Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 221-232.DOI: 10.13745/j.esf.sf.2023.2.10
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 7) • Previous Articles Next Articles
XU Xiao1,2(), YU Jiahao1,2, XIANG Bo1,2,*(
), GUO Xiaoyu1,2, LI Chunsen1,2, LUO Xucong1,2, TONG Xiaofei1,2, YUAN Zizhao1,2, LIN Yanqi1,2, SHI Hongcheng1,2
Received:
2023-01-20
Revised:
2023-02-01
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
XU Xiao, YU Jiahao, XIANG Bo, GUO Xiaoyu, LI Chunsen, LUO Xucong, TONG Xiaofei, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Deep crustal structure of the southeastern Lhasa Terrane[J]. Earth Science Frontiers, 2023, 30(3): 221-232.
Fig.6 Results of CCP superimposed imaging of Gangdese 92°E with Gaussian factor 2.5 (c-e) compared with previous result (a), and location of seismic profiles (b). Modified after [7].
Fig.7 (a) p-T curve for the metamorphic belts of the Lhasa Terrane and Himalayas (a, modified from [44]) and (b-d) results of CCP superimposed imaging of Gangdese 92°E with Gaussian factor 3.5
[1] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
DOI URL |
[2] |
MO X, HOU Z, NIU Y, et al. Mantle contributions to crustal thickening in south Tibet in response to the India-Asia collision[J]. Lithos, 2007, 96(1/2): 225-242.
DOI URL |
[3] |
ZHU D C, PAN G T, CHUNG S L, et al. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet[J]. International Geology Review, 2008, 50(5): 442-471.
DOI URL |
[4] |
SHI D, KLEMPERER S L, SHI J, et al. Localized foundering of Indian lower crust in the India-Tibet collision zone[J]. Proceedings of the National Academy of Sciences, 2020, 117(40): 24742-24747.
DOI URL |
[5] |
NÁBĚLEK J, HETÉNYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946): 1371-1374.
DOI PMID |
[6] |
XU Q, ZHAO J, YUAN X, et al. Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting[J]. Gondwana Research, 2015, 27(4): 1487-1493.
DOI URL |
[7] |
SHI D, WU Z, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414: 6-15.
DOI URL |
[8] | LU Z, GUO X, GAO R, et al. Active construction of southernmost Tibet revealed by deep seismic imaging[J]. Nature Communications, 2022, 13(1). https://doi.org/10.1038/s41467-022-30887-3. |
[9] |
KIND R, YUAN X, SAUL J, et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian Plate Subduction[J]. Science, 2002, 298(5596): 1219-1221.
PMID |
[10] |
DONG X, LI W, LU Z, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780: 228395.
DOI URL |
[11] |
WANG G, WEI W, YE G, et al. 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 474: 172-179.
DOI URL |
[12] | XIE C, JIN S, WEI W, et al. Middle crustal partial melting triggered since the Mid-Miocene in southern Tibet: insights from magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9). https://doi.org/10.1029/2021JB022435. |
[13] | 李才, 黄小鹏, 翟庆国, 等. 龙木错—双湖—吉塘板块缝合带与青藏高原冈瓦纳北界[J]. 地学前缘, 2006, 13(4): 136-147. |
[14] |
LIU Z, TIAN X, YUAN X, et al. Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves[J]. Earth and Planetary Science Letters, 2020, 531: 115954.
DOI URL |
[15] |
TIAN X, LIU Z, SI S, et al. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics, 2014, 634: 198-207.
DOI URL |
[16] | HUANG S, YAO H, LU Z, et al. High-resolution 3-D shear wave velocity model of the Tibetan Plateau: implications for crustal deformation and porphyry Cu deposit formation[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(7). https://doi.org/10.1029/2019JB019215. |
[17] | YANG Y, RITZWOLLER M H, ZHENG Y, et al. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4). https://doi.org/10.1029/2011JB008810. |
[18] |
SHEN W, RITZWOLLER M H, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979.
DOI URL |
[19] | XIE C, JIN S, WEI W, et al. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data[J]. Earth, Planets and Space, 2017, 69(1). https://doi.org/10.1186/s40623-017-0734-z. |
[20] |
ZHU L. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves[J]. Earth and Planetary Science Letters, 2000, 179(1): 183-190.
DOI URL |
[21] | ZHU L, KANAMORI H. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2969-2980. |
[22] |
LI J, SONG X. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8296-8300.
DOI URL |
[23] |
CHEN Y, LI W, YUAN X, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413: 13-24.
DOI URL |
[24] |
张佳伟, 李汉敖, 张会平, 等. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
DOI |
[25] | 许志琴, 王勤, 李忠海, 等. 印度-亚洲碰撞:从挤压到走滑的构造转换[J]. 地质学报, 2016, 90(1): 1-23. |
[26] | 吴福元, 黄宝春, 叶凯, 等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报, 2008, 24(1): 1-30. |
[27] |
GILLIGAN A, PRIESTLEY K F, ROECKER S W, et al. The crustal structure of the western Himalayas and Tibet[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3946-3964.
DOI URL |
[28] | WANG G, THYBO H, ARTEMIEVA I M. No mafic layer in 80 km thick Tibetan crust[J]. Nature Communications, 2021, 12(1). https://doi.org/10.1038/s41467-021-21420-z. |
[29] | 武振波, 徐涛, 武澄泷, 等. 利用接收函数反演青藏高原西部地壳S波速度结构[J]. 地球物理学报, 2016, 59(2): 516-527. |
[30] |
吴佳杰, 徐啸, 郭晓玉, 等. 喜马拉雅造山带东段错那裂谷的地壳结构[J]. 地学前缘, 2022, 29(4): 221-230.
DOI |
[31] | 赵志丹, 莫宣学, NOMADE S, 等. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 2006(4): 787-794. |
[32] | KLEMPERER S L, ZHAO P, WHYTE C J, et al. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proceedings of the National Academy of Sciences, 2022, 119(12): e2113877119. |
[33] |
ZHU D C, ZHAO Z D, NIU Y, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
DOI URL |
[34] |
ZHU D C, ZHAO Z D, NIU Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730.
DOI URL |
[35] |
MO X, NIU Y, DONG G, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67.
DOI URL |
[36] | 朱弟成, 赵志丹, 牛耀龄, 等. 拉萨地体的起源和古生代构造演化[J]. 高校地质学报, 2012, 18(1): 1-15. |
[37] | LIU D, ZHAO Z, DEPAOLO D J, et al. Potassic volcanic rocks and adakitic intrusions in southern Tibet: insights into mantle-crust interaction and mass transfer from Indian plate[J]. Lithos, 2017, 268/269/270/271: 48-64. |
[38] |
HOU Z, YANG Z, LU Y, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
DOI URL |
[39] |
郭晓玉, 罗旭聪, 高锐, 等. 印度-欧亚板块主碰撞带全地壳尺度相互作用关系研究[J]. 地学前缘, 2023, 30(2): 1-17.
DOI |
[40] | WANG R, COLLINS W J, WEINBERG R F, et al. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust-mantle mixing and metamorphism in the deep crust[J]. Contributions to Mineralogy and Petrology, 2016, 171(7). https://doi.org/10.1007/s00410-016-1272-6. |
[41] |
YI J K, ZHU D C, WEINBERG R F, et al. Origin of Tibetan post-collisional high-K adakitic granites: anatexis of intermediate to felsic arc rocks[J]. Geology, 2022, 50(7): 771-775.
DOI URL |
[42] | 孙浩哲, 赵志丹, 朱弟成, 等. 藏南米拉山地区中新世埃达克质岩石的年代学、地球化学和成因[J]. 岩石学报, 2021, 37(11): 3479-3500. |
[43] | 董昕, 张泽明, 向华, 等. 青藏高原南部拉萨地体的变质作用与动力学[J]. 地球学报, 2013, 34(3): 257-262. |
[44] |
ZHANG Z M, DONG X, SANTOSH M, et al. Metamorphism and tectonic evolution of the Lhasa Terrane, Central Tibet[J]. Gondwana Research, 2014, 25(1): 170-189.
DOI URL |
[45] |
XUE S, CHEN Y, LIANG H, et al. Deep electrical resistivity structure across the Gyaring Co fault in Central Tibet revealed by magnetotelluric data and its implication[J]. Tectonophysics, 2021, 809: 228835.
DOI URL |
[46] |
SHENG Y, JIN S, LEI L, et al. Deep thermal state on the eastern margin of the Lhasa-Gangdese belt and its constraints on tectonic dynamics based on the 3-D electrical model[J]. Tectonophysics, 2020, 793: 228606.
DOI URL |
[47] | ZHU D C, WANG Q, WEINBERG R F, et al. Interplay between oceanic subduction and continental collision in building continental crust[J]. Nature Communications, 2022, 13(1). https://doi.org/10.1038/s41467-022-34826-0. |
[48] |
LIANG X, CHEN Y, TIAN X, et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography[J]. Earth and Planetary Science Letters, 2016, 443: 162-175.
DOI URL |
[49] |
李春森, 徐啸, 向波, 等. 北喜马拉雅构造带东部Moho形态研究: 以接收函数3DCCP方法为例[J]. 地学前缘, 2023, 30(2): 57-67.
DOI |
[1] | CHEN Guochao, ZHANG Xiaofei, PEI Xianzhi, PEI Lei, LI Zuochen, LIU Chengjun, LI Ruibao. Geochemical characteristics, genesis and geological significance of Quedingbu-Luqu peridotites in the Xigaze area, middle Yarlung Zangbo suture zone [J]. Earth Science Frontiers, 2024, 31(3): 1-19. |
[2] | CAI Wei, LU Zhanwu, HUANG Rong, LI Wenhui, LUO Yinhe, WANG Guangwen, MU Qing, CHENG Yongzhi, CHEN Si, WANG Guan, CHEN Zilong. Crustal structure beneath the Cuonadong dome in southern Tibet revealed by receiver functions from a short-period dense array [J]. Earth Science Frontiers, 2024, 31(1): 170-180. |
[3] | LI Qiang, WU Jianping. Crustal thickness and Poisson’s ratio beneath the continental margin of southeastern China and the tectonic implications [J]. Earth Science Frontiers, 2023, 30(5): 408-419. |
[4] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[5] | DU Lintao, BI Wenjun, LI Yalin, ZHANG Jiawei, ZHANG Shaowen, YIN Xuwei, WANG Chengxiu. Sedimentary environment, provenance analysis and tectonic significance of the Upper-Cretaceous Abushan Formation in 114 Daoban, Anduo area, Qiangtang Basin [J]. Earth Science Frontiers, 2023, 30(4): 245-259. |
[6] | WU Jiajie, XU Xiao, GUO Xiaoyu, LU Zhanwu, WU You, XIANG Bo, YU Yang, LI Chunsen, YU Jiahao, TONG Xiaofei, LUO Xucong. Crustal structure of the Cona rift, eastern Himalaya [J]. Earth Science Frontiers, 2022, 29(4): 221-230. |
[7] | . Late Cretaceous hightemperature metamorphism in the southeastern Lhasa terrane: Evidence from rutile exsolutions in quartz and zircon LAICPMS dating. [J]. Earth Science Frontiers, 2012, 19(3): 228-239. |
[8] | . Syncollisional exhumation of Sumdo eclogite in the Lhasa Terrane, Tibet: Evidences from structural deformation and 40Ar39Ar geochronology. [J]. Earth Science Frontiers, 2011, 18(3): 66-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||