Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 314-333.DOI: 10.13745/j.esf.sf.2023.6.35
Previous Articles Next Articles
CHENG Yongzhi1(), GAO Rui1,2,*(
), LU Zhanwu1, LI Wenhui1, WANG Guangwen1, CHEN Si1, WU Guowei1, CAI Yuguo1
Received:
2023-06-06
Revised:
2023-06-20
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2023, 30(5): 314-333.
地壳厚度/km | vP/(km·s-1) | vP/(km·s-1) |
---|---|---|
0~20 | 5.80 | 3.36 |
20~50 | 6.50 | 3.75 |
>50 | 8.04 | 4.47 |
Table 1 Revised IASP91 crustal velocity structure model
地壳厚度/km | vP/(km·s-1) | vP/(km·s-1) |
---|---|---|
0~20 | 5.80 | 3.36 |
20~50 | 6.50 | 3.75 |
>50 | 8.04 | 4.47 |
序号 | 台站名 | 经度/(°) | 纬度/(°) | H/km | κ | σ | 构造单元 |
---|---|---|---|---|---|---|---|
1 | 63058 | 101.8 | 35.2 | 57.61 | 1.69 | 0.23 | 西秦岭 |
2 | 63056 | 102.3 | 35.2 | 57.40 | 1.70 | 0.24 | |
3 | 62359 | 102.5 | 35.2 | 51.58 | 1.80 | 0.28 | |
4 | 63055 | 102.4 | 35.4 | 55.80 | 1.74 | 0.25 | |
5 | 62361 | 102.9 | 35.2 | 54.56 | 1.64 | 0.21 | |
6 | 62350 | 103.1 | 35.0 | 52.80 | 1.72 | 0.24 | 临夏地块 |
7 | 62371 | 103.3 | 35.5 | 51.60 | 1.81 | 0.28 | |
8 | 62349 | 103.6 | 35.0 | 53.00 | 1.74 | 0.25 | |
9 | 62362 | 103.7 | 35.3 | 51.01 | 1.84 | 0.29 | |
10 | 62355 | 103.9 | 35.2 | 49.60 | 1.79 | 0.27 | |
11 | 62364 | 104.2 | 35.4 | 50.80 | 1.73 | 0.25 | |
12 | 62357 | 104.3 | 35.2 | 51.00 | 1.73 | 0.25 | 陇中地块 |
13 | 62348 | 104.6 | 34.9 | 47.60 | 1.75 | 0.26 | |
14 | 62372 | 104.6 | 35.6 | 50.91 | 1.74 | 0.25 | |
15 | 62368 | 105.0 | 35.5 | 46.03 | 1.90 | 0.31 | |
16 | 62351 | 105.0 | 35.0 | 45.40 | 1.69 | 0.23 | |
17 | 62360 | 105.2 | 35.2 | 46.40 | 1.79 | 0.27 | |
18 | 62366 | 105.5 | 35.4 | 49.20 | 1.75 | 0.27 | |
19 | 62352 | 105.5 | 35.1 | 45.60 | 1.72 | 0.24 | |
20 | 62363 | 106.0 | 35.3 | 43.99 | 1.85 | 0.29 | 六盘山构造带 |
21 | 62354 | 106.2 | 35.1 | 45.40 | 1.78 | 0.27 | |
22 | 62358 | 106.6 | 35.2 | 47.60 | 1.84 | 0.29 | |
23 | 61058 | 106.6 | 35.0 | 46.60 | 1.77 | 0.27 | |
24 | 62373 | 106.6 | 35.6 | 44.00 | 1.76 | 0.26 | |
25 | 62356 | 107.0 | 35.2 | 49.04 | 1.65 | 0.21 | |
26 | 62367 | 107.1 | 35.4 | 48.34 | 1.76 | 0.26 | 鄂尔多斯地块 |
27 | 62353 | 107.4 | 35.1 | 43.54 | 1.66 | 0.22 | |
28 | 62369 | 107.5 | 35.5 | 45.50 | 1.78 | 0.27 | |
29 | 61057 | 107.8 | 34.9 | 44.60 | 1.77 | 0.27 | |
30 | 61060 | 107.8 | 35.2 | 46.00 | 1.66 | 0.25 | |
31 | 62365 | 107.8 | 35.4 | 46.80 | 1.72 | 0.24 | |
32 | 61059 | 108.1 | 35.1 | 43.51 | 1.78 | 0.27 | |
33 | 62370 | 108.4 | 35.5 | 43.60 | 1.78 | 0.27 |
Table 2 Crustal thickness (H), velocity ratio (κ) and Poisson’s ratio (σ) beneath seismic stations
序号 | 台站名 | 经度/(°) | 纬度/(°) | H/km | κ | σ | 构造单元 |
---|---|---|---|---|---|---|---|
1 | 63058 | 101.8 | 35.2 | 57.61 | 1.69 | 0.23 | 西秦岭 |
2 | 63056 | 102.3 | 35.2 | 57.40 | 1.70 | 0.24 | |
3 | 62359 | 102.5 | 35.2 | 51.58 | 1.80 | 0.28 | |
4 | 63055 | 102.4 | 35.4 | 55.80 | 1.74 | 0.25 | |
5 | 62361 | 102.9 | 35.2 | 54.56 | 1.64 | 0.21 | |
6 | 62350 | 103.1 | 35.0 | 52.80 | 1.72 | 0.24 | 临夏地块 |
7 | 62371 | 103.3 | 35.5 | 51.60 | 1.81 | 0.28 | |
8 | 62349 | 103.6 | 35.0 | 53.00 | 1.74 | 0.25 | |
9 | 62362 | 103.7 | 35.3 | 51.01 | 1.84 | 0.29 | |
10 | 62355 | 103.9 | 35.2 | 49.60 | 1.79 | 0.27 | |
11 | 62364 | 104.2 | 35.4 | 50.80 | 1.73 | 0.25 | |
12 | 62357 | 104.3 | 35.2 | 51.00 | 1.73 | 0.25 | 陇中地块 |
13 | 62348 | 104.6 | 34.9 | 47.60 | 1.75 | 0.26 | |
14 | 62372 | 104.6 | 35.6 | 50.91 | 1.74 | 0.25 | |
15 | 62368 | 105.0 | 35.5 | 46.03 | 1.90 | 0.31 | |
16 | 62351 | 105.0 | 35.0 | 45.40 | 1.69 | 0.23 | |
17 | 62360 | 105.2 | 35.2 | 46.40 | 1.79 | 0.27 | |
18 | 62366 | 105.5 | 35.4 | 49.20 | 1.75 | 0.27 | |
19 | 62352 | 105.5 | 35.1 | 45.60 | 1.72 | 0.24 | |
20 | 62363 | 106.0 | 35.3 | 43.99 | 1.85 | 0.29 | 六盘山构造带 |
21 | 62354 | 106.2 | 35.1 | 45.40 | 1.78 | 0.27 | |
22 | 62358 | 106.6 | 35.2 | 47.60 | 1.84 | 0.29 | |
23 | 61058 | 106.6 | 35.0 | 46.60 | 1.77 | 0.27 | |
24 | 62373 | 106.6 | 35.6 | 44.00 | 1.76 | 0.26 | |
25 | 62356 | 107.0 | 35.2 | 49.04 | 1.65 | 0.21 | |
26 | 62367 | 107.1 | 35.4 | 48.34 | 1.76 | 0.26 | 鄂尔多斯地块 |
27 | 62353 | 107.4 | 35.1 | 43.54 | 1.66 | 0.22 | |
28 | 62369 | 107.5 | 35.5 | 45.50 | 1.78 | 0.27 | |
29 | 61057 | 107.8 | 34.9 | 44.60 | 1.77 | 0.27 | |
30 | 61060 | 107.8 | 35.2 | 46.00 | 1.66 | 0.25 | |
31 | 62365 | 107.8 | 35.4 | 46.80 | 1.72 | 0.24 | |
32 | 61059 | 108.1 | 35.1 | 43.51 | 1.78 | 0.27 | |
33 | 62370 | 108.4 | 35.5 | 43.60 | 1.78 | 0.27 |
Fig.6 (a) Surface relief pattern, (b) gravity anomaly and electrical resistivity plots, and Common Conversion Point (CCP) image along line AA' (AA' location see Fig.1)
[1] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
PMID |
[2] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[3] | 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学: D辑, 1996, 26(4): 289-295. |
[4] | 嵇少丞, 王茜, 杨文采. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义[J]. 地质学报, 2009, 83(3): 324-330. |
[5] |
CLARK M K, ROYDEN L H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(2): 703-706.
DOI URL |
[6] |
GAO R, ZHOU H, LU Z, et al. Deep seismic reflection profile reveals the deep process of continent-continent collision on the Tibetan Plateau[J]. Earth Science Frontiers, 2022, 29(2): 14-27.
DOI |
[7] | DING L, KAPP P, CAI F, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10): 652-667. |
[8] | 童蔚蔚, 王良书, 米宁, 等. 利用接收函数研究六盘山地区地壳上地幔结构特征[J]. 中国科学: D辑, 2007(增刊): 193-198. |
[9] |
LIU M J, MOONEY W D, LI S L, et al. Crustal structure of the northeastern margin of the Tibetan Plateau from the Songpan-Ganzi Terrane to the Ordos Basin[J]. Tectonophysics, 2006, 420(1/2): 253-266.
DOI URL |
[10] | 陈九辉, 刘启元, 李顺成, 等. 青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构[J]. 地球物理学报, 2005, 48(2): 333-342. |
[11] | 李文辉, 高锐, 王海燕, 等. 六盘山断裂带及其邻区地壳结构[J]. 地球物理学报, 2017, 60(6): 2265-2278. |
[12] |
SONG S G, ZHANG L F, NIU Y L, et al. Evolution from oceanic subduction to continental collision: a case study from the northern Tibetan Plateau based on geochemical and geochronological data[J]. Journal of Petrology, 2006, 47(3): 435-455.
DOI URL |
[13] |
BURCHFIEL B C, ZHANG P, WANG Y, et al. Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern Margin of the Tibetan Plateau[J]. Tectonics, 1992, 10(6): 1091-1110.
DOI URL |
[14] |
GAUDEMER Y, TAPPONNIER P, MEYER B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’ on the western Haiyuan Fault, Gansu (China)[J]. Geophysical Journal International, 1995, 120: 599-645.
DOI URL |
[15] |
TAYLOR M H, YIN A. Active faulting on the Tibetan Plateau and sounding regions relationships to earthquakes, contemporary strain, and late Cenozoic volcanism[J]. Geosphere, 2009, 5: 199-214.
DOI URL |
[16] |
XIN Z H, HAN J T, GAO R, et al. Electrical structure of the eastern segment of the Qilian orogenic belt revealed by 3-D inversion of magnetotelluric data: new insights into the evolution of the northeastern margin of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2021, 210(2): 104707.
DOI URL |
[17] | JIN S, ZHANG L T, JIN Y J, et al. Crustal electrical structure along the Hezuo-Dajing profile across the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2012, 55(12): 3979-3990. |
[18] | XIA S B, WANG X B, MIN G, et al. Crust and uppermost mantle electrical structure beneath Qilianshan Orogenic Belt and Alxa block in northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2019, 62(3): 950-966. |
[19] | HAN S, HAN J T, LIU G X, et al. Crust and upper mantle electrical structure and tectonic deformation of the northeastern margin of the Tibetan Plateau and the adjacent Ordos Block[J]. Chinese Journal of Geophysics, 2016, 59(11): 4126-4138. |
[20] | GUO X Y, GAO R, WANG H Y, et al. Crustal architecture beneath the Tibet-Ordos transition zone, NE Tibet, and the implications for plateau expansion[J]. Geophysical Research Letters, 2015, 42(24): 10631-10639. |
[21] |
TIAN X B, BAI Z M, KLEMPERER S L, et al. Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and Ordos block[J]. Earth and Planetary Science Letters, 2021, 554: 116700.
DOI URL |
[22] |
ZHANG P Z, SHEN Z K, WANG M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32: 809-812.
DOI URL |
[23] | 张国伟, 程顺有, 郭安林, 等. 秦岭—大别中央造山系南缘勉略古缝合带的再认识: 兼论中国大陆主体的拼合[J]. 地质通报, 2004, 23(9/10): 846-853. |
[24] |
GUO X Y, GAO R, LI S Z, et al. Lithospheric architecture and Deformation of NE Tibet: new insights on the interplay of regional tectonic processes[J]. Earth and Planetary Science Letters, 2016, 449: 89-95.
DOI URL |
[25] | 詹艳, 杨皓, 赵国泽, 等. 青藏高原东北缘海原构造带马东山阶区深部电性结构特征及其构造意义[J]. 地球物理学报, 2017, 60(6): 2371-2384. |
[26] |
CHENG Y Z, GAO R, LU Z W, et al. Meso-Cenozoic tectonic evolution of the Kexueshan Basin, northwestern Ordos, China: evidence from palaeo-tectonic stress fields analyses[J]. Frontiers in Earth Science, 2022, 10: 845475.
DOI URL |
[27] | 殷鸿福, 张克信. 中央造山带的演化及其特点[J]. 地球科学: 中国地质大学学报, 1998, 23: 438-441. |
[28] | 田勤俭, 丁国瑜. 青藏高原东北隅似三联点构造特征[J]. 中国地震, 1998, 14: 29-37. |
[29] | 李松林, 赖晓玲. 青藏高原东北缘似三联点构造的初步研究[J]. 大地测量与地球动力学, 2006, 26: 10-14. |
[30] | 程永志, 施炜, 赵国春, 等. 鄂尔多斯地块西缘科学山地区叠加变形分析[J]. 地球科学与环境学报, 2019, 41(2): 209-224. |
[31] | GAN W J, ZHANG P Z, SHEN Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Atmospheres-Solid Earth, 2007, 112: B08416. |
[32] |
LI S L, MOONEY W D, FAN J C. Crustal structure of mainland China from deep seismic sounding data[J]. Tectonophysics, 2006, 420(1/2): 239-252.
DOI URL |
[33] |
GAO R, WANG H, YIN A, et al. Tectonic development of the northeastern Tibetan Plateau as constrained by high-resolution deep seismic-reflection data[J]. Lithosphere, 2013, 5(6): 555-574.
DOI URL |
[34] |
TIAN X B, ZHANG Z J. Bulk crustal properties in NE Tibet and their implications for deformation model[J]. Gondwana Research, 2013, 24(2): 548-559.
DOI URL |
[35] | 刘启元, KIND R, 李顺成. 接收函数复谱比的最大或然性估计及非线性反演[J]. 地球物理学报, 1996, 39(4): 500-511. |
[36] |
ZHANG Z J, BAI Z M, KLEMPERER S L, et al. Crustal structure across northeastern Tibet from wide-angle seismic profiling: constraints on the Caledonian Qilian orogeny and its reactivation[J]. Tectonophysics, 2013, 606: 140-159.
DOI URL |
[37] | 滕吉文. 柴达木东盆地的深层地震反射波和地壳构造[J]. 地球物理学报, 1974, 17(2): 122-135. |
[38] | 曾融生, 丁志峰, 吴庆举. 青藏高原岩石圈构造及动力学过程研究[J]. 地球物理学报, 1994, 37(增刊I): 99-116. |
[39] | 崔作舟, 李秋生, 吴朝东, 等. 格尔木—额济纳旗地学断面的地壳结构与深部构造[J]. 地球物理学报, 1995, 38(增刊II): 15-28. |
[40] |
VERGNE J, WITTLINGER G, HUI Q, et al. Seismic evidence for stepwise thickening of the crust across the NE Tibetan Plateau[J]. Earth and Planetary Sciences Letters, 2002, 203(1): 25-33.
DOI URL |
[41] | 李秋生, 澎苏萍, 高锐, 等. 东昆仑大地震的深部构造背景[J]. 地球学报, 2004, 25(1): 11-16. |
[42] | KARPLUS M S, ZHAO W, KLEMPERER S L, et al. Injection of Tibetan crust beneath the south Qaidam Basin: evidence from INDEPTH IV wide-angle seismic data[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: B07301. |
[43] |
ZHANG Z J, KLEMPERER S, BAI Z M, et al. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China[J]. Gondwana Research, 2011, 19(4): 994-1007.
DOI URL |
[44] |
ZHENG D W, CLARK M K, ZHANG P Z, et al. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 2010, 6: 937-941.
DOI URL |
[45] | 嘉世旭, 张先康, 赵金仁, 等. 若尔盖盆地及周缘褶皱造山带地壳结构: 深地震测深结果[J]. 中国科学: 地球科学, 2009, 39(9): 1200-1208. |
[46] | WANG Q, GAO Y, SHI Y T, et al. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet Plateau: evidence from shear wave splitting of SKS, PKS and SKKS[J]. Chinese Journal of Geophysics, 2013, 56(3): 892-905. |
[47] | 刘明军, 李松林, 方盛明, 等. 利用地震波速研究青藏高原东北缘地壳组成及其动力学[J]. 地球物理学报, 2008, 51(2): 412-430. |
[48] |
GALVÉ A, HIRN A, JIANG M, et al. Modes of raising northeastern Tibet probed by explosion seismology[J]. Earth and Planetary Science Letters, 2002, 203(1): 35-43.
DOI URL |
[49] | 李永华, 吴庆举, 安张辉, 等. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报, 2006, 49(5): 1359-1368, |
[50] | 徐强, 赵俊猛. 接收函数方法的研究综述[J]. 地球物理学进展, 2008, 23: 1709-1716. |
[51] | 陈凌, 王旭, 王新, 等. 接收函数界面和波速成像研究进展与展望[J]. 地球与行星物理论评, 2022, 53(6): 1-22. |
[52] | AMMON C J, RANDALL G E, ZANDT G. On the nonuniqueness of Receiver function inversions[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B10): 15303-15318. |
[53] |
LANGSTON C A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves[J]. Journal of Geophysical Research, 1979, 84(B9): 4749-4762.
DOI URL |
[54] | TIAN X B, WU Q J, ZHANG Z J, et al. Joint imaging by teleseismic converted and multiple waves and its application in the INDEPTH-III passive seismic array[J]. Geophysical Research Letters, 2005, 32(10): 1029-2005. |
[55] |
OWENS T J, ZANDT G. Implications of crustal property variations for model of Tibetan Plateau evolution[J]. Nature, 1997, 387: 37-43.
DOI |
[56] |
YU C Q, ZHENG Y C, SHANG X F. Crazyseismic: a MATLAB GUI-based software package for passive seismic data preprocessing[J]. Seismological Research Letters, 2017, 88(2A): 410-415.
DOI URL |
[57] |
LIGORRIA J P, AMMON C J. Iterative deconvolution and receiver function estimation[J]. Bulletin of the seismological Society of America, 1999, 89(5): 1395-1400.
DOI URL |
[58] |
ZHU L P, KANAMORI H. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research, 2000, 105: 2969-2980.
DOI URL |
[59] | CHEN Y L NIU, F L, LIU R F, et al. Crustal structure beneath China from receiver function analysis[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B3): B03307. |
[60] |
TENG J W, ZHANG Z J, ZHANG X K, et al. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles[J]. Tectonophysics, 2013, 609: 202-216.
DOI URL |
[61] | 高锐, 马永生, 李秋生, 等. 松潘地块与西秦岭造山带下地壳的性质和关系: 深地震反射剖面的揭露[J]. 地质通报, 2006, 25(12): 1361-1367. |
[62] | 高锐, 王海燕, 王成善, 等. 青藏高原东北缘岩石圈缩短变形-深地震反射剖面再处理提供的证据[J]. 地球学报, 2011, 32(5): 513-520. |
[63] | KENNETT B L N, ENGDAHL E R. Travelimes for global earhquake locatin and phase ienfication[J]. Geophysical Journal Intermational, 1991, 105(2): 429-465. |
[64] |
WANG C Y, SANDVOL E, ZHU L, et al. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications[J]. Earth and Planetary Sciences Letters, 2014, 387: 198-211.
DOI URL |
[65] | 王兴臣, 丁志峰, 武岩, 等. 中国南北地震带北段及其周缘地壳厚度与泊松比研究[J]. 地球物理学报, 2017, 60(6): 2080-2090. |
[66] | 张国伟, 孟庆任, 赖绍聪. 秦岭造山带的结构构造[J]. 中国科学(B辑), 1995, 25(9): 994-1003. |
[67] | 程顺有, 张国伟, 李立. 秦岭造山带岩石圈电性结构及其地球动力学意义[J]. 地球物理学报, 2003, 46(3): 390-397. |
[68] | 刘启民, 赵俊猛, 卢芳, 等. 用接收函数方法反演青藏高原东北缘地壳结构[J]. 中国科学: 地球科学, 2014, 44: 668-679. |
[69] | 郭晓玉, 高锐, 高建荣, 等. 青藏高原东北缘马衔山断裂带构造属性的综合研究[J]. 地球物理学报, 2018, 61(2): 560-569. |
[70] | 陈一方, 陈九辉, 郭飚, 等. 鄂尔多斯西缘北段的地壳结构和块体间变形关系[J]. 地球物理学报, 2020, 63(3): 886-896. |
[71] |
CHRISTENSEN N I. Poisson’s ratio and crustal seismology[J]. Journal of Geophysical Research, 1996, 101(B2) : 3139-3156.
DOI URL |
[72] | 宫猛, 李信富, 张素欣, 等. 利用接收函数研究河北及邻区地壳厚度与泊松比分布特征[J]. 地震, 2015, 35(2): 34-42. |
[73] |
CHENG H, LU T Y, CAO D D. Coupled Lu-Hf and Sm-Nd geochronology constrains blueschist-facies metamorphism and closure timing of the Qilian Ocean in the North Qilian orogen[J]. Gondwana Research, 2016, 34: 99-108.
DOI URL |
[74] |
DARBY B J, RITTS B D. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold-thrust belt, China[J]. Earth and Planetary Sciences Letters, 2002, 205: 13-24.
DOI URL |
[75] |
HART S R, GLASSLEY W E, KARIG D E. Basalts and sea floor spreading behind the Mariana island arc[J]. Earth and Planetary Sciences Letters, 1972, 15(1): 12-18.
DOI URL |
[76] | HE S P, WANG H L, CHEN J L, et al. LA-ICPMS U-Pb zircon geochronology of basic dikes within maxianshan rock group in the central Qilian Mountains and its tectonic implications[J]. Journal of China University of Geosciences, 2008, 33(1): 35-45. |
[77] |
XIAO W J, WINDLEY B F, YONG Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 323-333.
DOI URL |
[78] | 裴先治, 刘会彬, 丁仨平, 等. 西秦岭天水地区李子园群变质火山岩的地球化学特征及其地质意义[J]. 大地构造与成矿学, 2006, 30(2): 193-205. |
[79] |
WU H Q, FENG Y M, SONG S G. Metamorphism and deformation of blueschist belts and their tectonic implications, North Qilian Mountains, China[J]. Journal of Metamorphic Geology, 1993, 11(4): 523-536.
DOI URL |
[80] |
XU Z Q, XU H F, ZHANG J X, et al. Proliferating terrane and its dynamics of the Caledonian subduction complex in the Nanshan Mountains, North Qilian Corridor[J]. Acta Geologica Sinica, 1994, 7(3): 225-241.
DOI URL |
[81] |
YANG J S, XU Z Q, ZHANG J X, et al. Early Palaeozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan Plateau and a paired subduction model[J]. Terra Nova, 2002, 14(5): 397-404.
DOI URL |
[82] |
LIN X, CHEN H, WYRWOLL K H, et al. The uplift history of the Haiyuan-Liupan Shan region northeast of the present Tibetan Plateau: integrated constraint from stratigraphy and thermochronology[J]. The Journal of Geology, 2011, 119(4): 372-393.
DOI URL |
[83] |
DONG Y, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, central China[J]. Gondwana Research, 2016, 29: 1-40.
DOI URL |
[84] | PENG H, WANG J, ZATTIN M, et al. Late Triassic-early Jurassic uplifting in eastern Qilian mountain and its geological significance: evidence from apatite fission track thermochronology[J]. Journal of China University of Geosciences, 2018, 43: 1983-1996. |
[85] |
PENG H, WANG J, LIU C, et al. Thermochronological constraints on the Meso-Cenozoic tectonic evolution of the Haiyuan-Liupanshan region, northeastern Tibetan Plateau[J]. Journal of Asian earth Sciences, 2019, 183: 103966.
DOI URL |
[86] | TANG X, GUO Z, CHEN H, et al. The study and petroleum prospect of thrust nappe in the west margin of Shaanxi-Gansu-Ningxia Basin[M]. Xi’an: Northwest University Press, 1992. |
[87] |
GUO P, LIU C Y, WANG J Q, et al. Detrital zircon geochronology of the Jurassic strata in the western Ordos Basin, North China: constraints on the provenance and its tectonic implication[J]. Geological Journal, 2018, 53: 1482-1499.
DOI URL |
[88] | PENG H, LIU X, LIU C, et al. Spatialtemporal evolution and the dynamic background of the translation of Mid-Late Mesozoic tectonic regimes of the Southwest Ordos Basin margin[J]. Acta Geologica Sinica, 2022, 96: 387-402. |
[89] |
GEHRELS G E, YIN A, WANG X F. Detrital-zircon geochronology of the northeastern Tibetan Plateau[J]. Geological Society of America Bulletin, 2003, 115(7): 881-896.
DOI URL |
[90] |
SONG S G, NIU Y L, SU L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4): 1378-1401.
DOI URL |
[91] |
ANDREW V Z, CHEN W, WANG Z Z. Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan-Tibetan oragen[J]. Lithosphere, 2019, 11(2): 209-231.
DOI URL |
[92] |
GUO P, LIU C, WANG J, et al. Detrital-zircon geochronology of the Jurassic coal-bearing strata in the western Ordos Basin, North China: evidences for multi-cycle sedimentation[J]. Geoscience Frontiers, 2018, 9: 1725-1743.
DOI URL |
[93] |
ZHAO J, LIU C, HUANG L, et al. Paleogeography reconstruction of a multi-stage modified intra-cratonic basin: a case study from the Jurassic Ordos Basin, western North China Craton[J]. Journal of Asian earth Sciences, 2019, 190: 104191.
DOI URL |
[94] | 刘池洋, 赵红格, 王锋, 等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报, 2005, 79(6): 737-747. |
[95] |
WANG G Z, LI S Z, LI X Y, et al. Destruction effect on Meso-Neoproterozoic oil-gas traps derived from Meso-Cenozoic deformation in the North China Craton[J]. Precambrian Research, 2019, 333: 105427.
DOI URL |
[96] |
DUVALL A R, CLARK M K, KIRBY E, et al. Low-temperature thermochronometry along the Kunlun and Haiyuan faults, NE Tibetan Plateau: evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 2013, 32: 1190-1211.
DOI URL |
[97] | SONG L J, MOU Q H, LI A R, et al. Fission-track thermal evolution history in the formation age of Yaoshan Formation[J]. Coal Geology & Exploration, 2013, 41(4): 1-4. |
[98] |
REN Z, XIAO H, LIU L, et al. The evidence of fission-track data for the study of tectonic thermal history in Qinshui Basin[J]. Chinese Science Bulletin, 2005, 50: 104-110.
DOI URL |
[99] | REN Z, YU Q, CUI J, et al. Thermal history and its controls on the oil and gas of the Ordos Basin[J]. Earth Science Frontiers, 2017, 24: 137-148. |
[100] |
PENG H, WANG J, LIU C, et al. Meso-Cenozoic growth of the eastern Qilian Shan, northeastern Tibetan Plateau margin: insight from borehole apatite fission-track thermochronology in the Xiji Basin[J]. Marine and Petroleum Geology, 2022, 143: 105798.
DOI URL |
[101] |
KAPP P, DECELLES P G, GEHRELS G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119: 917-933.
DOI URL |
[102] |
ZHU D C, LI S M, CAWOOD P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17.
DOI URL |
[103] |
DONG S W, ZHANG Y Q, LI H L, et al. The Yanshan orogeny and late mesozoic multi-plate convergence in East Asia Commemorating 90th years of the Yanshan orogeny[J]. Science China: Earth Sciences, 2018, 61: 1888-1909.
DOI |
[104] | WANG J Q. Reconstruction of the Early Crataceous Basin and its evolution in Southwest Ordos[D]. Xi’an: Northwest University, 2007: 1-84. |
[105] |
PENG H, WANG J, LIU C, et al. Mesozoic exhumation and ca. 10 Ma reactivation of the southern Yin Shan, North China, revealed by low-temperature thermochronology[J]. Tectonophysics, 2022, 823: 229189.
DOI URL |
[106] | 王伟涛, 张培震, 郑德文, 等. 青藏高原东北缘海原断裂带晚新生代构造变形[J]. 地学前缘, 2014, 21(4): 266-274. |
[107] |
ZHENG D W, ZHANG P Z, WAN J L, et al. Rapid exhumation at -8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin[J]. Earth Planetary Science Letters, 2006, 248(1/2): 198-208.
DOI URL |
[108] | 赵俊峰, 刘池洋, 梁积伟, 等. 鄂尔多斯盆地直罗组—安定组沉积期原始边界恢复[J]. 地质学报, 2010, 84(4): 553-569. |
[109] |
WANG W T, KIRBY E, ZHANG P Z, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: evidence for basin formation during Oligocene transtension[J]. Geological Society of America Bulletin, 2013, 125(3/4): 377-400.
DOI URL |
[110] | DUEKER K G, SHEEHAN A F. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 8313-8327. |
[111] |
周鹏哲, 高锐, 叶卓. 祁连山中部地壳各向异性研究: 来自远震接收函数的证据[J]. 地学前缘, 2022, 29(4): 265-277.
DOI |
[112] |
李文辉, 王海燕, 高锐, 等. 秦岭造山带及邻区上地壳精细速度结构研究[J]. 地学前缘, 2022, 29(2): 198-209.
DOI |
[1] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[2] | CAI Wei, LU Zhanwu, HUANG Rong, LI Wenhui, LUO Yinhe, WANG Guangwen, MU Qing, CHENG Yongzhi, CHEN Si, WANG Guan, CHEN Zilong. Crustal structure beneath the Cuonadong dome in southern Tibet revealed by receiver functions from a short-period dense array [J]. Earth Science Frontiers, 2024, 31(1): 170-180. |
[3] | LI Qiang, WU Jianping. Crustal thickness and Poisson’s ratio beneath the continental margin of southeastern China and the tectonic implications [J]. Earth Science Frontiers, 2023, 30(5): 408-419. |
[4] | MU Qing, HUANG Rong, YAN Jiayong, LU Zhanwu, LUO Yinhe, ZHANG Yongqian, JIANG Xiaohuan, WEN Hongbin, WEI Penglong, ZHOU Wanli. Constraining the crustal structure of the southern segment of the north-south gravity lineament by the receiver function H-κ-c method [J]. Earth Science Frontiers, 2023, 30(5): 369-383. |
[5] | JIANG Xiaohuan, HUANG Rong, ZHU Lupei, LU Zhanwu, LUO Yinhe, ZHANG Rongtang, XU Hao. Crustal structure beneath a seismic linear array in the Western Junggar, northwestern China by RF-RTM imaging [J]. Earth Science Frontiers, 2023, 30(5): 358-368. |
[6] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[7] | XU Xiao, YU Jiahao, XIANG Bo, GUO Xiaoyu, LI Chunsen, LUO Xucong, TONG Xiaofei, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Deep crustal structure of the southeastern Lhasa Terrane [J]. Earth Science Frontiers, 2023, 30(3): 221-232. |
[8] | LI Chunsen, XU Xiao, XIANG Bo, GUO Xiaoyu, WU You, WU Jiajie, LUO Xucong, YU Jiahao, TONG Xiaofei, YUAN Zizhao, LIN Yanqi. Moho geometry in the eastern North Himalayan tectonic belt: An example of the receiver function 3DCCP method [J]. Earth Science Frontiers, 2023, 30(2): 57-67. |
[9] | ZHOU Pengzhe, GAO Rui, YE Zhuo. Crustal anisotropy study in the central Qilian Mountains: Evidence from teleseismic P wave receiver functions [J]. Earth Science Frontiers, 2022, 29(4): 265-277. |
[10] | LI Bingshuai, YAN Maodu, ZHANG Weilin. Early Cenozoic rotation feature in the northern Qaidam marginal thrust belt and its tectonic implications [J]. Earth Science Frontiers, 2022, 29(4): 249-264. |
[11] | WU Jiajie, XU Xiao, GUO Xiaoyu, LU Zhanwu, WU You, XIANG Bo, YU Yang, LI Chunsen, YU Jiahao, TONG Xiaofei, LUO Xucong. Crustal structure of the Cona rift, eastern Himalaya [J]. Earth Science Frontiers, 2022, 29(4): 221-230. |
[12] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. Detailed structure of the Earth’s crust and upper mantle of the Severomuysk segment of the Baikal rift zone according to teleseismic data [J]. Earth Science Frontiers, 2022, 29(2): 378-392. |
[13] | LI De-Wei. The regularity and mechanism of East Kunlun, Wenchuan, and Yushu earthquakes and discussion on genesis and prediction of continental earthquakes. [J]. Earth Science Frontiers, 2010, 17(5): 179-192. |
[14] | LOU Hai, WANG Chun-Yong, TAO Zhi-Xiang, LI Gong-Yi, SU Wei, LV Zhi-Yong. Subsection feature of the deep structure and material properties of Longmenshan fault zone. [J]. Earth Science Frontiers, 2010, 17(5): 128-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||