛, 张发旺, 桂建业, 等. 盐池地区高氟地下水成因与低氟水找水方向研究[J]. 干旱区资源与环境, 2009,23(12):151-156. |
[10] | 朱亮, 孙继朝, 刘景涛, 等. 兰州市地下水氟分布规律及影响因素分析[J]. 环境科学与技术, 2015,38(4):144-148. |
[11] | 曾溅辉. 氟的水文地球化学行为及其数值模拟: 以河北邢台山前平原浅层地下水系统为例[D]. 北京: 中国地质科学院, 1994. |
[12] | 何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010,37(3):621-626. |
[13] |
LI X Q, HOU X W, ZHOU Z C, et al . Geochemical provenance and spatial distribution of fluoride in groundwater of Taiyuan basin, China[J]. Environmental Earth Sciences, 2011,62(8), 1635-1642.
DOI URL |
[14] |
GUO Q H, WANG Y X, GUO Q S. Hydrogeochemical genesis of groundwater with abnormal fluoride concentrations from Zhongxiang City, Hubei Province, central China[J]. Environmental Earth Sciences, 2010,60(3), 633-642.
DOI URL |
[15] | 邢丽娜. 华北平原典型剖面上地下水化学特征和水文地球化学过程[D]. 北京: 中国地质大学(北京), 2012. |
[16] | 孙述海. 吉林西部氟中毒区地氟病与水文地球化学关系的研究[D]. 长春: 吉林大学, 2012. |
[17] |
VIKAS C, KUSHWAHA R, AHMAD W, et al. Genesis and geochemistry of high fluoride bearing groundwater from a semi-arid terrain of NW India[J]. Environmental Earth Sciences, 2013,68(1):289-305.
DOI URL |
[18] | 王根绪, 程国栋. 西北干旱区水中氟的分布规律及环境特征[J]. 地理科学, 2000,20(2):153-159. |
[19] | 孙相灿, 杜小弟, 张林, 等. 塔城盆地烃源岩特征及勘探潜力分析[J]. 中国矿业, 2017,26(2):162-169. |
[20] | 胡卫忠. 新疆塔城盆地地下水资源评价及开发利用[J]. 干旱区地理, 1987,10(2):31-36. |
[21] | 孙继朝, 刘景涛. 地表水地下水定深采样器: 200720100866.5[P]. 2007-03-27. |
[22] | 国家技术监督局. 饮用天然矿泉水检验方法: GB/T 8538—1995[S]. 北京: 中国标准出版社, 1996. |
[23] | 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016,23(2):260-268. |
[24] | 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水“三氮”污染特征及成因[J]. 水文地质工程地质, 2019,46(2):46-54. |
[25] | 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国标准出版社, 2002. |
[26] | 文振旺. 新疆维吾尔自治区土壤地理区划[J]. 土壤学报, 1962,10(4):323-339. |
[27] | 余素华, 文启忠. 新疆北部地区第四纪沉积地球化学特征[J]. 地球化学, 1991(1):56-63. |
[28] |
KARTHIKEYAN M, SATHEESH K K, ELANGO K P. Conducting polymer/alumina composites as viable adsorbents for the re-moval of fluoride ions from aqueous solution[J]. Journal of Fluorine Chemistry, 2009,130(10):894-901.
DOI URL |
[29] |
GUO H M, ZHANG Y, XING L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao Basin, Inner Mongolia[J]. Applied Geochemistry, 2012,27(11):2187-2196.
DOI URL |
[30] | SCHOLLER H. Qualitative evaluation of groundwater resource: methods and techniques of groundwater investigation and development[J]. Water Research, 1967,33:44-52. |
[1] | DUAN Wei, TIAN Jinqiang, LI Sanzhong, YU Qiang, CHEN Ruixue, LONG Zulie. Crude oil in the uplifts of the Huizhou depression, Pearl River Mouth Basin, South China Sea: Source and formation mechanisms [J]. Earth Science Frontiers, 2022, 29(5): 176-187. |
[2] | JIA Zhongjia, ZHU Junjiang, OU Xiaolin, ZHANG Shengsheng, HUANG Chang, CHEN Ruixue, ZHANG Shaoyu, LI Sanzhong, JIA Yonggang, LIU Yongjiang. Focal mechanism solutions for global tsunami earthquakes and future tsunami threat to China [J]. Earth Science Frontiers, 2022, 29(5): 203-215. |
[3] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[4] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[5] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[6] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[7] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[8] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[9] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[10] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[11] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[12] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[13] | LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions [J]. Earth Science Frontiers, 2022, 29(3): 76-87. |
[14] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[15] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||