Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 170-180.DOI: 10.13745/j.esf.sf.2023.10.15
Previous Articles Next Articles
CAI Wei1,2,3(), LU Zhanwu1,3,*(), HUANG Rong2,4, LI Wenhui1,3, LUO Yinhe2,4, WANG Guangwen1, MU Qing2,3,4, CHENG Yongzhi1, CHEN Si1, WANG Guan1, CHEN Zilong1
Received:
2023-08-10
Revised:
2023-10-11
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
CAI Wei, LU Zhanwu, HUANG Rong, LI Wenhui, LUO Yinhe, WANG Guangwen, MU Qing, CHENG Yongzhi, CHEN Si, WANG Guan, CHEN Zilong. Crustal structure beneath the Cuonadong dome in southern Tibet revealed by receiver functions from a short-period dense array[J]. Earth Science Frontiers, 2024, 31(1): 170-180.
[1] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[2] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1/2): 1-131.
DOI URL |
[3] |
ZHANG J J, SANTOSH M, WANG X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21(4): 939-960.
DOI URL |
[4] |
ZENG L S, GAO L E, XIE K J, et al. Mid-Eocene high Sr/Y granites in the northern Himalayan gneiss domes: melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 251-266.
DOI URL |
[5] | 薛帅, 卢占武, 李文辉, 等. 北喜马拉雅错那洞穹窿深部三维电性结构及其构造意义[J]. 中国科学:地球科学, 2022, 52(8): 1516-1531. |
[6] |
UNSWORTH M J, JONES A G, WEI W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81.
DOI |
[7] |
SHI D N, WU Z H, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414: 6-15.
DOI URL |
[8] |
吴佳杰, 徐啸, 郭晓玉, 等. 喜马拉雅造山带东段错那裂谷的地壳结构[J]. 地学前缘, 2022, 29(4): 221-230.
DOI |
[9] | 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007(6): 639-649. |
[10] | 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹窿早渐新世地壳深熔作用及其地质意义[J]. 科学通报, 2009, 54(3): 373-381. |
[11] | 许志琴, 马绪宣. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)[J]. 岩石学报, 2015, 31(12): 3509-3523. |
[12] | 侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J]. 矿床地质, 2006(6): 629-651. |
[13] |
TEYSSIER C, WHITNEY D L. Gneiss domes and orogeny[J]. Geology, 2002, 30(12): 1139-1142.
DOI URL |
[14] |
BURG J P, BRUNEL M, GAPAIS D, et al. Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China)[J]. Journal of Structural Geology, 1984, 6(5): 535-542.
DOI URL |
[15] |
SIDDOWAY C S, BALDWIN S L, FITZGERALD P G, et al. Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system[J]. Geology, 2004, 32(1): 57-60.
DOI URL |
[16] | 李德威, 刘德民, 廖群安, 等. 藏南萨迦拉轨岗日变质核杂岩的厘定及其成因[J]. 地质通报, 2003(5): 303-307. |
[17] |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865): 738-742.
DOI |
[18] |
UNSWORTH M. Magnetotelluric studies of active continent-continent collisions[J]. Surveys in Geophysics, 2010, 31(2): 137-161.
DOI URL |
[19] |
LEE J, MCCLELLAND W, WANG Y, et al. Oligocene-Miocene middle crustal flow in southern Tibet: geochronology of Mabja Dome[J]. Geological Society, London, Special Publications, 2006, 268(1): 445-469.
DOI URL |
[20] |
GUO L, ZHANG J J, ZHANG B. Structures, kinematics, thermochronology and tectonic evolution of the Ramba gneiss dome in the northern Himalaya[J]. Progress in Natural Science: Materials International, 2008, 18(7): 851-860.
DOI URL |
[21] |
LE FORT P, CUNEY M, DENIEL C, et al. Crustal generation of the Himalayan leucogranites[J]. Tectonophysics, 1987, 134(1): 39-57.
DOI URL |
[22] | TIREL C, BRUN J P, BUROV E. Thermomechanical modeling of extensional gneiss domes[J]. Special Paper of the Geological Society of America, 2004, 380: 67-78. |
[23] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1-36. |
[24] | WANG J M, WU F Y, RUBATTO D, et al. Early Miocene rapid exhumation in southern Tibet: insights from p-T-t-D-magmatism path of Yardoi dome[J]. Lithos, 2018, 304: 38-56. |
[25] |
WARD K M, LIN F C. On the viability of using autonomous three-component nodal geophones to calculate teleseismic Ps receiver functions with an application to Old Faithful, Yellowstone[J]. Seismological Research Letters, 2017, 88(5): 1268-1278.
DOI URL |
[26] |
LIU Z, TIAN X B, GAO R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, 480: 33-41.
DOI URL |
[27] |
WAN B, YANG X, TIAN X, et al. Seismological evidence for the earliest global subduction network at 2 Ga ago[J]. Science Advances, 2020, 6(32): eabc5491.
DOI URL |
[28] | 张明辉, 武振波, 马立雪, 等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 2020, 35(2): 495-511. |
[29] |
WU C D, NELSON K D, WORTMAN G, et al. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89 degrees-90 degrees E)[J]. Tectonics, 1998, 17(1): 28-45.
DOI URL |
[30] |
ZHANG J J, GUO L. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system[J]. Journal of Asian Earth Sciences, 2007, 29(5/6): 722-736.
DOI URL |
[31] | 高利娥, 高家昊, 赵令浩, 等. 藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用[J]. 岩石学报, 2017, 33(8): 2395-2411. |
[32] | 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4): 1003-1008. |
[33] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅双穹窿构造的建立:来自藏南错那洞穹窿的厘定[J]. 中国地质, 2018, 45(4): 783-802. |
[34] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹窿Ar-Ar年代学证据[J]. 地球科学, 2018, 43(8): 2638-2650. |
[35] | 丁慧霞, 李文坛, 江媛媛. 喜马拉雅造山带东段错那洞片麻岩穹窿的变质作用及构造意义[J]. 岩石学报, 2019, 35(2): 312-324. |
[36] | 焦彦杰, 黄旭日, 李光明, 等. 藏南扎西康矿集区深部结构与成矿:来自地球物理的证据[J]. 地球科学, 2019, 44(6): 2117-2128. |
[37] | 郭镜, 李文昌, 李光明, 等. 多尺度综合地球物理方法在扎西康铅锌锑金多金属矿找矿预测中的应用[J]. 地球科学, 2019, 44(6): 2129-2142. |
[38] |
ZHU L P. Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves[J]. Earth and Planetary Science Letters, 2000, 179(1): 183-190.
DOI URL |
[39] | ZHU L P, MITCHELL B J, AKYOL N, et al. Crustal thickness variations in the Aegean region and implications for the extension of continental crust[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B01301. |
[40] |
LIGORRIA J P, AMMON C J. Iterative deconvolution and receiver-function estimation[J]. Bulletin of the Seismological Society of America, 1999, 89(5): 1395-1400.
DOI URL |
[41] |
NELSON K D, ZHAO W J, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results[J]. Science, 1996, 274(5293): 1684-1688.
PMID |
[42] |
KLEMPERER S L. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow[J]. Geological Society, London, Special Publications, 2006, 268(1): 39-70.
DOI URL |
[43] | JIN S, SHENG Y, COMEAU M J, et al. Relationship of the crustal structure, rheology, and tectonic dynamics beneath the Lhasa-Gangdese Terrane (Southern Tibet) based on a 3-D electrical model[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11): e2022JB024318. |
[44] |
HAN S C, ZHANG H J, XIN H L, et al. USTClitho 2.0: updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion Data[J]. Seismological Research Letters, 2022, 93(1): 201-215.
DOI URL |
[45] |
李春森, 徐啸, 向波, 等. 北喜马拉雅构造带东部Moho形态研究:以接收函数3DCCP方法为例[J]. 地学前缘, 2023, 30(2): 57-67.
DOI |
[46] | ZHU L P, KANAMORI H. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2969-2980. |
[47] | 滕吉文. 地球深部壳-幔边界的层束精细结构与物理属性研究[J]. 吉林大学学报(地球科学版), 2006(1): 1-23. |
[48] |
ZHAO W J, NELSON K D. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366(6455): 557-559.
DOI |
[49] |
NáBĚLEK J, HETENYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946): 1371-1374.
DOI PMID |
[50] |
CALDWELL W B, KLEMPERER S L, LAWRENCE J F, et al. Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking[J]. Earth and Planetary Science Letters, 2013, 367: 15-27.
DOI URL |
[51] |
SCHULTE-PELKUM V, MONSALVE G, SHEEHAN A, et al. Imaging the Indian subcontinent beneath the Himalaya[J]. Nature, 2005, 435(7046): 1222-1225.
DOI |
[52] |
NáBĚLEK P I, NáBĚLEK J L. Thermal characteristics of the Main Himalaya Thrust and the Indian lower crust with implications for crustal rheology and partial melting in the Himalaya orogen[J]. Earth and Planetary Science Letters, 2014, 395: 116-123.
DOI URL |
[53] |
KELLETT D A, GRUJIC D, ERDMANN S. Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya: implications for continental collision[J]. Lithosphere, 2009, 1(5): 259-281.
DOI URL |
[54] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
DOI |
[55] |
卢占武, 高锐, KLEMPERER S, 等. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217.
DOI |
[56] |
GUO X Y, GAO R, ZHAO J M, et al. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau[J]. Earth-Science Reviews, 2018, 185: 751-762.
DOI URL |
[57] |
DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780: 228395.
DOI URL |
[58] |
高锐, 周卉, 卢占武, 等. 深地震反射剖面揭露青藏高原陆-陆碰撞与地壳生长的深部过程[J]. 地学前缘, 2022, 29(2): 14-27.
DOI |
[59] |
GE W P, MOLNAR P, SHEN Z K, et al. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 2015, 42(13): 5227-5235.
DOI URL |
[60] |
KIND R, YUAN X, SAUL J, et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction[J]. Science, 2002, 298(5596): 1219-1221.
PMID |
[61] |
SHI D N, KLEMPERER S M L, SHI J Y, et al. Localized foundering of Indian lower crust in the India-Tibet collision zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(40): 24742-24747.
DOI PMID |
[62] |
ZHANG Z M, XIANG H, DONG X, et al. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, East-central Himalaya[J]. Gondwana Research, 2017, 41: 173-187.
DOI URL |
[63] |
WANG J M, LANARI P, WU F Y, et al. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: implications for collisional tectonics on early Earth[J]. Earth and Planetary Science Letters, 2021, 558: 116760.
DOI URL |
[64] |
LI C, VAN DER HILST R D, MELTZER A S, et al. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 157-168.
DOI URL |
[65] |
ZHAO J M, YUAN X H, LIU H B, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11229-11233.
DOI PMID |
[66] |
TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616.
DOI URL |
[67] |
YIN A, TAYLOR M H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1798-1821.
DOI URL |
[68] |
BISCHOFF S H, FLESCH L M. Normal faulting and viscous buckling in the Tibetan Plateau induced by a weak lower crust[J]. Nature Communications, 2018, 9: 4952.
DOI PMID |
[69] |
BIAN S, GONG J F, ZUZA A V, et al. Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan-Tibetan orogen[J]. Earth and Planetary Science Letters, 2020, 544: 116383.
DOI URL |
[70] |
CHEN Y, LI W, YUAN X, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413: 13-24.
DOI URL |
[71] | YIN A. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21745-21759. |
[72] |
LI J T, SONG X D. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8296-8300.
DOI PMID |
[73] | REN Y, SHEN Y. Finite frequency tomography in southeastern Tibet: evidence for the causal relationship between mantle lithosphere delamination and the north-south trending rifts[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B10316. |
[74] |
KAPP P, DECELLES P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254.
DOI URL |
[75] |
GUO Z F, WILSON M. Late Oligocene-early Miocene transformation of postcollisional magmatism in Tibet[J]. Geology, 2019, 47(8): 776-780.
DOI URL |
[76] | WU Y K, BAO X W, ZHANG B F, et al. Seismic evidence for stepwise lithospheric delamination beneath the Tibetan Plateau[J]. Geophysical Research Letters, 2022, 49: e2022GL098528. |
[77] | PANG Y, ZHANG H, SHI Y, et al. Plume-induced rifting of thickened crust: 2D numerical model and implications for N-S rifts in southern Tibet[J]. Geophysical Research Letters, 2022, 49: e2022GL101479. |
[78] |
GUILLOT S, PêCHER A, ROCHETTE P, et al. The emplacement of the Manaslu granite of central Nepal: field and magnetic susceptibility constraints[J]. Geological Society, London, Special Publications, 1993, 74(1): 413-428.
DOI URL |
[79] |
HARRISON M T, GROVE M, MCKEEGAN K D, et al. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya[J]. Journal of Petrology, 1999, 40(1): 3-19.
DOI URL |
[80] |
GUILLOT S, LE FORT P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites[J]. Lithos, 1995, 35(3): 221-234.
DOI URL |
[81] | 董汉文, 许志琴, 孟元库, 等. 藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定[J]. 岩石学报, 2017, 33(12): 3741-3752. |
[82] |
黄春梅, 李光明, 张志, 等. 藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束[J]. 地学前缘, 2018, 25(6): 182-195.
DOI |
[1] | MU Qing, HUANG Rong, YAN Jiayong, LU Zhanwu, LUO Yinhe, ZHANG Yongqian, JIANG Xiaohuan, WEN Hongbin, WEI Penglong, ZHOU Wanli. Constraining the crustal structure of the southern segment of the north-south gravity lineament by the receiver function H-κ-c method [J]. Earth Science Frontiers, 2023, 30(5): 369-383. |
[2] | JIANG Xiaohuan, HUANG Rong, ZHU Lupei, LU Zhanwu, LUO Yinhe, ZHANG Rongtang, XU Hao. Crustal structure beneath a seismic linear array in the Western Junggar, northwestern China by RF-RTM imaging [J]. Earth Science Frontiers, 2023, 30(5): 358-368. |
[3] | XU Xiao, YU Jiahao, XIANG Bo, GUO Xiaoyu, LI Chunsen, LUO Xucong, TONG Xiaofei, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Deep crustal structure of the southeastern Lhasa Terrane [J]. Earth Science Frontiers, 2023, 30(3): 221-232. |
[4] | WU Jiajie, XU Xiao, GUO Xiaoyu, LU Zhanwu, WU You, XIANG Bo, YU Yang, LI Chunsen, YU Jiahao, TONG Xiaofei, LUO Xucong. Crustal structure of the Cona rift, eastern Himalaya [J]. Earth Science Frontiers, 2022, 29(4): 221-230. |
[5] | WU Guowei, XIONG Xiaosong, GAO Rui, CHEN Xuanhua, LI Yingkang, WANG Guan, WANG Xiaocheng, REN Haidong. 2D Tomographic imaging of the P-wave velocity structure in the upper crust beneath the southern Beishan tectonic belt [J]. Earth Science Frontiers, 2022, 29(2): 402-415. |
[6] | LU Zhanwu, GAO Rui, Simon KLEMPERER, WANG Haiyan, DONG Shuwen, LI Wenhui, LI Hongqiang. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya [J]. Earth Science Frontiers, 2022, 29(2): 210-217. |
[7] | LI Zong-Xing, GAO Dun, LI Wen-Fei, TUN Jian-Feng. The characteristics of geothermal field and controlling factors in Qaidam Basin, Northwest China. [J]. Earth Science Frontiers, 2016, 23(5): 23-32. |
[8] | YA Dan-Beng, LI Shu-Bing, CAO Wen-Chao, ZHANG Wei-Chen. Multilayer detachment crustal structure in the Longmen Mountains: Evidences from neotectonic deformation and geophysical data. [J]. Earth Science Frontiers, 2010, 17(5): 106-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||