Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 125-134.DOI: 10.13745/j.esf.sf.2023.2.33
Previous Articles Next Articles
JIN Yanlin1,2(), ZHANG Huitao1,2, LIU Yao1,2, JI Yuwen1
Received:
2022-10-20
Revised:
2023-01-30
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
JIN Yanlin, ZHANG Huitao, LIU Yao, JI Yuwen. Reservoir development characteristics and karst models for the “strata bound” karst reservoirs in the Tahe Oilfield[J]. Earth Science Frontiers, 2023, 30(6): 125-134.
[1] |
许模, 毛邦燕, 张强. 现代深部岩溶研究进展与展望[J]. 地球科学进展, 2008, 23(5): 495-500
DOI |
[2] | 夏日元, 唐健生, 罗伟权, 等. 油气田古岩溶与深岩溶研究新进展[J]. 中国岩溶, 2001, 20(1): 76. |
[3] | 高进. 对深部岩溶形成机制的认识[J]. 湘潭矿业学院学报, 1987(2): 64-68. |
[4] |
KLIMCHOUK A. Morphogenesis of hypogenic caves[J]. Geomorphology, 2009, 106(1/2): 100-117.
DOI URL |
[5] |
FORD D C, EWERS R O. The development of limestone cave systems in the dimensions of length and depth[J]. Canadian Journal of Earth Sciences, 1978, 15(11): 1783-1798.
DOI URL |
[6] | 康志宏. 塔河碳酸盐岩油藏岩溶古地貌研究[J]. 新疆石油地质, 2006, 27(5): 522-525. |
[7] | 张宇, 赵伦, 李长海, 等. 古岩溶油气储层研究进展[J]. 中国岩溶, 2022, 41(5): 808-824. |
[8] | 徐国强, 李国蓉, 刘树根, 等. 塔里木盆地早海西期多期次风化壳岩溶洞穴层[J]. 地质学报, 2005, 79(4): 557-568. |
[9] | 鲁新便. 塔里木盆地塔河油田奥陶系碳酸盐岩油藏开发地质研究中的若干问题[J]. 石油实验地质, 2003, 25(5): 508-512. |
[10] | 肖玉茹, 王敦则, 沈杉平. 新疆塔里木盆地塔河油田奥陶系古洞穴型碳酸盐岩储层特征及其受控因素[J]. 现代地质, 2003, 17(1): 92-98. |
[11] | 吕艳萍, 罗君兰, 王炯, 等. 塔河油田典型碳酸盐岩断溶体发育模式[J]. 西安石油大学学报(自然科学版), 2021, 36(1): 20-27. |
[12] | 胡文革. 塔里木盆地塔河油田潜山区古岩溶缝洞类型及其改造作用[J]. 石油与天然气地质, 2022, 43(1): 43-53. |
[13] | 焦方正, 窦之林. 塔河碳酸盐岩缝洞型油藏开发研究与实践[M]. 北京: 石油工业出版社, 2008. |
[14] | 张宝民, 刘静江. 中国岩溶储集层分类与特征及相关的理论问题[J]. 石油勘探与开发, 2009, 36(1): 12-29. |
[15] | 文智, 李启明, 张光亚, 等. 塔里木盆地台盆区中部中、上奥陶统台缘礁滩体发育特征与目标评价[R]. 北京: 中国石油勘探开发研究院, 2007: 141-280. |
[16] | 张恒, 蔡忠贤, 漆立新, 等. 塔中地区西北部鹰山组成岩早期岩溶作用类型及其特征[J]. 石油与天然气地质, 2016, 37(3): 291-303. |
[17] | JAMES N P, CHOQUETTE P W. Paleokarst[M]. New York: Springer-Verlag, 1988. |
[18] | 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部 “层控” 与 “断控” 型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469. |
[19] | 乔占峰, 沈安江, 张丽娟, 等. 塔北南缘中奥陶统顺层岩溶储层特征及成因[J]. 海相油气地质, 2012, 17(4): 27-33. |
[20] | 陈立官, 王洪辉, 陆正元, 等. 川南地区古岩溶与阳新统天然气局部富集关系的探讨[J]. 成都地质学院学报, 1992(4): 99-106. |
[21] | 李定龙, 贾疏源. 威远构造阳新灰岩岩溶隙洞系统发育演化特征[J]. 石油与天然气地质, 1994, 15(2): 151-157. |
[22] | 潘文庆, 刘永福, DICKSON J A D, 等. 塔里木盆地下古生界碳酸盐岩热液岩溶的特征及地质模型[J]. 沉积学报, 2009, 27(5): 983-994. |
[23] | 倪新锋, 张丽娟, 沈安江, 等. 塔北地区奥陶系碳酸盐岩古岩溶类型、期次及叠合关系[J]. 中国地质, 2009, 36(6): 1312-1321. |
[24] |
TAN XC, LIU H, LI L, et al. Primary intergranular pores in oolitic shoal reservoir of lower Triassic Feixianguan formation, Sichuan Basin, Southwest China: fundamental for reservoir formation and retention diagenesis[J]. Journal of Earth Science, 2011, 22(1): 101-114.
DOI URL |
[25] | 邓小江, 梁波, 莫耀汉, 等. 塔河油田奥陶系一间房组礁滩相储层特征及成因机制新认识[J]. 地质科技情报, 2007, 26(4): 63-69. |
[26] | 陈华鑫, 康志宏, 康志江. 塔河油田碳酸盐岩油藏古岩溶洞穴层状结构与形成机理[J]. 现代地质, 2022, 36(2): 695-708. |
[27] | 施奇. 塔河西部一间房组层序、 沉积相及储层发育分布规律研究[D]. 成都: 成都理工大学, 2015. |
[28] | 兰晓东, 吕修祥, 朱炎铭, 等. 走滑断裂与盖层复合成藏模式: 以塔中东部中古51井区鹰山组为例[J]. 石油与天然气地质, 2014, 35(1): 107-115. |
[29] | 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355. |
[30] | 韩长城, 林承焰, 鲁新便, 等. 塔河油田奥陶系碳酸盐岩岩溶斜坡断控岩溶储层特征及形成机制[J]. 石油与天然气地质, 2016, 37(5): 644-652. |
[31] | 韩长城, 林承焰, 任丽华, 等. 塔里木盆地塔河10区奥陶系断裂特征及对岩溶储层的控制作用[J]. 天然气地球科学, 2016, 27(5): 790-798. |
[32] | 周文, 李秀华, 金文辉, 等. 塔河奥陶系油藏断裂对古岩溶的控制作用[J]. 岩石学报, 2011, 27(8): 2339-2348. |
[33] | 邬兴威, 苑刚, 陈光新, 等. 塔河地区断裂对奥陶系古岩溶的控制作用[J]. 断块油气田, 2005, 12(3): 7-9, 89. |
[34] | 徐嘉宏. 塔河奥陶系油藏岩溶缝洞发育模式研究: 以塔河油田6-7区为例[D]. 北京: 中国地质大学(北京), 2021. |
[35] | 李源, 蔡忠贤, 张恒, 等. 塔河油田T738井区顺层岩溶储层特征及成因[J]. 地质科技情报, 2017, 36(2): 80-84. |
[1] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[2] | HAN Pengyuan, DING Wenlong, YANG Debin, DENG Guangxiao, WANG Zhen, MA Hailong, LÜ Jing, GENG Tian. Characteristics and main controlling factors of fracture development in the Ordovician carbonate reservoir, Tahe oilfield [J]. Earth Science Frontiers, 2024, 31(5): 209-226. |
[3] | MA Hailong, YANG Debin, WANG Zhen, ZHANG Juan, WU Bo, ZHANG Shiliang, YUAN Feiyu. Coupling relationship between strike-slip fault and paleokarst in Tahe Oilfield and its influence on the development of Ordovician reservoirs [J]. Earth Science Frontiers, 2024, 31(5): 227-246. |
[4] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[5] | MA Anlai, QI Lixin. Geochemical characteristics and phase behavior of the Ordovician ultra-deep reservoir fluid, No.4 fault, northern Shuntuoguole, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 247-262. |
[6] | ZHU Xiuxiang, CAO Zicheng, LONG Hui, ZENG Jianhui, HUANG Cheng, CHEN Xuyun. Experimental simulation and characteristics of hydrocarbon accumulation in strike-slip fault zone in Shunbei area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 289-304. |
[7] | LI Xi, ZHU Guangyou, LI Tingting, AI Yifei, ZHANG Yan, WANG Shan, CHEN Zhiyong, TIAN Lianjie. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence [J]. Earth Science Frontiers, 2023, 30(4): 352-375. |
[8] | ZHANG Juan, XIE Runcheng, YANG Min, GAO Zhiqian, WANG Ming, ZHANG Changjian, WANG Hong. Formation mechanism and distribution prediction of fine-fracture pores in the Lower Ordovician in Tahe oilfield [J]. Earth Science Frontiers, 2023, 30(4): 51-64. |
[9] | CHEN Xuan, LIU Wanghan, BAO Dian, ZHANG Liping, CHEN Lixiong, YANG Min, ZHANG Juan, LI Yingju, LI Guangye, JIA Yufeng. Ordovician palaeokarst caves in the Tahe oilfield: Burial age of cave fills and its implication for hydrocarbon reservoirs [J]. Earth Science Frontiers, 2023, 30(4): 65-75. |
[10] | BAO Hongping, WANG Qianping, YAN Wei, CAI Zhenghong, ZHENG Jie, WEI Liubin, HUANG Zhengliang, GUO Wei. Sedimentary characteristics and gas accumulation potential of the Ordovician carbonate-evaporite paragenesis system in central and eastern Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 30-44. |
[11] | ZHANG Ruifeng, TIAN Jianzhang, HUANG Yuanxin, TIAN Ran, REN Yi, BIAN Yingying, WANG Yuanjie, CHEN Ling, LU Shan. Formation conditions and reservoir forming models of Ordovician buried hill reservoirs in Jizhong Depression [J]. Earth Science Frontiers, 2023, 30(1): 45-54. |
[12] | ZENG Zhongcheng, HONG Zenglin, BIAN Xiaowei, CHEN Ning, ZHANG Ruoyu, LI Qi. Discovery of Late Ordovician sanukitoid-like diorite in southern Altyn orogeny and its geological significance [J]. Earth Science Frontiers, 2022, 29(4): 345-357. |
[13] | ZHANG Zhili, LI Huili, JIAO Cunli, GAO Xiaopeng. Stratigraphic division and correlation of the Ordovician Yingshan and Qrebake Formations in the Shuntogole area, Tarim Basin [J]. Earth Science Frontiers, 2021, 28(1): 90-103. |
[14] | JING Xiuchun, ZHOU Hongrui, WANG Xunlian, YANG Zhihua, FANG Qiang, WANG Zhentao, FAN Jie. A review on Ordovician conodont biostratigraphy of the North China Plate and new research advances on its northwestern margin [J]. Earth Science Frontiers, 2020, 27(6): 199-212. |
[15] | GUO Xianpu, WANG Shitao, GAI Zhikun, ZHAO Ziran, DING Xiaozhong, LI Tianfu. The Late Ordovician fish-like animal from Xinjiang [J]. Earth Science Frontiers, 2020, 27(6): 341-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||