Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 350-361.DOI: 10.13745/j.esf.sf.2025.3.41
Previous Articles Next Articles
XIE Xiangang1,2(), ZHAO Wenbin1, ZHANG Maoliang2,*(
), GUO Zhengfu1, XU Sheng2
Received:
2025-02-07
Revised:
2025-02-28
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
XIE Xiangang, ZHAO Wenbin, ZHANG Maoliang, GUO Zhengfu, XU Sheng. Carbon output fluxes of volcanic activity during typical geological periods on the Tibetan Plateau and related environmental implications[J]. Earth Science Frontiers, 2025, 32(3): 350-361.
火山岩区 | 样品编号 | 斑晶 | ν-/(cm-1) | ν+/(cm-1) | Δx/ (cm-1) | ρCO2/ (g·cm-3) | Vvap/ (μm-3) | VMI/ (μm-3) | Vmelt/ (μm-3) |
---|---|---|---|---|---|---|---|---|---|
查孜 | CHZ1303-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.24 | 45.9 | 240.6 | 194.7 |
CHZ1303-2-1-2 | 辉石 | 1 283.0 | 1 386.4 | 103.4 | 0.21 | 28.3 | 207.6 | 179.3 | |
CHZ1303-2-1-3 | 辉石 | 1 283.3 | 1 386.7 | 103.4 | 0.20 | 9.2 | 88.5 | 79.3 | |
CHZ1303-2-1-4 | 辉石 | 1 283.2 | 1 386.6 | 103.3 | 0.17 | 4.1 | 47.5 | 43.5 | |
CHZ1303-3-1-1 | 辉石 | 1 282.5 | 1 386.2 | 103.7 | 0.30 | 930.1 | 1 284.1 | 354.0 | |
CHZ1301-1-1-1 | 辉石 | 1 282.9 | 1 386.4 | 103.4 | 0.21 | 97.9 | 647.3 | 549.4 | |
CHZ1301-1-1-2 | 辉石 | 1 282.9 | 1 386.3 | 103.4 | 0.19 | 118.7 | 216.1 | 97.4 | |
CHZ1306-1-1-1 | 辉石 | 1 283.7 | 1 386.9 | 103.2 | 0.12 | 12 361.2 | 50 637.6 | 38 276.4 | |
CHZ1307-1-1-1 | 辉石 | 1 283.4 | 1 386.7 | 103.4 | 0.19 | 474.4 | 2 080.5 | 1 606.1 | |
CHZ1307-1-1-2 | 辉石 | 1 283.4 | 1 386.8 | 103.4 | 0.19 | 48.7 | 326.6 | 277.9 | |
CHZ1307-1-2-1 | 辉石 | 1 283.4 | 1 386.7 | 103.4 | 0.18 | 241.6 | 510.8 | 269.2 | |
CHZ1307-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.24 | 341.0 | 2 978.1 | 2 637.1 | |
CHZ1307-2-1-2 | 辉石 | 1 284.2 | 1 387.3 | 103.1 | 0.11 | 710.3 | 5 133.3 | 4 423.0 | |
米巴勒 | MBL1904-1-1-1 | 辉石 | 1 284.4 | 1 387.6 | 103.2 | 0.14 | 61.6 | 641.2 | 579.5 |
MBL1908-2-1-1 | 辉石 | 1 284.1 | 1 387.1 | 103.0 | 0.05 | 895.5 | 3 521.8 | 2 626.3 | |
MBL1908-2-2-1 | 辉石 | 1 283.7 | 1 386.8 | 103.1 | 0.09 | 1 434.9 | 25 828.6 | 24 393.7 | |
MBL1908-2-2-2 | 辉石 | 1 283.4 | 1 386.5 | 103.1 | 0.10 | 1 653.4 | 3 290.2 | 1 636.8 | |
MBL1908-2-2-3 | 辉石 | 1 283.6 | 1 386.8 | 103.2 | 0.13 | 1 334.1 | 17 619.3 | 16 285.1 | |
依布茶卡 | YBCK1302-1-1-1 | 辉石 | 1 282.8 | 1 386.4 | 103.6 | 0.28 | 1156.7 | 31 103.7 | 29 947.0 |
YBCK1302-1-1-2 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.22 | 25.9 | 445.1 | 419.2 | |
YBCK1302-1-2-1 | 辉石 | 1 283.2 | 1 386.7 | 103.5 | 0.23 | 103.9 | 2 293.6 | 2 189.7 | |
YBCK1302-2-1-1 | 辉石 | 1 283.3 | 1 386.7 | 103.4 | 0.18 | 141.1 | 1 637.3 | 1 496.2 | |
YBCK1302-2-2-1 | 辉石 | 1 283.7 | 1 386.9 | 103.2 | 0.11 | 743.6 | 5 605.6 | 4 862.0 | |
YBCK1302-3-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.22 | 107.0 | 736.9 | 629.9 | |
YBCK1302-3-2-1 | 辉石 | 1 282.8 | 1 386.2 | 103.4 | 0.21 | 360.3 | 4 481.7 | 4 121.4 | |
YBCK1313-1-1-1 | 辉石 | 1 283.1 | 1 386.6 | 103.5 | 0.21 | 111.5 | 2 279.3 | 2 167.9 | |
YBCK1313-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.23 | 147.5 | 3 851.5 | 3 704.0 | |
YBCK1313-3-1-1 | 辉石 | 1 282.9 | 1 386.4 | 103.5 | 0.23 | 53.9 | 3 112.0 | 3 058.2 | |
YBCK1313-3-2-1 | 辉石 | 1 282.8 | 1 386.3 | 103.5 | 0.24 | 11.5 | 404.1 | 392.6 | |
俄久买马 | EJU1303-1-1-1 | 辉石 | 1 283.0 | 1 386.6 | 103.6 | 0.27 | 27.8 | 587.1 | 559.3 |
EJU1303-1-2-1 | 辉石 | 1 282.8 | 1 386.2 | 103.4 | 0.21 | 17.2 | 241.1 | 223.8 | |
EJU1303-2-1-1 | 辉石 | 1 282.8 | 1 386.3 | 103.5 | 0.22 | 33.5 | 1 031.8 | 998.3 | |
鱼鳞山 | YLS30-1-1-1 | 辉石 | 1 284.2 | 1 387.3 | 103.1 | 0.09 | 2 080.1 | 0.0 | 0.0 |
YLS30-1-2-1 | 辉石 | 1 284.4 | 1 387.3 | 103.0 | 0.02 | 312.0 | 0.0 | 0.0 | |
YLS30-1-3-1 | 辉石 | 1 283.8 | 1 386.8 | 103.1 | 0.06 | 426.5 | 864.1 | 437.6 | |
YLS30-2-1-1 | 辉石 | 1 283.4 | 1 386.7 | 103.3 | 0.17 | 181.0 | 0.0 | 0.0 |
Table 1 Raman spectrometric analysis of volcanic melt inclusions in the study area
火山岩区 | 样品编号 | 斑晶 | ν-/(cm-1) | ν+/(cm-1) | Δx/ (cm-1) | ρCO2/ (g·cm-3) | Vvap/ (μm-3) | VMI/ (μm-3) | Vmelt/ (μm-3) |
---|---|---|---|---|---|---|---|---|---|
查孜 | CHZ1303-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.24 | 45.9 | 240.6 | 194.7 |
CHZ1303-2-1-2 | 辉石 | 1 283.0 | 1 386.4 | 103.4 | 0.21 | 28.3 | 207.6 | 179.3 | |
CHZ1303-2-1-3 | 辉石 | 1 283.3 | 1 386.7 | 103.4 | 0.20 | 9.2 | 88.5 | 79.3 | |
CHZ1303-2-1-4 | 辉石 | 1 283.2 | 1 386.6 | 103.3 | 0.17 | 4.1 | 47.5 | 43.5 | |
CHZ1303-3-1-1 | 辉石 | 1 282.5 | 1 386.2 | 103.7 | 0.30 | 930.1 | 1 284.1 | 354.0 | |
CHZ1301-1-1-1 | 辉石 | 1 282.9 | 1 386.4 | 103.4 | 0.21 | 97.9 | 647.3 | 549.4 | |
CHZ1301-1-1-2 | 辉石 | 1 282.9 | 1 386.3 | 103.4 | 0.19 | 118.7 | 216.1 | 97.4 | |
CHZ1306-1-1-1 | 辉石 | 1 283.7 | 1 386.9 | 103.2 | 0.12 | 12 361.2 | 50 637.6 | 38 276.4 | |
CHZ1307-1-1-1 | 辉石 | 1 283.4 | 1 386.7 | 103.4 | 0.19 | 474.4 | 2 080.5 | 1 606.1 | |
CHZ1307-1-1-2 | 辉石 | 1 283.4 | 1 386.8 | 103.4 | 0.19 | 48.7 | 326.6 | 277.9 | |
CHZ1307-1-2-1 | 辉石 | 1 283.4 | 1 386.7 | 103.4 | 0.18 | 241.6 | 510.8 | 269.2 | |
CHZ1307-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.24 | 341.0 | 2 978.1 | 2 637.1 | |
CHZ1307-2-1-2 | 辉石 | 1 284.2 | 1 387.3 | 103.1 | 0.11 | 710.3 | 5 133.3 | 4 423.0 | |
米巴勒 | MBL1904-1-1-1 | 辉石 | 1 284.4 | 1 387.6 | 103.2 | 0.14 | 61.6 | 641.2 | 579.5 |
MBL1908-2-1-1 | 辉石 | 1 284.1 | 1 387.1 | 103.0 | 0.05 | 895.5 | 3 521.8 | 2 626.3 | |
MBL1908-2-2-1 | 辉石 | 1 283.7 | 1 386.8 | 103.1 | 0.09 | 1 434.9 | 25 828.6 | 24 393.7 | |
MBL1908-2-2-2 | 辉石 | 1 283.4 | 1 386.5 | 103.1 | 0.10 | 1 653.4 | 3 290.2 | 1 636.8 | |
MBL1908-2-2-3 | 辉石 | 1 283.6 | 1 386.8 | 103.2 | 0.13 | 1 334.1 | 17 619.3 | 16 285.1 | |
依布茶卡 | YBCK1302-1-1-1 | 辉石 | 1 282.8 | 1 386.4 | 103.6 | 0.28 | 1156.7 | 31 103.7 | 29 947.0 |
YBCK1302-1-1-2 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.22 | 25.9 | 445.1 | 419.2 | |
YBCK1302-1-2-1 | 辉石 | 1 283.2 | 1 386.7 | 103.5 | 0.23 | 103.9 | 2 293.6 | 2 189.7 | |
YBCK1302-2-1-1 | 辉石 | 1 283.3 | 1 386.7 | 103.4 | 0.18 | 141.1 | 1 637.3 | 1 496.2 | |
YBCK1302-2-2-1 | 辉石 | 1 283.7 | 1 386.9 | 103.2 | 0.11 | 743.6 | 5 605.6 | 4 862.0 | |
YBCK1302-3-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.22 | 107.0 | 736.9 | 629.9 | |
YBCK1302-3-2-1 | 辉石 | 1 282.8 | 1 386.2 | 103.4 | 0.21 | 360.3 | 4 481.7 | 4 121.4 | |
YBCK1313-1-1-1 | 辉石 | 1 283.1 | 1 386.6 | 103.5 | 0.21 | 111.5 | 2 279.3 | 2 167.9 | |
YBCK1313-2-1-1 | 辉石 | 1 283.0 | 1 386.5 | 103.5 | 0.23 | 147.5 | 3 851.5 | 3 704.0 | |
YBCK1313-3-1-1 | 辉石 | 1 282.9 | 1 386.4 | 103.5 | 0.23 | 53.9 | 3 112.0 | 3 058.2 | |
YBCK1313-3-2-1 | 辉石 | 1 282.8 | 1 386.3 | 103.5 | 0.24 | 11.5 | 404.1 | 392.6 | |
俄久买马 | EJU1303-1-1-1 | 辉石 | 1 283.0 | 1 386.6 | 103.6 | 0.27 | 27.8 | 587.1 | 559.3 |
EJU1303-1-2-1 | 辉石 | 1 282.8 | 1 386.2 | 103.4 | 0.21 | 17.2 | 241.1 | 223.8 | |
EJU1303-2-1-1 | 辉石 | 1 282.8 | 1 386.3 | 103.5 | 0.22 | 33.5 | 1 031.8 | 998.3 | |
鱼鳞山 | YLS30-1-1-1 | 辉石 | 1 284.2 | 1 387.3 | 103.1 | 0.09 | 2 080.1 | 0.0 | 0.0 |
YLS30-1-2-1 | 辉石 | 1 284.4 | 1 387.3 | 103.0 | 0.02 | 312.0 | 0.0 | 0.0 | |
YLS30-1-3-1 | 辉石 | 1 283.8 | 1 386.8 | 103.1 | 0.06 | 426.5 | 864.1 | 437.6 | |
YLS30-2-1-1 | 辉石 | 1 283.4 | 1 386.7 | 103.3 | 0.17 | 181.0 | 0.0 | 0.0 |
火山岩区 | 样品编号 | ρCO2/ (g·cm-3)* | Vvap/ (μm-3) | Vmelt/ (μm-3) | w(CO2)/ 10-6 | w(CO2)/ % |
---|---|---|---|---|---|---|
查孜 | CHZ1303-2-1-1 | 0.24 | 45.9 | 194.7 | 20 432.6 | 2.04 |
CHZ1303-2-1-2 | 0.21 | 28.3 | 179.3 | 12 188.0 | 1.22 | |
CHZ1301-1-1-1 | 0.21 | 97.9 | 549.4 | 13 780.6 | 1.38 | |
CHZ1306-1-1-1 | 0.12 | 12 361.2 | 38 276.4 | 14 058.3 | 1.41 | |
CHZ1307-1-1-1 | 0.19 | 474.4 | 1 606.1 | 19 767.6 | 1.98 | |
CHZ1307-1-1-2 | 0.19 | 48.7 | 277.9 | 11 841.0 | 1.18 | |
CHZ1307-2-1-2 | 0.11 | 710.3 | 4 423.0 | 6 474.3 | 0.65 | |
平均值 | 1.41 | |||||
米巴勒 | MBL1904-1-1-1 | 0.14 | 61.6 | 579.5 | 5 544.3 | 0.55 |
MBL1908-2-2-1 | 0.09 | 1 434.9 | 24 393.7 | 2 028.4 | 0.20 | |
MBL1908-2-2-3 | 0.13 | 1 334.1 | 16 285.1 | 3 953.4 | 0.40 | |
平均值 | 0.38 | |||||
依布茶卡 | YBCK1302-1-1-1 | 0.28 | 1 156.7 | 29 947.0 | 3 886.4 | 0.39 |
YBCK1302-1-1-2 | 0.22 | 25.9 | 419.2 | 4 965.7 | 0.50 | |
YBCK1302-1-2-1 | 0.23 | 103.9 | 2 189.7 | 3 905.7 | 0.39 | |
YBCK1302-2-1-1 | 0.18 | 141.1 | 1 496.2 | 6 349.3 | 0.63 | |
YBCK1302-3-2-1 | 0.21 | 360.3 | 4 121.4 | 6 622.5 | 0.66 | |
YBCK1313-1-1-1 | 0.21 | 111.5 | 2 167.9 | 4 031.8 | 0.40 | |
YBCK1313-2-1-1 | 0.23 | 147.5 | 3 704.0 | 3 399.8 | 0.34 | |
平均值 | 0.47 | |||||
俄久买马 | EJU1303-1-1-1 | 0.27 | 27.8 | 559.3 | 4 819.1 | 0.48 |
EJU1303-1-2-1 | 0.21 | 17.2 | 223.8 | 5 789.2 | 0.58 | |
EJU1303-2-1-1 | 0.22 | 33.5 | 998.3 | 2 674.7 | 0.27 | |
平均值 | 0.44 | |||||
鱼鳞山 | YLS30-1-3-1 | 0.06 | 426.5 | 437.6 | 21 959.7 | 2.20 |
Table 2 CO2 concentration in melt inclusion samples in the study area
火山岩区 | 样品编号 | ρCO2/ (g·cm-3)* | Vvap/ (μm-3) | Vmelt/ (μm-3) | w(CO2)/ 10-6 | w(CO2)/ % |
---|---|---|---|---|---|---|
查孜 | CHZ1303-2-1-1 | 0.24 | 45.9 | 194.7 | 20 432.6 | 2.04 |
CHZ1303-2-1-2 | 0.21 | 28.3 | 179.3 | 12 188.0 | 1.22 | |
CHZ1301-1-1-1 | 0.21 | 97.9 | 549.4 | 13 780.6 | 1.38 | |
CHZ1306-1-1-1 | 0.12 | 12 361.2 | 38 276.4 | 14 058.3 | 1.41 | |
CHZ1307-1-1-1 | 0.19 | 474.4 | 1 606.1 | 19 767.6 | 1.98 | |
CHZ1307-1-1-2 | 0.19 | 48.7 | 277.9 | 11 841.0 | 1.18 | |
CHZ1307-2-1-2 | 0.11 | 710.3 | 4 423.0 | 6 474.3 | 0.65 | |
平均值 | 1.41 | |||||
米巴勒 | MBL1904-1-1-1 | 0.14 | 61.6 | 579.5 | 5 544.3 | 0.55 |
MBL1908-2-2-1 | 0.09 | 1 434.9 | 24 393.7 | 2 028.4 | 0.20 | |
MBL1908-2-2-3 | 0.13 | 1 334.1 | 16 285.1 | 3 953.4 | 0.40 | |
平均值 | 0.38 | |||||
依布茶卡 | YBCK1302-1-1-1 | 0.28 | 1 156.7 | 29 947.0 | 3 886.4 | 0.39 |
YBCK1302-1-1-2 | 0.22 | 25.9 | 419.2 | 4 965.7 | 0.50 | |
YBCK1302-1-2-1 | 0.23 | 103.9 | 2 189.7 | 3 905.7 | 0.39 | |
YBCK1302-2-1-1 | 0.18 | 141.1 | 1 496.2 | 6 349.3 | 0.63 | |
YBCK1302-3-2-1 | 0.21 | 360.3 | 4 121.4 | 6 622.5 | 0.66 | |
YBCK1313-1-1-1 | 0.21 | 111.5 | 2 167.9 | 4 031.8 | 0.40 | |
YBCK1313-2-1-1 | 0.23 | 147.5 | 3 704.0 | 3 399.8 | 0.34 | |
平均值 | 0.47 | |||||
俄久买马 | EJU1303-1-1-1 | 0.27 | 27.8 | 559.3 | 4 819.1 | 0.48 |
EJU1303-1-2-1 | 0.21 | 17.2 | 223.8 | 5 789.2 | 0.58 | |
EJU1303-2-1-1 | 0.22 | 33.5 | 998.3 | 2 674.7 | 0.27 | |
平均值 | 0.44 | |||||
鱼鳞山 | YLS30-1-3-1 | 0.06 | 426.5 | 437.6 | 21 959.7 | 2.20 |
所属地块 | 火山岩区 | 纬度 °N | 经度 °E | 面积/ km2 | 厚度/ m | 体积/ km3 | 年龄/ Ma | 火山岩 类型 | 数据 来源 |
---|---|---|---|---|---|---|---|---|---|
拉萨地块 | 狮泉河 | 32.5 | 80.2 | >20 | n.d. | n.d. | 24.0~21.2 | 富钾 | [ |
查加寺 | 32.05 | 81.26 | >100 | n.d. | n.d. | 24.0~23.9 | 富钾 | [ | |
革吉 | 32.2 | 81.25 | 200 | >2 000 | 400 | 25.4~23.3 | 富钾 | [ | |
米巴勒* | 30.8 | 86.6 | 20 | 883 | 17.66 | 24.0~21.2 | 富钾 | - | |
孔隆乡 | 30.1 | 86 | 81 | n.d. | n.d. | 21.4~21.3 | 富钾 | [ | |
雄巴 | 32 | 81.9 | >600 | 190~310 | 120 | 24.1~18.1 | 富钾 | [ | |
学那 | 31.5 | 82.35 | <1 | n.d. | n.d. | 18.5~15.5 | 富钾 | [ | |
赛利普* | 31.35 | 82.75 | 188 | 1~100 | 9.4 | 18.5~15.5 | 富钾 | - | |
布嘎寺* | 31.5 | 84.4 | >400 | >300 | 120 | 16.2~15.6 | 富钾 | - | |
麦嘎 | 30.82 | 84.43 | 1 | 100 | 0.1 | 17.4~16.1 | 富钾 | [ | |
文部 | 31.1 | 86.5 | <1 | n.d. | n.d. | 22.9~17.8 | 富钾 | [ | |
亚仟 | 30.97 | 86.44 | 48 | n.d. | n.d. | 14.2~13.4 | 富钾 | [ | |
仪仟 | 30.75 | 86.7 | 10 | n.d. | n.d. | 13.5~11.2 | 富钾 | [ | |
查孜* | 30 | 86.5 | 300 | 517~883 | 150 | 13.3~8.2 | 富钾 | - | |
Pabbai Zong | 29.32 | 87 | <1 | n.d. | n.d. | 18.3~13.3 | 富钾 | [ | |
南木林 | 29.4 | 89.4 | >10 | n.d. | n.d. | 15.3~10.9 | 富钾 | [ | |
麻江 | 29.7 | 89.9 | 0.04 | >80 | 0.003 2 | 15.8~10.1 | 富钾 | [ | |
羊应 | 29.6 | 90.3 | 10 | 800 | 8 | 11.4~10.3 | 富钾 | [ | |
羌塘地块 | 松西 | 34.41 | 80.28 | n.d. | 674 | n.d. | 36.7~32.7 | 富钠 | [ |
走沟茶错 | 33.12 | 85.11 | 120 | n.d. | n.d. | 34.8~30.5 | 富钠 | [ | |
那丁错 | 32.61 | 85.4 | 700 | n.d. | n.d. | 36.2~34.2 | 富钠 | [ | |
依布茶卡 | 32.98 | 86.65 | 3 | >20 | 0.06 | 30.4~27.3 | 富钠 | [ | |
俄久买马* | 32.22 | 86.81 | 15 | >300 | 4.5 | 34.3~34.2 | 富钠 | - | |
峰火山 | 34.97 | 92.6 | 10 | 70 | 0.7 | 27.8~27.5 | 富钾 | [ | |
类乌齐 | 31.38 | 96.54 | 0.4 | 2 | 0.000 8 | 30.54 | 富钾 | [ | |
鱼鳞山 | 33.85 | 83.37 | 150 | >65 | 9.75 | 29.3~27.8 | 富钾 | [ | |
戈木错 | 33.99 | 85.5 | 40 | 200 | 8 | 30.6~29.8 | 富钠 | [ | |
巴毛琼宗 | 34.77 | 87.18 | 300 | 50~300 | 15 | 33.9~24.4 | 富钠 | [ |
Table 3 Volcanic rock parameters of the Lhasa and Qiangtang block
所属地块 | 火山岩区 | 纬度 °N | 经度 °E | 面积/ km2 | 厚度/ m | 体积/ km3 | 年龄/ Ma | 火山岩 类型 | 数据 来源 |
---|---|---|---|---|---|---|---|---|---|
拉萨地块 | 狮泉河 | 32.5 | 80.2 | >20 | n.d. | n.d. | 24.0~21.2 | 富钾 | [ |
查加寺 | 32.05 | 81.26 | >100 | n.d. | n.d. | 24.0~23.9 | 富钾 | [ | |
革吉 | 32.2 | 81.25 | 200 | >2 000 | 400 | 25.4~23.3 | 富钾 | [ | |
米巴勒* | 30.8 | 86.6 | 20 | 883 | 17.66 | 24.0~21.2 | 富钾 | - | |
孔隆乡 | 30.1 | 86 | 81 | n.d. | n.d. | 21.4~21.3 | 富钾 | [ | |
雄巴 | 32 | 81.9 | >600 | 190~310 | 120 | 24.1~18.1 | 富钾 | [ | |
学那 | 31.5 | 82.35 | <1 | n.d. | n.d. | 18.5~15.5 | 富钾 | [ | |
赛利普* | 31.35 | 82.75 | 188 | 1~100 | 9.4 | 18.5~15.5 | 富钾 | - | |
布嘎寺* | 31.5 | 84.4 | >400 | >300 | 120 | 16.2~15.6 | 富钾 | - | |
麦嘎 | 30.82 | 84.43 | 1 | 100 | 0.1 | 17.4~16.1 | 富钾 | [ | |
文部 | 31.1 | 86.5 | <1 | n.d. | n.d. | 22.9~17.8 | 富钾 | [ | |
亚仟 | 30.97 | 86.44 | 48 | n.d. | n.d. | 14.2~13.4 | 富钾 | [ | |
仪仟 | 30.75 | 86.7 | 10 | n.d. | n.d. | 13.5~11.2 | 富钾 | [ | |
查孜* | 30 | 86.5 | 300 | 517~883 | 150 | 13.3~8.2 | 富钾 | - | |
Pabbai Zong | 29.32 | 87 | <1 | n.d. | n.d. | 18.3~13.3 | 富钾 | [ | |
南木林 | 29.4 | 89.4 | >10 | n.d. | n.d. | 15.3~10.9 | 富钾 | [ | |
麻江 | 29.7 | 89.9 | 0.04 | >80 | 0.003 2 | 15.8~10.1 | 富钾 | [ | |
羊应 | 29.6 | 90.3 | 10 | 800 | 8 | 11.4~10.3 | 富钾 | [ | |
羌塘地块 | 松西 | 34.41 | 80.28 | n.d. | 674 | n.d. | 36.7~32.7 | 富钠 | [ |
走沟茶错 | 33.12 | 85.11 | 120 | n.d. | n.d. | 34.8~30.5 | 富钠 | [ | |
那丁错 | 32.61 | 85.4 | 700 | n.d. | n.d. | 36.2~34.2 | 富钠 | [ | |
依布茶卡 | 32.98 | 86.65 | 3 | >20 | 0.06 | 30.4~27.3 | 富钠 | [ | |
俄久买马* | 32.22 | 86.81 | 15 | >300 | 4.5 | 34.3~34.2 | 富钠 | - | |
峰火山 | 34.97 | 92.6 | 10 | 70 | 0.7 | 27.8~27.5 | 富钾 | [ | |
类乌齐 | 31.38 | 96.54 | 0.4 | 2 | 0.000 8 | 30.54 | 富钾 | [ | |
鱼鳞山 | 33.85 | 83.37 | 150 | >65 | 9.75 | 29.3~27.8 | 富钾 | [ | |
戈木错 | 33.99 | 85.5 | 40 | 200 | 8 | 30.6~29.8 | 富钠 | [ | |
巴毛琼宗 | 34.77 | 87.18 | 300 | 50~300 | 15 | 33.9~24.4 | 富钠 | [ |
[1] | GUO Z, WILSON M, DINGWELL D B, et al. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic[J]. Nature Communications, 2021, 12(1): 3891. |
[2] | GUO Z, WILSON M. Late Oligocene-early Miocene transformation of postcollisional magmatism in Tibet[J]. Geology, 2019, 47(8): 776-780. |
[3] | ZHAO W, GUO Z, ZHENG G, et al. Subducting Indian lithosphere controls the deep carbon emission in Lhasa Terrane southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(7): e2022JB024250. |
[4] | ZHANG S H, JI W Q, CHEN H B, et al. Linking rapid eruption of the Linzizong volcanic rocks and Early Eocene Climatic Optimum (EECO): constraints from the Pana formation in the Linzhou and Pangduo basins, southern Tibet[J]. Lithos, 2023, 446-447. |
[5] | DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the south asian monsoon[J]. Geology, 2017, 45(3): 215-218. |
[6] | DING L, MAKSATBEK S, CAI F, et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences, 2017, 60(4): 635-651. |
[7] | PARSONS A J, HOSSEINI K, PALIN R M, et al. Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central tethys oceans[J]. Earth-Science Reviews, 2020, 208: 103084. |
[8] | HU X, GARZANTI E, WANG J, et al. The timing of India-Asia collision onset-facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299. |
[9] | TAMBURELLO G, PONDRELLI S, CHIODINI G, et al. Global-scale control of extensional tectonics on CO2 earth degassing[J]. Nature Communications, 2018, 9(1): 4608. |
[10] | SOBOLEV A V, DANYUSHEVSKY L V. Petrology and geochemistry of boninites from the north termination of the tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas[J]. Journal of Petrology, 1994, 35(5): 1183-1211. |
[11] | SOBOLEV A V, CHAUSSIDON M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle[J]. Earth and Planetary Science Letters, 1996, 137(1): 45-55. |
[12] | HAURI E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions[J]. Chemical Geology, 2002, 183(1): 115-141. |
[13] | KENT A J R. Melt inclusions in basaltic and related volcanic rocks[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 273-331. |
[14] | CANNATELLI C, DOHERTY A L, ESPOSITO R, et al. Understanding a volcano through a droplet: a melt inclusion approach[J]. Journal of Geochemical Exploration, 2016, 171: 4-19. |
[15] | MIRONOV N, PORTNYAGIN M, BOTCHARNIKOV R, et al. Quantification of the CO2 budget and H2O-CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure[J]. Earth and Planetary Science Letters, 2015, 425: 1-11. |
[16] | HARTLEY M E, MACLENNAN J, EDMONDS M, et al. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions[J]. Earth and Planetary Science Letters, 2014, 393: 120-131. |
[17] | MOORE L R, GAZEL E, TUOHY R, et al. Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets[J]. American Mineralogist, 2015, 100(4): 806-823. |
[18] | BLACK B A, GIBSON S A. Deep carbon and the life cycle of large igneous provinces[J]. Elements, 2019, 15(5): 319-324. |
[19] | CAPRIOLO M, MARZOLI A, ARADI L E, et al. Deep CO2 in the end-Triassic central atlantic magmatic province[J]. Nature Communications, 2020, 11(1): 1670. |
[20] | HERNANDEZ NAVA A, BLACK B A, GIBSON S A, et al. Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate[J]. Proceedings of the National Academy of Sciences, 2021, 118(14): e2007797118. |
[21] | 谢显刚, 赵文斌, 李晓光, 等. 拉萨地块西部碰撞后富钾火山作用CO2释放规模初探[J]. 岩石学报, 2024, 40(7): 2225-2237. |
[22] | QIN Z, DU Q, ZHANG G, et al. Origin and tectonic significance of Eocene sodic lamprophyres in the southern Qiangtang orogen, Tibet[J]. Journal of Asian Earth Sciences, 2023, 250: 105629. |
[23] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. |
[24] | 李才, 翟庆国, 陈文, 等. 青藏高原羌塘中部榴辉岩Ar-Ar定年[J]. 岩石学报, 2006, 22(12): 2843-2849. |
[25] | ZHU D C, ZHAO Z D, NIU Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454. |
[26] | JIANG Q Y, LI C, SU L, et al. Carboniferous arc magmatism in the Qiangtang area, northern Tibet: zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 100: 132-144. |
[27] | WANG X, CHOU I M, HU W, et al. Raman spectroscopic measurements of CO2 density: experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations[J]. Geochimica et Cosmochimica Acta, 2011, 75(14): 4080-4093. |
[28] | CHOU I M. Optical cells with fused silica windows for the study of geological fluids[M]. Raman spectroscopy applied to Earth sciences and cultural heritage. 2012: 227-247. |
[29] | DEVITRE C L, ALLISON C M, GAZEL E. A high-precision CO2 densimeter for Raman spectroscopy using a Fluid Density Calibration Apparatus[J]. Chemical Geology, 2021, 584, 120522. |
[30] | FALL A, TATTITCH B, BODNAR R J. Combined microthermometric and Raman spectroscopic technique to determine the salinity of H2O-CO2-NaCl fluid inclusions based on clathrate melting[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 951-964. |
[31] | LAMADRID H M, MOORE L R, MONCADA D, et al. Reassessment of the Raman CO2 densimeter[J]. Chemical Geology, 2017, 450: 210-222. |
[32] | PASSMORE E, MACLENNAN J, FITTON G, et al. Mush disaggregation in basaltic magma chambers: evidence from the ad 1783 laki eruption[J]. Journal of Petrology, 2012, 53(12): 2593-2623. |
[33] | MIRONOV N L, TOBELKO D P, SMIRNOV S Z, et al. Estimation of CO2 Content in the gas phase of melt inclusions using Raman spectroscopy: case study of inclusions in olivine from the Karymsky Volcano (Kamchatka)[J]. Russian Geology and Geophysics, 2020, 61(5/6): 600-610. |
[34] | WIESER P E, LAMADRID H, MACLENNAN J, et al. Reconstructing magma storage depths for the 2018 Kı̄lauean eruption from melt inclusion CO2 Contents: The importance of vapor bubbles[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(2): e2020GC009364. |
[35] | BORGHINI A, NICOLI G, FERRERO S, et al. The role of continental subduction in mantle metasomatism and carbon recycling revealed by melt inclusions in UHP eclogites[J]. Science Advances, 2023, 9(6): eabp9482. |
[36] | ARNAUD N O, VIDAL P, TAPPONNIER P, et al. The high K2O volcanism of northwestern Tibet: geochemistry and tectonic implications[J]. Earth and Planetary Science Letters, 1992, 111(2): 351-367. |
[37] | 胡文洁, 田世洪, 杨竹森, 等. 拉萨地块西段中新世查加寺钾质火山岩岩石成因: 岩石地球化学、年代学和Sr-Nd同位素约束[J]. 矿床地质, 2012, 31(4): 813-830. |
[38] | WANG Q, MCDERMOTT F, XU J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. |
[39] | CHEN J L, XU J F, KANG Z Q, et al. Origin of Cenozoic alkaline potassic volcanic rocks at KonglongXiang, Lhasa terrane, Tibetan Plateau: products of partial melting of a mafic lower-crustal source?[J]. Chemical Geology, 2010, 273(3/4): 286-299. |
[40] | 刘栋等. 青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J]. 岩石学报, 2011, 27(7): 2045-2059. |
[41] | MILLER C, SCHUSTER R, KLÖTZLI U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40(9): 1399-1424. |
[42] | 丁林, 岳雅慧, 蔡福龙, 等. 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 2006(9): 1252-1261. |
[43] | DING L, KAPP P, ZHONG D, et al. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865. |
[44] | WILLIAMS H, TURNER S, KELLEY S, et al. Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4): 339-342. |
[45] | ZHOU S, MO X, ZHAO Z, et al. 40Ar/39Ar geochronology of post-collisional volcanism in the middle Gangdese Belt, southern Tibet[J]. Journal of Asian Earth Sciences, 2010, 37(3): 246-258. |
[46] | NOMADE S, RENNE P R, MO X, et al. Miocene volcanism in the Lhasa block, Tibet: spatial trends and geodynamic implications[J]. Earth and Planetary Science Letters, 2004, 221(1/2/3/4): 227-243. |
[47] | 钟华明, 吕达, 童劲松, 等. 羌塘西北部松西地区新生代火山岩岩石地球化学特征及成因讨论[J]. 岩石矿物学杂志, 2009, 28(4): 339-348. |
[48] | 刘建峰, 迟效国, 赵秀羽, 等. 青藏高原北部新生代走构油茶错、纳丁错火山岩年代学、地球化学特征及其构造意义[J]. 岩石学报, 2009, 25(12): 3259-3274. |
[49] | DING L, KAPP P, YUE Y, et al. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet[J]. Earth and Planetary Science Letters, 2007, 254(1/2): 28-38. |
[50] | ROGER F, TAPPONNIER P, ARNAUD N, et al. An Eocene magmatic belt across central Tibet: mantle subduction triggered by the Indian collision?[J]. Terra Nova, 2000, 12(3): 102-108. |
[51] | 邱军强, 强巴扎西. 藏东类乌齐地区古近纪钾质火山岩的发现及特征[J]. 地质学刊, 2011, 35(3): 241-246. |
[52] | DING L, ZHOU Y, ZHANG J, et al. Geologic relationships and geochronology of the Cenozoic volcanoes and interbedded weathered mantles of Yulinshan in Qiangtang, North Tibet[J]. Chinese Science Bulletin, 2000, 45(24): 2214-2220. |
[53] | 翟庆国, 李才, 王军, 等. 藏北羌塘戈木错北部新生代钾质火山岩40Ar/39Ar定年[J]. 地质通报, 2009, 28(9): 1221-1228. |
[54] | 李佑国, 马润则, 伊海生, 等. 藏北火车头山新生代火山岩的岩石特征与时代[J]. 成都理工大学学报(自然科学版), 2005(5): 441-446. |
[55] | HÖNISCH B, ROYER D L, BREECKER D O, et al. Toward a Cenozoic history of atmospheric CO2[J]. Science, 2023, 382(6675): 1-10. |
[56] | LIU W, ZHANG M, LIU Y, et al. Massive crustal carbon mobilization and emission driven by India underthrusting Asia[J]. Communications Earth & Environment, 2024, 5(1): 271. |
[1] | CUI Hao, WEI Gangjian. The weathering evolution during the Eocene-Oligocene Transition in the surrounding regions of the Tibetan Plateau and its response to global and regional climate changes [J]. Earth Science Frontiers, 2025, 32(3): 274-287. |
[2] | CAO Chenxi, ZHANG Maoliang, WANG Lisheng, WANG Xuefeng, DUAN Wuhui, XU Sheng. Preliminary study on hydrothermal CO2 flux from active fault zones in southern Tibet: Constraints from travertine geochronology and geochemistry [J]. Earth Science Frontiers, 2025, 32(3): 334-349. |
[3] | LIU Xiaohui, LIU Yimin, DING Lin, GUO Xiaoyu, HUANG Xingfu, LI Huilin, GAO Rui. Crustal thickness evolution of the Central Lhasa Terrane inferred from trace elements in zircon of Tangra Yumco [J]. Earth Science Frontiers, 2025, 32(1): 343-366. |
[4] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[5] | SUN Haoran, DOU Jiale, LI Nan, WU Peng, DU Cong, DUAN Xianzhe. Prediction of volcanic CO2 flux based on random simulation: Taking the Mount Etna, Italy as an example [J]. Earth Science Frontiers, 2024, 31(4): 429-437. |
[6] | CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(5): 314-333. |
[7] | ZHANG Jin, ZHANG Beihang, ZHAO Heng, YUN Long, QU Junfeng, WANG Zhenyi, YANG Yaqi, ZHAO Shuo. Late Cenozoic deformation characteristics and mechanism of the Beishan-Alxa region [J]. Earth Science Frontiers, 2023, 30(5): 334-357. |
[8] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[9] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[10] | LIU Xiaoyu, YANG Wencai, CHEN Zhaoxi, QU Chen, YU Changqing. Attributes and evolution of the eastern massif in the Qinghai-Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(3): 233-241. |
[11] | WU Chen, CHEN Xuanhua, DING Lin. Tectonic evolution and Cenozoic deformation history of the Qilian orogen [J]. Earth Science Frontiers, 2023, 30(3): 262-281. |
[12] | CHEN Xueqian, ZHANG Lifei. Carbon sequestration, transport, transfer, and degassing: Insights into the deep carbon cycle [J]. Earth Science Frontiers, 2023, 30(3): 313-339. |
[13] | JIA Chengzao, CHEN Zhuxin, LEI Yongliang, WANG Lining, REN Rong, SU Nan, YANG Geng. Deformation mechanisms and structural models of the fold-thrust belts of central and western China [J]. Earth Science Frontiers, 2022, 29(6): 156-174. |
[14] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[15] | LI Bingshuai, YAN Maodu, ZHANG Weilin. Early Cenozoic rotation feature in the northern Qaidam marginal thrust belt and its tectonic implications [J]. Earth Science Frontiers, 2022, 29(4): 249-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||