Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 465-475.DOI: 10.13745/j.esf.sf.2022.12.54
Previous Articles Next Articles
SUN Zhe1(), ZHANG Bin1,2,*(
), CHEN Dawei1, LI Yutao1, WANG Hanxun1,2
Received:
2022-07-05
Revised:
2022-09-28
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
SUN Zhe, ZHANG Bin, CHEN Dawei, LI Yutao, WANG Hanxun. Two-phase oil/water seepage in fractured granite rock mass: Insight from seepage visualization experiment and numerical simulation[J]. Earth Science Frontiers, 2023, 30(3): 465-475.
组别 | D | R2 | δ/mm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a面 | b面 | a面 | b面 | a面 | b面 | ||||||
1 | 2.687 | 2.696 | 0.999 6 | 0.999 8 | 0.975 6 | 0.740 6 | |||||
2 | 2.620 | 2.661 | 0.999 7 | 0.999 7 | 0.565 7 | 0.634 3 | |||||
3 | 2.663 | 2.612 | 0.999 7 | 0.999 7 | 0.888 1 | 0.647 5 | |||||
4 | 2.730 | 2.640 | 0.999 7 | 0.999 7 | 0.634 3 | 0.585 8 | |||||
5 | 2.619 | 2.583 | 0.999 7 | 0.999 8 | 0.888 1 | 0.467 1 | |||||
6 | 2.742 | 2.695 | 0.999 8 | 0.999 6 | 0.922 5 | 1.128 4 |
Table 1 Calculated fractal parameters
组别 | D | R2 | δ/mm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a面 | b面 | a面 | b面 | a面 | b面 | ||||||
1 | 2.687 | 2.696 | 0.999 6 | 0.999 8 | 0.975 6 | 0.740 6 | |||||
2 | 2.620 | 2.661 | 0.999 7 | 0.999 7 | 0.565 7 | 0.634 3 | |||||
3 | 2.663 | 2.612 | 0.999 7 | 0.999 7 | 0.888 1 | 0.647 5 | |||||
4 | 2.730 | 2.640 | 0.999 7 | 0.999 7 | 0.634 3 | 0.585 8 | |||||
5 | 2.619 | 2.583 | 0.999 7 | 0.999 8 | 0.888 1 | 0.467 1 | |||||
6 | 2.742 | 2.695 | 0.999 8 | 0.999 6 | 0.922 5 | 1.128 4 |
材料 | 抗压强度/MPa | 弹性模量/MPa | 渗透系数/(m·s-1) |
---|---|---|---|
透明光敏树脂 | 79 | 2 000~3 000 | 10-12~10-10 |
花岗岩 | 75 | 35 000 | 10-8~10-7 |
Table 2 Comparison of physical and mechanical properties of resin materials and granite
材料 | 抗压强度/MPa | 弹性模量/MPa | 渗透系数/(m·s-1) |
---|---|---|---|
透明光敏树脂 | 79 | 2 000~3 000 | 10-12~10-10 |
花岗岩 | 75 | 35 000 | 10-8~10-7 |
参数 | 数值 | 单位 |
---|---|---|
水相黏度 | 0.001 | Pa·s |
油相黏度 | 0.003 4 | Pa·s |
水相密度 | 998 | kg/m3 |
油相密度 | 920 | kg/m3 |
渗流压力 | 50,100,150 | kPa |
隙宽 | 0.3,0.7,1.0 | mm |
分形维数 | 2.3,2.5,2.8 | |
标准差 | 0.5,0.7,1.0 | mm |
相界面张力系数 | 0.031 | N/m |
相界面厚度 | 0.000 5 | m |
Table 3 Parameters used in numerical simulation
参数 | 数值 | 单位 |
---|---|---|
水相黏度 | 0.001 | Pa·s |
油相黏度 | 0.003 4 | Pa·s |
水相密度 | 998 | kg/m3 |
油相密度 | 920 | kg/m3 |
渗流压力 | 50,100,150 | kPa |
隙宽 | 0.3,0.7,1.0 | mm |
分形维数 | 2.3,2.5,2.8 | |
标准差 | 0.5,0.7,1.0 | mm |
相界面张力系数 | 0.031 | N/m |
相界面厚度 | 0.000 5 | m |
Fig.7 Comparison of observed and simulated oil-flooding (a)/water-flooding (b) fronts at different time points resulting from piston-flow/fingered-flow movements
Fig.10 Variability of water displacement-time under oil flooding as functions of (from left) fluid pressure, fracture width, fractal dimension and fracture roughness
[1] | 国家能源局. 油气增储上产不可松懈(2015年)[EB/OL]. (2022-05-13)[2022-07-28]. http://www.nea.gov.cn/2022-05/13/c_1310592548.htm. |
[2] |
ZHANG B, WANG H X, WANG L, et al. Large-scale field test on abandoned deep anhydrite mine-out for reuse as crude oil storage: a case study[J]. Engineering Geology, 2020, 267: 105477.
DOI URL |
[3] |
ZHANG B, SHI L, YU X, et al. Assessing the water-sealed safety of an operating underground crude oil storage adjacent to a new similar cavern: a case study in China[J]. Engineering Geology, 2019, 249: 257-272.
DOI URL |
[4] |
BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332.
DOI URL |
[5] |
BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1/2): 1-54.
DOI URL |
[6] |
AYDAN Ö, SHIMIZU Y, KAWAMOTO T. The anisotropy of surface morphology characteristics of rock discontinuities[J]. Rock Mechanics and Rock Engineering, 1996, 29(1): 47-59.
DOI URL |
[7] |
EL-SOUDANI S M. Profilometric analysis of fractures[J]. Metallography, 1978, 11(3): 247-336.
DOI URL |
[8] |
TATONE B S A, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials[J]. Review of Scientific Instruments, 2009, 80(12): 125110.
DOI URL |
[9] |
BELEM T, HOMAND-ETIENNE F, SOULEY M. Quantitative parameters for rock joint surface roughness[J]. Rock Mechanics and Rock Engineering, 2000, 33(4): 217-242.
DOI URL |
[10] |
CHEN S J, ZHU W C, YU Q L, et al. Characterization of anisotropy of joint surface roughness and aperture by variogram approach based on digital image processing technique[J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 855-876.
DOI URL |
[11] | 孙辅庭, 佘成学, 蒋庆仁. 一种新的岩石节理面三维粗糙度分形描述方法[J]. 岩土力学, 2013, 34(8): 2238-2242. |
[12] | 陈世江, 朱万成, 于庆磊, 等. 基于多重分形特征的岩体结构面剪切强度研究[J]. 岩土力学, 2015, 36(3): 703-710, 718. |
[13] | 孙盛玥, 李迎春, 唐春安, 等. 天然岩石节理双阶粗糙度分形特征研究[J]. 岩石力学与工程学报, 2019, 38(12): 2502-2511. |
[14] |
DEHGHANI K, KAMATH J. High-temperature blowdown experiments in a vuggy carbonate core[J]. SPE Journal, 2001, 6(3): 283-287.
DOI URL |
[15] | CHIMA A, CHAVEZ E, CALDERON Z. An equation to predict two-phase relative permeability curves in fractures[C]// SPE Latin American and Caribbean petroleum engineering conference. Lima, Peru: SPE, 2010: SPE-138282-MS. |
[16] | CHIMA A, GEIGER S. An analytical equation to predict gas/water relative permeability curves in fractures[C]// SPE Latin America and Caribbean petroleum engineering conference. Mexico City, Mexico: SPE, 2012: SPE-152252-MS. |
[17] |
SHAD S, MAINI B B, GATES I D. Effect of gap and flow orientation on two-phase flow in an oil-wet gap: relative permeability curves and flow structures[J]. International Journal of Multiphase Flow, 2013, 57: 78-87.
DOI URL |
[18] |
XIONG Y, XIONG W L, CAI M J, et al. Laboratory experiments of well testing for fracture-cave carbonate gas reservoirs[J]. Petroleum, 2017, 3(3): 301-308.
DOI URL |
[19] | 宋兆杰, 杨柳, 侯吉瑞, 等. 缝洞型油藏裂缝内油水两相流动特征研究[J]. 西安石油大学学报(自然科学版), 2018, 33(4): 49-54. |
[20] | FUENTES-CRUZ G, CAMACHO-VELÁZQUEZ R, VASQUEZ-CRUZ M A. Pressure transient and decline curve behaviors for partially penetrating wells completed in naturally fractured-vuggy reservoirs[C]// SPE international petroleum conference. Puebla, Mexico: SPE, 2004: SPE-92116-MS. |
[21] | 刘建军, 冯夏庭, 刘先贵. 裂缝性砂岩油藏水驱效果的物理及数值模拟[J]. 岩石力学与工程学报, 2004, 23(14): 2313-2318. |
[22] | 黄朝琴, 高博, 王月英, 等. 基于模拟有限差分法的离散裂缝模型两相流动模拟[J]. 中国石油大学学报(自然科学版), 2014, 38(6): 97-105. |
[23] | 黄朝琴, 周旭, 刘礼军, 等. 缝洞型碳酸盐岩油藏流固耦合数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(1): 96-105. |
[24] |
王根久, 宋新民, 刘波, 等. 伊拉克A油田白垩系孔隙型生屑灰岩高渗透层成因及分布特征[J]. 地学前缘, 2022, 29(5): 483-496.
DOI |
[25] | 张菁, 谭锋奇, 王晓光, 等. 不同驱替方式下复模态微观孔隙原油动用规律: 以克拉玛依油田530井区八道湾组油藏为例[J]. 西安石油大学学报(自然科学版), 2022, 37(1): 58-65. |
[26] |
高俊, 夏露, 李英杰, 等. 柴达木盆地东部石炭系页岩气储层渗流特征研究[J]. 地学前缘, 2016, 23(5): 103-112.
DOI |
[27] |
何登发, 马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26(1): 1-12.
DOI |
[28] |
吴冬, 刘显太, 杜玉山, 等. 沾化凹陷渤南洼陷北带沙四上亚段致密储层成因机理[J]. 地学前缘, 2021, 28(1): 202-213.
DOI |
[29] | 姚军, 刘礼军, 孙海, 等. 复杂裂缝性致密油藏注水吞吐数值模拟及机制分析[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 108-117. |
[30] | 张亚衡, 周宏伟, 谢和平. 粗糙表面分形维数估算的改进立方体覆盖法[J]. 岩石力学与工程学报, 2005, 24(17): 3192-3196. |
[31] |
ZOU C J, WONG L N Y. Experimental studies on cracking processes and failure in marble under dynamic loading[J]. Engineering Geology, 2014, 173: 19-31.
DOI URL |
[32] |
JIANG C, ZHAO G F, ZHU J B, et al. Investigation of dynamic crack coalescence using a gypsum-like 3D printing material[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3983-3998.
DOI URL |
[33] | 李玉涛, 张彬, 石磊, 等. 模拟粗糙单-交叉裂隙多相渗流的可视化试验系统: CN212568387U[P]. 2021-02-19. |
[34] | 陈莹莹, 孙雷, 田同辉, 等. 裂缝性碳酸盐岩油藏可视化模型水驱油实验[J]. 断块油气田, 2012, 19(1): 92-94. |
[35] | 郑浩, 苏彦春, 张迎春, 等. 裂缝性油藏渗流特征及驱替机理数值模拟研究[J]. 油气地质与采收率, 2014, 21(4): 79-83, 116. |
[36] | 唐玄, 金之钧, 杨明慧, 等. 碳酸盐岩裂缝介质中微观二维油水运移聚集物理模拟实验研究[J]. 地质论评, 2006, 52(4): 570-576. |
[37] | 曲志浩, 孔令荣. 低渗透油层微观水驱油特征[J]. 西北大学学报(自然科学版), 2002, 32(4): 329-334. |
[1] | LIU Wei, ZHANG Hongrui, LUO Dike, JIA Pengfei, JIN Lijie, ZHOU Yonggang, LIANG Yunhan, WANG Zisheng, LI Chunjia. Petrogenesis of Paleoproterozoic granites in the Dondo area, northern Angola block: Geological response to the assembly of Columbia Supercontinent [J]. Earth Science Frontiers, 2024, 31(4): 237-257. |
[2] | YIN Qingqing, TANG Juxing, XIANG Xinkui, ZHAO Xiaoyan, WANG Fangyue, XU Yumin, GUO Hu, YU Zhendong, XIE Jinling, DAI Jingjing, PENG Bo. Petrogenesis of reductive S-type granites in the Pengshan district, northern Jiangxi Province, and their implications for tin enrichment: Insights from zircon trace elements [J]. Earth Science Frontiers, 2024, 31(3): 133-149. |
[3] | LI Guangjie, CHEN Yongqing, SHANG Zhi, LIU Shibo. Geochemical characteristics and petrogenesis of the Neoproterozoic Eshan highly fractionated I-type granites, western Yangtze block [J]. Earth Science Frontiers, 2024, 31(3): 20-39. |
[4] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[5] | HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees [J]. Earth Science Frontiers, 2024, 31(3): 59-67. |
[6] | LI Yudan, YOU Yuchun, ZENG Daqian, SHI Zhiliang, GU Shaohua, ZHANG Rui. Numerical simulation of water intrusion in wet gas reservoirs: A case study of the Changxing gas reservoir in Yuanba [J]. Earth Science Frontiers, 2023, 30(6): 341-350. |
[7] | ZHANG Yun, KANG Zhijiang, MA Junwei, ZHENG Huan, WU Dawei. A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model [J]. Earth Science Frontiers, 2023, 30(6): 365-370. |
[8] | ZHANG Qi, ZHAI Mingguo, WEI Chunjing, ZHOU Ligang, HUANG Guangyu, CHEN Wanfeng, JIAO Shoutao, TANG Jun, LIU Rui, YUAN Jie, WANG Zhen, WANG Yue, YUAN Fanglin. A new granitization theory: Discussion on the four-stage granitization theory [J]. Earth Science Frontiers, 2023, 30(6): 406-435. |
[9] | FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 134-150. |
[10] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
[11] | GUO Weikang, LI Guangming, FU Jiangang, ZHANG Hai, ZHANG Linkui, WU Jianyang, DONG Suiliang, YANG Yulin. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet [J]. Earth Science Frontiers, 2023, 30(5): 275-297. |
[12] | HUANG Chunmei, LI Guangming, FU Jiangang, LIANG Wei, ZHANG Zhi, WANG Yiyun. Early Miocene leucogranitic magmatism in Cuonadong, southern Tibet: Constraints from whole-rock geochemical and mineralogical characteristics [J]. Earth Science Frontiers, 2023, 30(5): 74-92. |
[13] | WANG Tao, LI Jiqing, HAN Jie, WANG Taishan, LI Yulong, YUAN Bowu. Geochemistry, geochronology and Hf isotopic characteristics of rare earth-bearing quartz syenite in eastern Dashuigou, East Kunlun [J]. Earth Science Frontiers, 2023, 30(4): 283-298. |
[14] | LUO Niangang, GAO Lianfeng, ZHANG Zhenguo, YIN Zhigang, CUI Jianyu, WU Junfei, XING Jie, DING Kai, GAO Chenyang, WANG Yue. Processes and mechanism of lithospheric thinning in the eastern North China Craton during the Early Cretaceous: Evidence from the Beidashan pluton, Liaoning Province [J]. Earth Science Frontiers, 2023, 30(3): 340-365. |
[15] | GUO Zhixin, YANG Yongtai, REN Yi, WANG Zhengqing, FENG Zhigang, CHEN Liang, TANG Zhenping. Emplacement and episodic denudation of basement granites from the southern Jiergalangtu Sag, Erlian Basin and its tectonic implications [J]. Earth Science Frontiers, 2023, 30(2): 259-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||