Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 208-220.DOI: 10.13745/j.esf.sf.2022.5.45
Previous Articles Next Articles
CHEN Zongming1(), TANG Xuan1,2,*(
), LIANG Guodong2, GUAN Ziheng2
Received:
2022-04-25
Revised:
2022-05-20
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
CHEN Zongming, TANG Xuan, LIANG Guodong, GUAN Ziheng. Identification and comparison of organic matter-hosted pores in shale by SEM image analysis—a deep learning-based approach[J]. Earth Science Frontiers, 2023, 30(3): 208-220.
原图 | U-Net | Mask R-CNN | FCN | |
---|---|---|---|---|
Ⅰ | ![]() 标注: 矿物基质:0% 有机质基质:78.948% 有机孔隙:21.052% 裂缝:0% | ![]() A 矿物基质:0% 有机质基质:79.648% 有机孔隙:20.352% 裂缝:0% | ![]() B 矿物基质:0% 有机质基质:82.997% 有机孔隙:17.003% 裂缝:0% | ![]() C 矿物基质:0% 有机质基质:91.904 有机孔隙:8.096% 裂缝:0% |
Ⅱ | ![]() 标注: 矿物基质:0% 黄铁矿:60.024% 有机质基质:28.548% 有机孔隙:11.428% 裂缝:0% | ![]() A 矿物基质:0% 黄铁矿:59.856% 有机质基质:29.043% 有机孔隙:11.101% 裂缝:0% | ![]() B 矿物基质:0% 黄铁矿:57.525% 有机质基质:34.417 有机孔隙:8.058% 裂缝:0% | ![]() C 矿物基质:0% 黄铁矿:53.435% 有机质基质:41.63% 有机孔隙:4.935% 裂缝:0% |
Ⅲ | ![]() 标注: 矿物基质:56.846% 黄铁矿:0% 有机质基质:33.795% 有机孔隙:7.994% 裂缝:1.265% | ![]() A 矿物基质:57.956% 黄铁矿:0% 有机质基质:33.094% 有机孔隙:7.885% 裂缝:1.065% | ![]() B 矿物基质:58.599% 黄铁矿:0% 有机质基质:35.644% 有机孔隙:5.335% 裂缝:0.422% | ![]() C 矿物基质:59.021% 黄铁矿:0% 有机质基质:36.758% 有机孔隙:4.221% 裂缝:0% |
Table 1 Results of SEM image analysis using different deep-learning models
原图 | U-Net | Mask R-CNN | FCN | |
---|---|---|---|---|
Ⅰ | ![]() 标注: 矿物基质:0% 有机质基质:78.948% 有机孔隙:21.052% 裂缝:0% | ![]() A 矿物基质:0% 有机质基质:79.648% 有机孔隙:20.352% 裂缝:0% | ![]() B 矿物基质:0% 有机质基质:82.997% 有机孔隙:17.003% 裂缝:0% | ![]() C 矿物基质:0% 有机质基质:91.904 有机孔隙:8.096% 裂缝:0% |
Ⅱ | ![]() 标注: 矿物基质:0% 黄铁矿:60.024% 有机质基质:28.548% 有机孔隙:11.428% 裂缝:0% | ![]() A 矿物基质:0% 黄铁矿:59.856% 有机质基质:29.043% 有机孔隙:11.101% 裂缝:0% | ![]() B 矿物基质:0% 黄铁矿:57.525% 有机质基质:34.417 有机孔隙:8.058% 裂缝:0% | ![]() C 矿物基质:0% 黄铁矿:53.435% 有机质基质:41.63% 有机孔隙:4.935% 裂缝:0% |
Ⅲ | ![]() 标注: 矿物基质:56.846% 黄铁矿:0% 有机质基质:33.795% 有机孔隙:7.994% 裂缝:1.265% | ![]() A 矿物基质:57.956% 黄铁矿:0% 有机质基质:33.094% 有机孔隙:7.885% 裂缝:1.065% | ![]() B 矿物基质:58.599% 黄铁矿:0% 有机质基质:35.644% 有机孔隙:5.335% 裂缝:0.422% | ![]() C 矿物基质:59.021% 黄铁矿:0% 有机质基质:36.758% 有机孔隙:4.221% 裂缝:0% |
软件模型 | JMicroVision | Photoshop | U-Net |
---|---|---|---|
识别孔隙图 | ![]() | ![]() | ![]() |
识别时间 | 5 min | 4 min | 850 ms |
识别孔隙面积占比/% | 15.45 | 15.10 | 15.04 |
Table 2 Comparison of image recognition results using conventional image software versus U-Net model
软件模型 | JMicroVision | Photoshop | U-Net |
---|---|---|---|
识别孔隙图 | ![]() | ![]() | ![]() |
识别时间 | 5 min | 4 min | 850 ms |
识别孔隙面积占比/% | 15.45 | 15.10 | 15.04 |
序号 | 名称 | 孔隙类型 | 孔隙度/% | 渗透率/nD | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
圆度 | 长宽比 | 大小/nm2 | 赋存介质 | 计算值 | 实测值 | 计算值 | 实测值 | ||||
a | 矿物内 圆状孔 | 0.7~1.0 | 0.7~0.9 | <100 | 石英、长石、 方解石、白云石 | 5.34 | 3.21 | 0.384 | 0.57 | ||
b | 矿物随机 不规则孔 | 0~0.4 | 0~0.1 | 差异大 | 石英、长石、 方解石、白云石 | 7.13 | 5.22 | 0.870 | 211 | ||
c | 有机棱 角状孔 | 0.4~0.6 | 0.1~0.5 | 100~300 | 有机质 | 11.97 | 7.23 | 0.810 | 12.3 | ||
d | 有机密 集微孔 | 差异大 | 差异大 | <100 | 有机质 | 11.20 | 7.57 | 0.430 | 0.95 |
Table 3 Pore structural types and related pore parameters based on U-Net model application
序号 | 名称 | 孔隙类型 | 孔隙度/% | 渗透率/nD | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
圆度 | 长宽比 | 大小/nm2 | 赋存介质 | 计算值 | 实测值 | 计算值 | 实测值 | ||||
a | 矿物内 圆状孔 | 0.7~1.0 | 0.7~0.9 | <100 | 石英、长石、 方解石、白云石 | 5.34 | 3.21 | 0.384 | 0.57 | ||
b | 矿物随机 不规则孔 | 0~0.4 | 0~0.1 | 差异大 | 石英、长石、 方解石、白云石 | 7.13 | 5.22 | 0.870 | 211 | ||
c | 有机棱 角状孔 | 0.4~0.6 | 0.1~0.5 | 100~300 | 有机质 | 11.97 | 7.23 | 0.810 | 12.3 | ||
d | 有机密 集微孔 | 差异大 | 差异大 | <100 | 有机质 | 11.20 | 7.57 | 0.430 | 0.95 |
[1] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
DOI PMID |
[2] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
DOI |
[3] | 付超, 林年添, 张栋, 等. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报, 2018, 61(1): 293-303. |
[4] | 陈钢花, 梁莎莎, 王军, 等. 机器学习AdaBoost.M2算法在砂砾岩流体识别中的应用[J]. 石油地球物理勘探, 2019, 54(6): 1357-1362, 1177. |
[5] | 张勇, 马晓东, 李彦婧, 等. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575. |
[6] |
LIU Y Y, MA X H, ZHANG X W, et al. A deep-learning-based prediction method of the estimated ultimate recovery (EUR) of shale gas wells[J]. Petroleum Science, 2021, 18(5): 1450-1464.
DOI URL |
[7] | 杨午阳, 杨佳润, 陈双全, 等. 基于U-Net深度学习网络的地震数据断层检测[J]. 石油地球物理勘探, 2021, 56(4): 688-697, 669. |
[8] | 张野, 李明超, 韩帅. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报, 2018, 34(2): 333-342. |
[9] | 刘银星. 基于深度学习的地质图像盐层分割方法研究[D]. 北京: 北京工业大学, 2019. |
[10] | 徐述腾, 周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 2018, 34(11): 3244-3252. |
[11] | 白林, 姚钰, 李双涛, 等. 基于深度学习特征提取的岩石图像矿物成分分析[J]. 中国矿业, 2018, 27(7): 178-182. |
[12] | 马陇飞, 萧汉敏, 陶敬伟, 等. 基于深度学习岩性分类的研究与应用[J]. 科学技术与工程, 2022, 22(7): 2609-2617. |
[13] | 李周. 岩石铸体薄图像的孔隙提取及颗粒分割研究[D]. 成都: 四川大学, 2018. |
[14] | 蔡宇恒, 滕奇志, 涂秉宇. 基于深度学习的岩石铸体薄片图像孔隙自动提取[J]. 科学技术与工程, 2020, 20(28): 11685-11692. |
[15] | 王依诚, 姜汉桥, 于馥玮, 等. 基于机器学习的数字岩心孔渗预测方法研究[J]. 石油科学通报, 2019, 4(4): 354-363. |
[16] |
YU Q Y, XIONG Z W, DU C, et al. Identification of rock pore structures and permeabilities using electron microscopy experiments and deep learning interpretations[J]. Fuel, 2020, 268: 117416.
DOI URL |
[17] | 武瑾, 梁峰, 吝文, 等. 渝东北地区龙马溪组页岩储层微观孔隙结构特征[J]. 成都理工大学学报(自然科学版), 2016, 43(3): 308-319. |
[18] |
孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
DOI |
[19] |
CHEN Z H, LIU X J, YANG J J, et al. Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin[J]. Computers and Geosciences, 2020, 138: 104450.
DOI URL |
[20] |
葛轶洲, 许翔, 杨锁荣, 等. 序列数据的数据增强方法综述[J]. 计算机科学与探索, 2021, 15(7): 1207-1219.
DOI |
[21] | 薛东杰, 唐麒淳, 王傲, 等. 煤岩微观相态FCN智能识别与分形重构[J]. 岩石力学与工程学报, 2020, 39(6): 1203-1221. |
[22] | 王庆, 曾齐红, 张友焱, 等. 基于多尺度区域卷积神经网络的露头孔洞自动提取[J]. 现代地质, 2021, 35(4): 1147-1154. |
[23] | 张新明, 祝晓斌, 蔡强, 等. 图像语义分割深度学习模型综述[J]. 高技术通讯, 2017, 27(增刊1): 808-815. |
[24] | 梁艳美, 王冬梅. Photoshop软件教学研究[J]. 电脑知识与技术, 2021, 17(2): 48-49. |
[25] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
DOI PMID |
[26] | 陈岩, 奚砚涛, 万家华, 等. 面向小样本遥感解译的空间置弃FCN模型[J]. 航天返回与遥感, 2021, 42(3): 107-116. |
[27] | HE K M, GEORGIA G, PIOTR D, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2961-2969. |
[28] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241. |
[29] |
王香增. 鄂尔多斯盆地延长探区低渗致密油气成藏理论进展及勘探实践[J]. 地学前缘, 2023, 30(1): 143-155.
DOI |
[30] |
赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127.
DOI |
[31] | 黄伟标, 李学, 宋晶, 等. 滨海软土微观孔隙测定方法[J]. 科学技术与工程, 2019, 19(28): 290-296. |
[32] | 赵秀才. 数字岩心及孔隙网络模型重构方法研究[D]. 青岛: 中国石油大学, 2009. |
[1] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[2] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[3] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[4] | WU Zhonghu, MENG Xiangrui, LAN Baofeng, LIU Jingshou, GONG Lei, YANG Yuhan. Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests [J]. Earth Science Frontiers, 2024, 31(5): 117-129. |
[5] | JU Wei, YANG Hui, HOU Guiting, NING Weike, LI Yongkang, LIANG Xiaobai. Development and distribution pattern of fault-controlled fractures in complex structural deformation zones [J]. Earth Science Frontiers, 2024, 31(5): 130-138. |
[6] | YIN Shuai, ZHANG Ziyang, ZHANG Xingxing, WANG Jingchen, HU Wei, DING Wenlong, LI Hu. Fracture development mode in fan delta front unconventional tight oil reservoirs: A case study of Paleogene He-3 in southeastern Biyang Depression [J]. Earth Science Frontiers, 2024, 31(5): 139-155. |
[7] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[8] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[9] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[10] | ZHANG Hui, ZHANG Guanjie, XU Ke, YIN Guoqing, WANG Zhimin, LUO Yang, WANG Haiying, ZHANG Binxin, LIANG Jingrui, YUAN Fang, ZHAO Wei, ZHANG Wei, LU Xing. Characteristics of stress state transitions and its geological and mechanical response in the Kuqa Depression [J]. Earth Science Frontiers, 2024, 31(5): 177-194. |
[11] | GAO Yuqiao, HUA Caixia, CAI Xiao, BAI Luanxi, LU Jia. Fracture formation mechanism in shale oil reservoirs, Qintong Depression, North Jiangsu Basin and its influence on hydrocarbon occurrence [J]. Earth Science Frontiers, 2024, 31(5): 35-45. |
[12] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[13] | SUN Yaxiong, LIANG Bing, QIU Xuming, DUAN Hongliang, FU Qian, ZHOU Jinfeng, LIU Shili, QIU Yongfeng, HU Huiting, GONG Lei. Characteristics of natural fractures and its influence on shale oil enrichment and preservation in Member 2 of Funing Formation in Gaoyou sag, Subei Basin [J]. Earth Science Frontiers, 2024, 31(5): 61-74. |
[14] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[15] | MENG Qingxiu, CAO Zicheng, DING Wenlong, YANG Debin, MA Hailong, DIAO Xindong, WANG Ming, HAN Pengyuan, WANG Huanhuan. Fracture stages and distribution patterns in Cambrian fractured dolomite reservoirs, Sandaoqiao gas field [J]. Earth Science Frontiers, 2024, 31(5): 247-262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||