Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 300-309.DOI: 10.13745/j.esf.sf.2021.9.54
Previous Articles Next Articles
SUN Hui1,2(), LIU Xiaodong1,3,*(
)
Received:
2021-06-22
Revised:
2021-07-07
Online:
2022-09-25
Published:
2022-08-24
Contact:
LIU Xiaodong
CLC Number:
SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances[J]. Earth Science Frontiers, 2022, 29(5): 300-309.
[1] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[2] | RUDDIMAN W F. Tectonic uplift and climate change[M]. Boston: Springer US, 1997. |
[3] | 刘晓东, DONG B W. 青藏高原隆升对亚洲季风-干旱环境演化的影响[J]. 科学通报, 2013, 58(28/29): 2906-2919. |
[4] |
KASAHARA A, SASAMORI T, WASHINGTON W M. Simulation experiments with a 12-layer stratospheric global circulation model. I. Dynamical effect of the Earth's orography and thermal influence of continentality[J]. Journal of the Atmospheric Sciences, 1973, 30(7): 1229-1251.
DOI URL |
[5] |
MANABE S, TERPSTRA T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Journal of the Atmospheric Sciences, 1974, 31(1): 3-42.
DOI URL |
[6] |
HAHN D G, MANABE S. The role of mountains in the South Asian monsoon circulation[J]. Journal of the Atmospheric Sciences, 1975, 32(8): 1515-1541.
DOI URL |
[7] |
KUTZBACH J E, GUETTER P J, RUDDIMAN W F, et al. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West: numerical experiments[J]. Journal of Geophysical Research Atmospheres, 1989, 94(D15): 18393.
DOI URL |
[8] |
RUDDIMAN W F, KUTZBACH J E. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West[J]. Journal of Geophysical Research Atmospheres, 1989, 94(D15): 18409.
DOI URL |
[9] |
KUTZBACH J E, PRELL W L, RUDDIMAN W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. The Journal of Geology, 1993, 101(2): 177-190.
DOI URL |
[10] | 钱永甫, 颜宏, 王谦谦, 等. 行星大气中地形效应的数值研究[M]. 北京: 科学出版社, 1988: 1-217. |
[11] | 刘晓东, 李力, 安芷生. 青藏高原隆升与欧亚内陆及北非的干旱化[J]. 第四纪研究, 2001, 21(2): 114-122. |
[12] |
LIU X D, YIN Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3/4): 223-245.
DOI URL |
[13] | 张冉, 姜大膀, 刘晓东, 等. 喜马拉雅-青藏高原不同子区域隆升对亚洲夏季气候演变影响的数值模拟[J]. 科学通报, 2012, 57(25): 2403-2412. |
[14] |
TANG H, MICHEELS A, ERONEN J T, et al. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments[J]. Climate Dynamics, 2013, 40(5/6): 1531-1549.
DOI URL |
[15] |
SHI Z G, SHA Y Y, LIU X D. Effect of Yunnan-Guizhou topography at the southeastern Tibetan Plateau on the Indian monsoon[J]. Journal of Climate, 2017, 30(4): 1259-1272.
DOI URL |
[16] |
SUN H, LIU X D. Impacts of the uplift of four mountain ranges on the arid climate and dust cycle of inland Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 167-179.
DOI URL |
[17] |
SHA Y Y, REN X, SHI Z G, et al. Influence of the Tibetan Plateau and its northern margins on the mid-latitude westerly jet over central Asia in summer[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 544: 109611.
DOI URL |
[18] |
LIU X D, SUN H, MIAO Y F, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 2015, 116: 1-14.
DOI URL |
[19] |
LIU X D, DONG B D, YIN Z Y, et al. Continental drift and plateau uplift control origination and evolution of Asian and Australian monsoons[J]. Scientific Reports, 2017, 7: 40344.
DOI URL |
[20] | 刘晓东, DONG B W, YIN Z Y, et al. 大陆漂移、高原隆升与新生代亚-非-澳洲季风区和干旱区演化[J]. 中国科学:地球科学, 2019, 49(7): 1059-1081. |
[21] |
CHARNEY J G, ELIASSEN A. A numerical method for predicting the perturbations of the middle latitude westerlies[J]. Tellus, 1949, 1(2): 38-54.
DOI URL |
[22] |
BOLIN B. On the influence of the Earth's orography on the general character of the westerlies[J]. Tellus, 1950, 2(3): 184-195.
DOI URL |
[23] |
SUTCLIFFE R C. The quasi-geostrophic advective wave in a baroclinic zonal current[J]. Quarterly Journal of the Royal Meteorological Society, 1951, 77(332): 226-234.
DOI URL |
[24] |
MANABE S, BROCCOLI A J. Mountains and arid climates of middle latitudes[J]. Science, 1990, 247(4939): 192-195.
DOI URL |
[25] |
BROCCOLI A J, MANABE S. The effects of orography on midlatitude northern hemisphere dry climates[J]. Journal of Climate, 1992, 5(11): 1181-1201.
DOI URL |
[26] | 钟大赉, 丁林. 东喜马拉雅构造结变形与运动学研究取得重要进展[J]. 中国科学基金, 1996, 10(1): 52-53. |
[27] |
LIU X D, GUO Q C, GUO Z T, et al. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift?[J]. National Science Review, 2015, 2(4): 403-416.
DOI URL |
[28] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
DOI URL |
[29] | 刘晓惠, 许强, 丁林. 差异抬升: 青藏高原新生代古高度变化历史[J]. 中国科学: 地球科学, 2017, 47(1): 40-56. |
[30] | 方小敏. 青藏高原隆升阶段性[J]. 科技导报, 2017, 35(6): 42-50. |
[31] | SPICER R A, SU T, VALDES P J, et al. Why ‘The uplift of the Tibetan Plateau' is a myth[J]. National Science Review, 2021, 8(1): nwaa091. |
[32] |
WANG C S, DAI J G, ZHAO X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621: 1-43.
DOI URL |
[33] |
MOLNAR P, BOOS W R, BATTISTI D S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 77-102.
DOI URL |
[34] |
LI J J, FANG X M, SONG C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423.
DOI URL |
[35] |
BOOS W R, KUANG Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 2010, 463: 218-222.
DOI URL |
[36] |
WU G, LIU Y, HE B, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2012, 2: 404.
DOI URL |
[37] |
CHEN G S, LIU Z, KUTZBACH J E. Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon[J]. Climate of the Past, 2014, 10(3): 1269-1275.
DOI URL |
[38] |
YU E T, ZHANG R, JIANG D B, et al. High-resolution simulation of Asian monsoon response to regional uplift of the Tibetan Plateau with regional climate model nested with global climate model[J]. Global and Planetary Change, 2018, 169: 34-47.
DOI URL |
[39] |
SUN H, LIU X D. Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions[J]. Climate Dynamics, 2021, 56(7/8): 2339-2358.
DOI URL |
[40] | 张冉, 刘晓东. 上新世以来构造隆升对亚洲夏季风气候变化的影响[J]. 地球物理学报, 2010, 53(12): 2817-2828. |
[41] |
SHA Y Y, SHI Z G, LIU X D, et al. Role of the Tian Shan mountains and Pamir plateau in increasing spatiotemporal differentiation of precipitation over interior Asia[J]. Journal of Climate, 2018, 31(19): 8141-8162.
DOI URL |
[42] |
BALDWIN J, VECCHI G. Influence of the Tian Shan on arid extratropical Asia[J]. Journal of Climate, 2016, 29(16): 5741-5762.
DOI URL |
[43] |
SHA Y Y, SHI Z G, LIU X D, et al. Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the East Asian monsoon[J]. Journal of Geophysical Research Atmospheres, 2015, 120(10): 4764-4782.
DOI URL |
[44] |
BOOS W R, KUANG Z. Sensitivity of the South Asian monsoon to elevated and non-elevated heating[J]. Scientific Reports, 2013, 3: 1192.
DOI URL |
[45] | LI S F, VALDES P J, FARNSWORTH A, et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia[J]. Science Advances, 2021, 7(5): eabc774. |
[46] |
SHI Z G, LIU X D, AN Z S, et al. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change[J]. Climate Dynamics, 2011, 37(11/12): 2289-2301.
DOI URL |
[47] |
SHI Z G, LIU X D, LIU Y M, et al. Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean[J]. Climate Dynamics, 2015, 44(11/12): 3067-3076.
DOI URL |
[48] | MOLNAR P, STOCK J M. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 2009, 28(3): TC3001. |
[49] |
SCOTESE C R. A continental drift flipbook[J]. The Journal of Geology, 2004, 112(6): 729-741.
DOI URL |
[50] |
ZHANG Z, FLATØY F, WANG H J, et al. Early Eocene Asian climate dominated by desert and steppe with limited monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 24-35.
DOI URL |
[51] |
ROE G H, DING Q H, BATTISTI D S, et al. A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma[J]. Journal of Geophysical Research Atmospheres, 2016, 121(10): 5453-5470.
DOI URL |
[52] |
LI X Y, ZHANG R, ZHANG Z S, et al. What enhanced the aridity in Eocene Asian inland: global cooling or early Tibetan Plateau uplift?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510: 6-14.
DOI URL |
[53] |
HUBER M, GOLDNER A. Eocene monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 3-23.
DOI URL |
[54] |
LICHT A, VAN CAPPELLE M, ABELS H A, et al. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 2014, 513: 501-506.
DOI URL |
[55] |
TARDIF D, FLUTEAU F, DONNADIEU Y, et al. The origin of Asian monsoons: a modelling perspective[J]. Climate of the Past, 2020, 16(3): 847-865.
DOI URL |
[56] |
BAATSEN M, VON DER HEYDT A S, HUBER M, et al. The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5[J]. Climate of the Past, 2020, 16(6): 2573-2597.
DOI URL |
[57] |
CHEN J, ZHAO P, WANG C, et al. Modeling east Asian climate and impacts of atmospheric CO2 concentration during the late Cretaceous (66 Ma)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 190-201.
DOI URL |
[58] |
FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 2019, 5(10): eaax1697.
DOI URL |
[59] |
SHUKLA A, MEHROTRA R C, SPICER R A, et al. Cool equatorial terrestrial temperatures and the South Asian monsoon in the early Eocene: evidence from the Gurha Mine, Rajasthan India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 412: 187-198.
DOI URL |
[60] |
SUN X J, WANG P X. How old is the Asian monsoon system? Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
DOI URL |
[61] |
GUO Z T, SUN B, ZHANG Z S, et al. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 2008, 4(3): 153-174.
DOI URL |
[62] |
ZHANG R, JIANG D B, RAMSTEIN G, et al. Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: a modeling study[J]. Earth and Planetary Science Letters, 2018, 484: 295-308.
DOI URL |
[63] |
ZHU C G, MENG J, HU Y Y, et al. East-central Asian climate evolved with the northward migration of the high proto-Tibetan Plateau[J]. Geophysical Research Letters, 2019, 46(14): 8397-8406.
DOI URL |
[64] |
ROWLEY D B, GARZIONE C N. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 463-508.
DOI URL |
[65] |
DING L, XU Q, YUE Y H, et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
DOI URL |
[66] |
BOTSYUN S P, SEPULCHRE P, DONNADIEU Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J]. Science, 2019, 363(6430): eaaq1436.
DOI URL |
[67] | 邓涛, 吴飞翔, 王世骐, 等. 古近纪/新近纪之交青藏高原陆地生态系统的重大转折[J]. 科学通报, 2019, 64(27): 2894-2906. |
[68] | SU T, FARNSWORTH A, SPICER R A, et al. No high Tibetan Plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav218. |
[69] |
BESSE J, COURTILLOT V, POZZI J P, et al. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture[J]. Nature, 1984, 311: 621-626.
DOI URL |
[70] | LIPPERT P C, VAN HINSBERGEN D J J, DUPONT-NIVET G. Early Cretaceous to present latitude of the central proto-Tibetan Plateau:a paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia[M]// Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau. Boulder: Geological Society of America, 2014. |
[71] |
XIE G, LI J F, WANG S Q, et al. Bridging the knowledge gap on the evolution of the Asian monsoon during 26-16 Ma[J]. The Innovation, 2021, 2(2): 100110.
DOI URL |
[72] |
SCHMITTNER A, SILVA T A M, FRAEDRICH K, et al. Effects of mountains and ice sheets on global ocean circulation[J]. Journal of Climate, 2011, 24(11): 2814-2829.
DOI URL |
[73] |
YANG H J, WEN Q. Investigating the role of the Tibetan Plateau in the formation of Atlantic meridional overturning circulation[J]. Journal of Climate, 2020, 33(9): 3585-3601.
DOI URL |
[74] |
SU B H, JIANG D B, ZHANG R, et al. Difference between the North Atlantic and Pacific meridional overturning circulation in response to the uplift of the Tibetan Plateau[J]. Climate of the Past, 2018, 14(6): 751-762.
DOI URL |
[1] | LIANG Wenxiang, LUO Zhen, CHEN Fulong, WANG Tongxia, AN Jie, LONG Aihua, HE Chaofei. Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble [J]. Earth Science Frontiers, 2024, 31(6): 450-461. |
[2] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[3] | HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees [J]. Earth Science Frontiers, 2024, 31(3): 59-67. |
[4] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[5] | LI Yudan, YOU Yuchun, ZENG Daqian, SHI Zhiliang, GU Shaohua, ZHANG Rui. Numerical simulation of water intrusion in wet gas reservoirs: A case study of the Changxing gas reservoir in Yuanba [J]. Earth Science Frontiers, 2023, 30(6): 341-350. |
[6] | ZHANG Yun, KANG Zhijiang, MA Junwei, ZHENG Huan, WU Dawei. A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model [J]. Earth Science Frontiers, 2023, 30(6): 365-370. |
[7] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[8] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[9] | SUN Zhe, ZHANG Bin, CHEN Dawei, LI Yutao, WANG Hanxun. Two-phase oil/water seepage in fractured granite rock mass: Insight from seepage visualization experiment and numerical simulation [J]. Earth Science Frontiers, 2023, 30(3): 465-475. |
[10] | HE Chaofei, LUO Chengyan, CHEN Fulong, LONG Aihua, TANG Hao. CMIP6 multi-model prediction of future climate change in the Hotan River Basin [J]. Earth Science Frontiers, 2023, 30(3): 515-528. |
[11] | SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies [J]. Earth Science Frontiers, 2022, 29(5): 342-354. |
[12] | TIAN Zhiping, ZHANG Ran, JIANG Dabang. Mid-Holocene climate in China and the East Asian monsoon: Insights from PMIP4 simulations [J]. Earth Science Frontiers, 2022, 29(5): 355-371. |
[13] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[14] | HU Zhaobin, WEI Jiangong, XIE Zhiyuan, ZHANG Huodai, ZHONG Guangfa. Research progress in global sea level change: A critical review on international ocean drilling [J]. Earth Science Frontiers, 2022, 29(4): 10-24. |
[15] | ZHANG Yang, XU Jishang, LI Guangxue, LIU Yong. ENSO-like patterns and its driving mechanism in Western Pacific Warm Pool during the glacial cycles [J]. Earth Science Frontiers, 2022, 29(4): 168-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||