Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 145-154.DOI: 10.13745/j.esf.sf.2022.1.45
Previous Articles Next Articles
HOU Guohua1,2(), GAO Maosheng1,2,*(
), YE Siyuan1,2, ZHAO Guangming1,2
Received:
2022-02-01
Revised:
2022-03-26
Online:
2022-05-25
Published:
2022-04-28
Contact:
GAO Maosheng
CLC Number:
HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta[J]. Earth Science Frontiers, 2022, 29(3): 145-154.
站位 | TDS/(g·L-1) | 样品 | 水质 | 站位 | TDS/(g·L-1) | 样品 | 水质 |
---|---|---|---|---|---|---|---|
D01 | 4.86 | 地下水 | 咸水 | D24 | 34.86 | 地下水 | 咸水 |
D02 | 32.90 | 地下水 | 咸水 | D25 | 2.49 | 地下水 | 微咸水 |
D03 | 60.65 | 地下水 | 卤水 | D26 | 3.94 | 地下水 | 咸水 |
D04 | 27.52 | 地下水 | 咸水 | D27 | 8.23 | 地下水 | 咸水 |
D05 | 1.83 | 地下水 | 微咸水 | D28 | 29.51 | 地下水 | 咸水 |
D06 | 12.14 | 地下水 | 咸水 | D29 | 4.16 | 地下水 | 咸水 |
D07 | 23.26 | 地下水 | 咸水 | D30 | 16.31 | 地下水 | 咸水 |
D08 | 21.18 | 地下水 | 咸水 | D31 | 18.87 | 地下水 | 咸水 |
D09 | 7.72 | 地下水 | 咸水 | D32 | 9.95 | 地下水 | 咸水 |
D10 | 1.68 | 地下水 | 微咸水 | D33 | 20.39 | 地下水 | 咸水 |
D11 | 21.03 | 地下水 | 咸水 | D34 | 22.08 | 地下水 | 咸水 |
D12 | 4.26 | 地下水 | 咸水 | D35 | 10.56 | 地下水 | 咸水 |
D13 | 5.36 | 地下水 | 咸水 | D36 | 2.07 | 地下水 | 微咸水 |
D14 | 12.27 | 地下水 | 咸水 | D37 | 28.61 | 地下水 | 咸水 |
D15 | 1.62 | 地下水 | 微咸水 | D38 | 25.26 | 地下水 | 咸水 |
D16 | 26.60 | 地下水 | 咸水 | D39 | 17.83 | 地下水 | 咸水 |
D17 | 18.72 | 地下水 | 咸水 | B1 | 0.59 | 地表水 | 淡水 |
D18 | 2.29 | 地下水 | 微咸水 | B2 | 38.76 | 地表水 | 咸水 |
D19 | 28.58 | 地下水 | 咸水 | B3 | 12.91 | 地表水 | 咸水 |
D20 | 32.12 | 地下水 | 咸水 | B4 | 7.53 | 地表水 | 咸水 |
D21 | 9.62 | 地下水 | 咸水 | B5 | 27.29 | 地表水 | 咸水 |
D22 | 38.05 | 地下水 | 咸水 | HH | 0.61 | 黄河水 | 淡水 |
D23 | 20.98 | 地下水 | 咸水 | SEA | 32.14 | 海水 | 咸水 |
Table 1 Field data of water samples in the Yellow River Delta
站位 | TDS/(g·L-1) | 样品 | 水质 | 站位 | TDS/(g·L-1) | 样品 | 水质 |
---|---|---|---|---|---|---|---|
D01 | 4.86 | 地下水 | 咸水 | D24 | 34.86 | 地下水 | 咸水 |
D02 | 32.90 | 地下水 | 咸水 | D25 | 2.49 | 地下水 | 微咸水 |
D03 | 60.65 | 地下水 | 卤水 | D26 | 3.94 | 地下水 | 咸水 |
D04 | 27.52 | 地下水 | 咸水 | D27 | 8.23 | 地下水 | 咸水 |
D05 | 1.83 | 地下水 | 微咸水 | D28 | 29.51 | 地下水 | 咸水 |
D06 | 12.14 | 地下水 | 咸水 | D29 | 4.16 | 地下水 | 咸水 |
D07 | 23.26 | 地下水 | 咸水 | D30 | 16.31 | 地下水 | 咸水 |
D08 | 21.18 | 地下水 | 咸水 | D31 | 18.87 | 地下水 | 咸水 |
D09 | 7.72 | 地下水 | 咸水 | D32 | 9.95 | 地下水 | 咸水 |
D10 | 1.68 | 地下水 | 微咸水 | D33 | 20.39 | 地下水 | 咸水 |
D11 | 21.03 | 地下水 | 咸水 | D34 | 22.08 | 地下水 | 咸水 |
D12 | 4.26 | 地下水 | 咸水 | D35 | 10.56 | 地下水 | 咸水 |
D13 | 5.36 | 地下水 | 咸水 | D36 | 2.07 | 地下水 | 微咸水 |
D14 | 12.27 | 地下水 | 咸水 | D37 | 28.61 | 地下水 | 咸水 |
D15 | 1.62 | 地下水 | 微咸水 | D38 | 25.26 | 地下水 | 咸水 |
D16 | 26.60 | 地下水 | 咸水 | D39 | 17.83 | 地下水 | 咸水 |
D17 | 18.72 | 地下水 | 咸水 | B1 | 0.59 | 地表水 | 淡水 |
D18 | 2.29 | 地下水 | 微咸水 | B2 | 38.76 | 地表水 | 咸水 |
D19 | 28.58 | 地下水 | 咸水 | B3 | 12.91 | 地表水 | 咸水 |
D20 | 32.12 | 地下水 | 咸水 | B4 | 7.53 | 地表水 | 咸水 |
D21 | 9.62 | 地下水 | 咸水 | B5 | 27.29 | 地表水 | 咸水 |
D22 | 38.05 | 地下水 | 咸水 | HH | 0.61 | 黄河水 | 淡水 |
D23 | 20.98 | 地下水 | 咸水 | SEA | 32.14 | 海水 | 咸水 |
Fig.7 Plots of the relationships between Sr2+, I-, Br/Cl and Cl-, and relationship between Ca2+and Sr2+ in groundwater and surface water within the study area
[1] | 林学钰, 廖资生, 苏小四, 等. 黄河流域地下水资源及其开发利用对策[J]. 吉林大学学报(地球科学版), 2006, 36(5): 677-684. |
[2] | 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 94-114. |
[3] |
LEE K S, WENNER D B, LEE I. Using H- and O-isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island, Korea[J]. Journal of Hydrology, 1999, 222(1/2/3/4): 65-74.
DOI URL |
[4] |
MEHTA S, FRYAR A E, BANNER J L. Controls on the regional-scale salinization of the Ogallala aquifer, Southern High Plains, Texas, USA[J]. Applied Geochemistry, 2000, 15(6): 849-864.
DOI URL |
[5] | 侯国华, 高茂生, 党显璋. 唐山曹妃甸浅层地下水水化学特征及咸化成因[J]. 地学前缘, 2019, 26(6): 49-57. |
[6] |
KIM J H, KIM R H, LEE J, et al. Hydrogeochemical characterization of major factors affecting the quality of shallow groundwater in the coastal area at Kimje in South Korea[J]. Environmental Geology, 2003, 44(4): 478-489.
DOI URL |
[7] | 李海龙, 万力, 焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694. |
[8] | 吴吉春, 吴永祥, 林锦, 等. 黄渤海沿海地区地下水管理与海水入侵防治研究[J]. 中国环境管理, 2018, 10(2): 91-92. |
[9] |
GUAN H, LOVE A J, SIMMONS C T, et al. Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping[J]. Hydrology and Earth System Sciences, 2010, 14(5): 801-813.
DOI URL |
[10] |
HAN D M, SONG X F, CURRELL M J, et al. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China[J]. Journal of Hydrology, 2014, 508: 12-27.
DOI URL |
[11] |
BEN MOUSSA A, MZALI H, ZOUARI K, et al. Hydrochemical and isotopic assessment of groundwater quality in the Quaternary shallow aquifer, Tazoghrane region, north-eastern Tunisia[J]. Quaternary International, 2014, 338: 51-58.
DOI URL |
[12] | 郑西来, 任加国, 武倩倩, 等. 海水入侵过程中的水文地球化学作用研究[J]. 工程勘察, 2009, 37(3): 31-35. |
[13] |
ALMASRI M N. Nitrate contamination of groundwater: a conceptual management framework[J]. Environmental Impact Assessment Review, 2007, 27(3): 220-242.
DOI URL |
[14] |
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
DOI URL |
[15] |
PANG Z, KONG Y, LI J, et al. An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science, 2017, 17: 534-537.
DOI URL |
[16] |
JASECHKO S. Global isotope hydrogeology: a review[J]. Reviews of Geophysics, 2019, 57(3): 835-965.
DOI URL |
[17] |
BAKARI S S, AAGAARD P, VOGT R D, et al. Delineation of groundwater provenance in a coastal aquifer using statistical and isotopic methods, Southeast Tanzania[J]. Environmental Earth Sciences, 2012, 66(3): 889-902.
DOI URL |
[18] | CARRERA J, VÁZQUEZ-SUÑÉ E, CASTILLO O, et al. A methodology to compute mixing ratios with uncertain end-members[J]. Water Resources Research, 2004, 40(12): 3687-3696. |
[19] |
HAN D M, SONG X F, CURRELL M J, et al. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China[J]. Journal of Hydrology, 2014, 508: 12-27.
DOI URL |
[20] | 姚秀菊, 王洪德, 张福存, 等. 黄河三角洲地区地下淡水(微咸水)的形成与演化[J]. 地球学报, 2002, 23(4): 375-378. |
[21] | 王娟. 黄河三角洲地下水化学成分特征及其形成机制研究[D]. 青岛: 中国海洋大学, 2011. |
[22] | 柳强. 关于黄河三角洲浅层地下水补给及盐分来源的初步探讨[D]. 西安: 长安大学, 2012. |
[23] |
LIU Q, LI F D, LI J, et al. Geochemical and isotopic evidence of shallow groundwater salinization in a reclaimed coastal zone: the Yellow River Delta, China[J]. Environmental Earth Sciences, 2016, 75(14): 1-14.
DOI URL |
[24] | 周训. 深层地下卤水的基本特征与资源量分类[J]. 水文地质工程地质, 2013, 40(5): 4-10. |
[25] | 袁瑞强, 刘贯群, 宋献方. 现代黄河三角洲浅层地下水对降水的响应[J]. 资源科学, 2009, 31(9): 1514-1521. |
[26] | 王大纯, 张人权, 史毅虹, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995: 50-81. |
[27] | 侯国华, 高茂生, 党显璋, 等. 江苏盐城滨海地区浅层地下咸水的水盐来源及咸化成因[J]. 海洋地质与第四纪地质, 2021, 41(4): 48-59. |
[28] | 杨巧凤, 王瑞久, 徐素宁, 等. 莱州湾沿岸寿光、莱州和龙口地下水的稳定同位素与地球化学[J]. 地质学报, 2016, 90(4): 801-817. |
[29] | 彭聪, 何江涛, 廖磊, 等. 应用水化学方法识别人类活动对地下水水质影响程度: 以柳江盆地为例[J]. 地学前缘, 2017, 24(1): 321-331. |
[30] | 陆徐荣, 周爱国, 王茂亭, 等. Piper图解淮河流域江苏地区浅层地下水水质演化特征[J]. 工程勘察, 2010, 38(2): 42-47. |
[31] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI URL |
[32] |
PANNO S V, HACKLEY K C, HWANG H H, et al. Characterization and identification of Na-Cl sources in ground water[J]. Ground Water, 2006, 44(2): 176-187.
DOI URL |
[33] |
EDMUNDS W M, MA J Z, AESCHBACH-HERTIG W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China[J]. Applied Geochemistry, 2006, 21(12): 2148-2170.
DOI URL |
[34] |
LEYBOURNE M I, GOODFELLOW W D. Br/Cl ratios and O, H, C, and B isotopic constraints on the origin of saline waters from eastern Canada[J]. Geochimica et Cosmochimica Acta, 2007, 71(9): 2209-2223.
DOI URL |
[35] |
HAN D, KOHFAHL C, SONG X, et al. Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China[J]. Applied Geochemistry, 2011, 26(5): 863-883.
DOI URL |
[1] | LI Jiexiang, XU Yadong, LIN Wenjing. The applicability of traditional chemical geothermometers [J]. Earth Science Frontiers, 2024, 31(6): 145-157. |
[2] | ZHAO Zengfeng, WANG Chuyou, QIU Xiaocong, ZHOU Ruijuan, YANG Qiangqiang, ZHAO Ruizhi. Hydrochemical characteristics of surface water and genetic mechanism of high fluorine water in Qingshui River Basin in Ningxia [J]. Earth Science Frontiers, 2024, 31(6): 462-473. |
[3] | ZHANG Chunlai, YANG Hui, HUANG Fen, QIU Cheng, ZHU Tongbin. Hydrochemical characteristics and karst carbon sink effect of border polje river in subtropical monsoon region: A case study of the Qingbo River in Mashan County, Guangxi [J]. Earth Science Frontiers, 2024, 31(5): 377-386. |
[4] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[5] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[6] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[7] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[8] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[9] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[10] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[11] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[12] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[13] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[14] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[15] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||