Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 426-436.DOI: 10.13745/j.esf.sf.2020.10.29
LÜ Xiaoli1,2(), LIU Jingtao1,*(
), ZHOU Bing1, ZHU Liang1, ZHANG Yuxi1
Received:
2019-02-14
Revised:
2020-06-28
Online:
2021-03-25
Published:
2021-04-04
Contact:
LIU Jingtao
CLC Number:
LÜ Xiaoli, LIU Jingtao, ZHOU Bing, ZHU Liang, ZHANG Yuxi. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436.
样品情况及指标参数值类型 | ρ/(mg·L-1) | pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F- | TDS | 总硬度 | | | Cl- | Mg2+ | K++Na+ | Ca2+ | ||||
标准值 | 1 | 1 000 | 450 | 250 | 250 | 50 | 200 | 400 | 6.5~8.5 | |||
潜水 | 山前 (n=25) | 最小值 | ND | 198.0 | 143.6 | 172.8 | 10.92 | 0.35 | 6.16 | 6.16 | 41.72 | 7.12 |
最大值 | 3.10 | 1 116.0 | 552.4 | 471.2 | 511.80 | 114.30 | 36.79 | 205.60 | 176.90 | 8.47 | ||
平均值 | 0.89 | 507.7 | 272.1 | 253.5 | 156.95 | 27.68 | 19.04 | 68.76 | 77.56 | 7.68 | ||
超标率/% | 32 | 8 | 12 | 20 | 0 | 0 | 4 | 0 | 0 | |||
平原区 (n=46) | 最小值 | ND | 161.6 | 120.6 | 78.5 | 14.30 | 0.40 | 4.40 | 6.14 | 41.00 | 6.93 | |
最大值 | 4.70 | 3 881.0 | 1 237.0 | 519.5 | 2 082.00 | 404.41 | 130.10 | 770.80 | 281.10 | 8.21 | ||
平均值 | 0.60 | 793.9 | 401.7 | 275.00 | 305.00 | 48.60 | 31.00 | 109.40 | 109.70 | 7.50 | ||
超标率/% | 4.3 | 21.3 | 29.8 | 40.4 | 2.1 | 8.5 | 14.9 | 0 | 0 | |||
承压水 | 平原区 (n=9) | 最小值 | 0.16 | 228.4 | 165.6 | 158.30 | 34.49 | 1.05 | 9.06 | 9.38 | 45.32 | 7.59 |
最大值 | 0.90 | 1 289.0 | 528.4 | 277.90 | 533.30 | 184.60 | 44.67 | 236.70 | 137.90 | 8.01 | ||
平均值 | 0.39 | 478.5 | 252.7 | 208.50 | 145.98 | 40.90 | 20.04 | 66.20 | 68.11 | 7.81 | ||
超标率/% | 0 | 9 | 9 | 18 | 0 | 0 | 9 | 0 | 0 |
Table 1 Groundwater fluoride concentrations and hydrochemical characteristics for different geographic locations
样品情况及指标参数值类型 | ρ/(mg·L-1) | pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F- | TDS | 总硬度 | | | Cl- | Mg2+ | K++Na+ | Ca2+ | ||||
标准值 | 1 | 1 000 | 450 | 250 | 250 | 50 | 200 | 400 | 6.5~8.5 | |||
潜水 | 山前 (n=25) | 最小值 | ND | 198.0 | 143.6 | 172.8 | 10.92 | 0.35 | 6.16 | 6.16 | 41.72 | 7.12 |
最大值 | 3.10 | 1 116.0 | 552.4 | 471.2 | 511.80 | 114.30 | 36.79 | 205.60 | 176.90 | 8.47 | ||
平均值 | 0.89 | 507.7 | 272.1 | 253.5 | 156.95 | 27.68 | 19.04 | 68.76 | 77.56 | 7.68 | ||
超标率/% | 32 | 8 | 12 | 20 | 0 | 0 | 4 | 0 | 0 | |||
平原区 (n=46) | 最小值 | ND | 161.6 | 120.6 | 78.5 | 14.30 | 0.40 | 4.40 | 6.14 | 41.00 | 6.93 | |
最大值 | 4.70 | 3 881.0 | 1 237.0 | 519.5 | 2 082.00 | 404.41 | 130.10 | 770.80 | 281.10 | 8.21 | ||
平均值 | 0.60 | 793.9 | 401.7 | 275.00 | 305.00 | 48.60 | 31.00 | 109.40 | 109.70 | 7.50 | ||
超标率/% | 4.3 | 21.3 | 29.8 | 40.4 | 2.1 | 8.5 | 14.9 | 0 | 0 | |||
承压水 | 平原区 (n=9) | 最小值 | 0.16 | 228.4 | 165.6 | 158.30 | 34.49 | 1.05 | 9.06 | 9.38 | 45.32 | 7.59 |
最大值 | 0.90 | 1 289.0 | 528.4 | 277.90 | 533.30 | 184.60 | 44.67 | 236.70 | 137.90 | 8.01 | ||
平均值 | 0.39 | 478.5 | 252.7 | 208.50 | 145.98 | 40.90 | 20.04 | 66.20 | 68.11 | 7.81 | ||
超标率/% | 0 | 9 | 9 | 18 | 0 | 0 | 9 | 0 | 0 |
水质参数 | 各主成分相关关系 | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | ||
Na+ | 0.945 | 0.233 | 0.076 | |
Cl- | 0.940 | 0.111 | 0.110 | |
| 0.935 | 0.253 | 0.155 | |
TDS | 0.921 | 0.334 | 0.151 | |
浓度 | Mg2+ | 0.845 | 0.395 | 0.176 |
F- | 0.735 | -0.062 | -0.345 | |
Ca2+ | 0.730 | 0.527 | 0.224 | |
| 0.275 | 0.841 | -0.083 | |
偏硅酸 | 0.138 | 0.112 | 0.928 | |
pH | -0.107 | -0.830 | -0.239 | |
特征值 | 6.370 | 1.408 | 0.892 | |
方差贡献率/% | 53.912 | 20.876 | 11.901 | |
累计贡献率/% | 53.912 | 74.788 | 86.689 |
Table 2 Principal component analysis of the major ions in groundwater of the Tacheng Basin
水质参数 | 各主成分相关关系 | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | ||
Na+ | 0.945 | 0.233 | 0.076 | |
Cl- | 0.940 | 0.111 | 0.110 | |
| 0.935 | 0.253 | 0.155 | |
TDS | 0.921 | 0.334 | 0.151 | |
浓度 | Mg2+ | 0.845 | 0.395 | 0.176 |
F- | 0.735 | -0.062 | -0.345 | |
Ca2+ | 0.730 | 0.527 | 0.224 | |
| 0.275 | 0.841 | -0.083 | |
偏硅酸 | 0.138 | 0.112 | 0.928 | |
pH | -0.107 | -0.830 | -0.239 | |
特征值 | 6.370 | 1.408 | 0.892 | |
方差贡献率/% | 53.912 | 20.876 | 11.901 | |
累计贡献率/% | 53.912 | 74.788 | 86.689 |
[1] | 吴初, 武雄, 张艳帅, 等. 秦皇岛牛心山高氟地下水分布特征及成因[J]. 地学前缘, 2018,25(4):307-315. |
[2] | 朱其顺, 许光泉. 中国地下水氟污染的现状及研究进展[J]. 环境科学与管理, 2009,34(1):42-51. |
[3] |
MEENAKSHI G V K, KAVITAL R M A. Groundwater quality in some villages of Garyana, India: focus on fluoride and fluorosis[J]. Journal of Hazardous Materials, 2004,106(1):55-58.
DOI URL |
[4] | 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2006. |
[5] |
FORDYCE F M, VRANA K, ZHOVINSKY E, et al. A health risk assessment for fluoride in Central Europe[J]. Environmental Geochemistry and Health, 2007,29(2):83-102.
DOI URL |
[6] | 任福弘, 曾溅辉, 刘文生, 等. 高氟地下水的水文地球化学环境及赋存形式与地氟病患病率的关系: 以华北平原为例[J]. 地球学报, 1996,17(1):85-96. |
[7] | 杨诺. 配体交换絮凝剂的制备及其从含氟水中除氟研究[D]. 西安: 长安大学, 2011. |
[8] | 张超杰, 周琪. 含氟水治理研究进展[J]. 给水排水, 2002,28(12):26-29. |
[9] | 韩占涛, 张发旺, 桂建业, 等. 盐池地区高氟地下水成因与低氟水找水方向研究[J]. 干旱区资源与环境, 2009,23(12):151-156. |
[10] | 朱亮, 孙继朝, 刘景涛, 等. 兰州市地下水氟分布规律及影响因素分析[J]. 环境科学与技术, 2015,38(4):144-148. |
[11] | 曾溅辉. 氟的水文地球化学行为及其数值模拟: 以河北邢台山前平原浅层地下水系统为例[D]. 北京: 中国地质科学院, 1994. |
[12] | 何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010,37(3):621-626. |
[13] |
LI X Q, HOU X W, ZHOU Z C, et al . Geochemical provenance and spatial distribution of fluoride in groundwater of Taiyuan basin, China[J]. Environmental Earth Sciences, 2011,62(8), 1635-1642.
DOI URL |
[14] |
GUO Q H, WANG Y X, GUO Q S. Hydrogeochemical genesis of groundwater with abnormal fluoride concentrations from Zhongxiang City, Hubei Province, central China[J]. Environmental Earth Sciences, 2010,60(3), 633-642.
DOI URL |
[15] | 邢丽娜. 华北平原典型剖面上地下水化学特征和水文地球化学过程[D]. 北京: 中国地质大学(北京), 2012. |
[16] | 孙述海. 吉林西部氟中毒区地氟病与水文地球化学关系的研究[D]. 长春: 吉林大学, 2012. |
[17] |
VIKAS C, KUSHWAHA R, AHMAD W, et al. Genesis and geochemistry of high fluoride bearing groundwater from a semi-arid terrain of NW India[J]. Environmental Earth Sciences, 2013,68(1):289-305.
DOI URL |
[18] | 王根绪, 程国栋. 西北干旱区水中氟的分布规律及环境特征[J]. 地理科学, 2000,20(2):153-159. |
[19] | 孙相灿, 杜小弟, 张林, 等. 塔城盆地烃源岩特征及勘探潜力分析[J]. 中国矿业, 2017,26(2):162-169. |
[20] | 胡卫忠. 新疆塔城盆地地下水资源评价及开发利用[J]. 干旱区地理, 1987,10(2):31-36. |
[21] | 孙继朝, 刘景涛. 地表水地下水定深采样器: 200720100866.5[P]. 2007-03-27. |
[22] | 国家技术监督局. 饮用天然矿泉水检验方法: GB/T 8538—1995[S]. 北京: 中国标准出版社, 1996. |
[23] | 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016,23(2):260-268. |
[24] | 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水“三氮”污染特征及成因[J]. 水文地质工程地质, 2019,46(2):46-54. |
[25] | 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国标准出版社, 2002. |
[26] | 文振旺. 新疆维吾尔自治区土壤地理区划[J]. 土壤学报, 1962,10(4):323-339. |
[27] | 余素华, 文启忠. 新疆北部地区第四纪沉积地球化学特征[J]. 地球化学, 1991(1):56-63. |
[28] |
KARTHIKEYAN M, SATHEESH K K, ELANGO K P. Conducting polymer/alumina composites as viable adsorbents for the re-moval of fluoride ions from aqueous solution[J]. Journal of Fluorine Chemistry, 2009,130(10):894-901.
DOI URL |
[29] |
GUO H M, ZHANG Y, XING L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao Basin, Inner Mongolia[J]. Applied Geochemistry, 2012,27(11):2187-2196.
DOI URL |
[30] | SCHOLLER H. Qualitative evaluation of groundwater resource: methods and techniques of groundwater investigation and development[J]. Water Research, 1967,33:44-52. |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[3] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[4] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[5] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[6] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[7] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[8] | ZENG Shuai, QIU Nansheng, LI Huili, MA Anlai, ZHU Xiuxiang, JIA Jingkun, ZHANG Mengfei. Differential overpressure distribution in Ordovician carbonates, Shuntuoguole area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 305-315. |
[9] | RAO Can, WANGWU Mengyu, WANG Qi, ZHANG Zhiqi, WU Runqiu. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites [J]. Earth Science Frontiers, 2023, 30(5): 106-114. |
[10] | LI Xi, ZHU Guangyou, LI Tingting, AI Yifei, ZHANG Yan, WANG Shan, CHEN Zhiyong, TIAN Lianjie. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence [J]. Earth Science Frontiers, 2023, 30(4): 352-375. |
[11] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[12] | NING Wenjing, XIE Xianming, YAN Liping. Spatial distribution, sources and health risks of heavy metals in soil in Qingcheng District, Qingyuan City: Comparison of PCA and PMF model results [J]. Earth Science Frontiers, 2023, 30(4): 470-484. |
[13] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[14] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[15] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||