Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 270-282.DOI: 10.13745/j.esf.sf.2023.4.20
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 8) • Previous Articles Next Articles
TONG Xiaofei1(), XU Xiao1,2,*(
), GUO Xiaoyu1,2, LI Chunsen1, XIANG Bo1, YU Jiahao1, LUO Xucong1, YUAN Zizhao1, LIN Yanqi1, SHI Hongcheng1
Received:
2023-03-06
Revised:
2023-03-20
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas[J]. Earth Science Frontiers, 2023, 30(4): 270-282.
Fig.1 (a) Summary of previous results on the eastern Kunlun fault (Moho depth data adapted from [20,22⇓⇓⇓⇓⇓⇓⇓-30]; fault ages adapted from [31⇓⇓-34]), and (b) structural characteristics of the Earth’s crust beneath the eastern Kunlun fault.
Fig.2 (a) Distribution of seismic events used for the receiver function calculation, and (b) geological settings in the research area (modified from [58]) and distribution of seismic stations.
Fig.3 (a) Location of CCP stacking profiles and shot-points, and (b) stacked and individual moveout corrected receiver functions plotted along backazimuth for broadband stations
[1] |
TAPPONNIER P, PELTZER G, ARMIJO R. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 1986, 19(1): 113-157.
DOI URL |
[2] |
DEWEY J F, SHACKLETON R M, CHENGFA C, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1988, 327(1594): 379-413.
DOI URL |
[3] |
ROYDEN LEIGH H, BURCHFIEL B C, VAN DER HILST ROBERT D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892): 1054-1058.
DOI PMID |
[4] |
李春森, 徐啸, 向波, 等. 北喜马拉雅构造带东部Moho形态研究: 以接收函数3DCCP方法为例[J]. 地学前缘, 2023, 30(2): 57-67.
DOI |
[5] |
郭晓玉, 罗旭聪, 高锐, 等. 印度-欧亚板块主碰撞带全地壳尺度相互作用关系研究[J]. 地学前缘, 2023, 30(2): 1-17.
DOI |
[6] |
TAPPONNIER P. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
PMID |
[7] |
吴佳杰, 徐啸, 郭晓玉, 等. 喜马拉雅造山带东段错那裂谷的地壳结构[J]. 地学前缘, 2022, 29(4): 221-230.
DOI |
[8] | TAPPONNIER P. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. 1982, 10(12): 611-616. |
[9] | HOUSEMAN G, ENGLAND P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 12233-12249. |
[10] |
ROYDEN LEIGH H, BURCHFIEL B C, KING ROBERT W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5313): 788-790.
PMID |
[11] |
ZHU L, JI L, LIU C. Interseismic slip rate and locking along the Maqin-Maqu segment of the east Kunlun fault, northern Tibetan Plateau, based on Sentinel-1 images[J]. Journal of Asian Earth Sciences, 2021, 211: 104703.
DOI URL |
[12] |
VAN DER WOERD J, TAPPONNIER P, RYERSON F J, et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 2002, 148(3): 356-388.
DOI URL |
[13] |
VAN DER WOERD J, RYERSON F J, TAPPONNIER P, et al. Uniform slip-rate along the Kunlun fault: implications for seismic behaviour and large-scale tectonics[J]. Geophysical Research Letters, 2000, 27(16): 2353-2356.
DOI URL |
[14] |
HARKINS N, KIRBY E, SHI X, et al. Millennial slip rates along the eastern Kunlun fault: implications for the dynamics of intracontinental deformation in Asia[J]. Lithosphere, 2010, 2(4): 247-266.
DOI URL |
[15] | KIRBY E, HARKINS N, WANG E, et al. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 2007, 26(2). https://doi.org/10.1029/2006tc002033. |
[16] | 李陈侠, 徐锡伟, 闻学泽, 等. 东昆仑断裂东段玛沁—玛曲段几何结构特征[J]. 地震地质, 2009, 31(3): 441-458. |
[17] | 李建军, 蔡瑶瑶, 张军龙. 东昆仑断裂带东段塔藏断裂几何结构及滑动递减模型讨论[J]. 地震, 2019, 39(1): 20-28. |
[18] |
KIRBY E, HARKINS N. Distributed deformation around the eastern tip of the Kunlun fault[J]. International Journal of Earth Sciences, 2013, 102(7): 1759-1772.
DOI URL |
[19] | XU X, GAO R, DONG S, et al. Lateral extrusion of the northern Tibetan Plateau interpreted from seismic images, potential field data, and structural analysis of the eastern Kunlun fault[J]. Tectonophysics, 2017, 696-697: 88-98. |
[20] |
LIU Z, TIAN X, GAO R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, 480: 33-41.
DOI URL |
[21] | DUVALL, ALISON R, et al. Dissipation of fast strike-slip faulting within and beyond northeastern Tibet[J]. Geology, 2010, 3: 223-226. |
[22] |
GAO R, WANG H, ZENG L, et al. The crust structures and the connection of the Songpan block and West Qinling orogen revealed by the Hezuo-Tangke deep seismic reflection profiling[J]. Tectonophysics, 2014, 634: 227-236.
DOI URL |
[23] | 赵荣涛, 赵文津, 史大年, 等. 可可西里岩石圈向北俯冲到柴达木地幔的地震学证据[J]. 地球物理学报, 2020, 63(8): 2940-2953. |
[24] |
ZHAO W, KUMAR P, MECHIE J, et al. Tibetan plate overriding the Asian plate in central and northern Tibet[J]. Nature Geoscience, 2011, 4(12): 870-873.
DOI |
[25] |
KARPLUS M S, KLEMPERER S L, ZHAO W, et al. Receiver-function imaging of the lithosphere at the Kunlun-Qaidam boundary, Northeast Tibet[J]. Tectonophysics, 2019, 759: 30-43.
DOI URL |
[26] | KARPLUS M S, ZHAO W, KLEMPERER S L, et al. Injection of Tibetan crust beneath the south Qaidam Basin: evidence from INDEPTH IV wide-angle seismic data[J]. Journal of Geophysical Research, 2011, 116(B7). https://doi.org/10.1029/2010jb007911. |
[27] |
VERGNE J, WITTLINGER G, HUI Q, et al. Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau[J]. Earth and Planetary Science Letters, 2002, 203(1): 25-33.
DOI URL |
[28] |
XU T, WU Z, ZHANG Z, et al. Crustal structure across the Kunlun fault from passive source seismic profiling in east Tibet[J]. Tectonophysics, 2014, 627: 98-107.
DOI URL |
[29] |
WANG X, CHEN L, AI Y, et al. Crustal structure and deformation beneath eastern and northeastern Tibet revealed by P-wave receiver functions[J]. Earth and Planetary Science Letters, 2018, 497: 69-79.
DOI URL |
[30] |
YE Z, GAO R, LI Q, et al. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 2015, 426: 109-117.
DOI URL |
[31] |
YUAN D Y, CHAMPAGNAC J D, GE W P, et al. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2011, 123(9/10): 2016-2030.
DOI URL |
[32] |
LI H, ZHANG Y, DONG S, et al. Neotectonics of the Bailongjiang and Hanan faults: new insights into late Cenozoic deformation along the eastern margin of the Tibetan Plateau[J]. GSA Bulletin, 2020, 132(9/10): 1845-1862.
DOI URL |
[33] |
DUVALL A R, CLARK M K, KIRBY E, et al. Low-temperature thermochronometry along the Kunlun and Haiyuan faults, NE Tibetan Plateau: evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 2013, 32(5): 1190-1211.
DOI URL |
[34] |
TIAN Y, LI R, TANG Y, et al. Thermochronological constraints on the Late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Tibetan Plateau[J]. Tectonics, 2018, 37(6): 1733-1749.
DOI URL |
[35] |
SENGOR A M C, YILMAZ Y, SUNGURLU O. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Palaeo-Tethys[J]. Geological Society, London, Special Publications, 1984, 17: 77-112.
DOI URL |
[36] |
YIN A, NIE S. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia[J]. Tectonics, 1993, 12(4): 801-813.
DOI URL |
[37] | PULLEN A, KAPP P, GEHRELS G. Mediterranean-style closure of the Paleo-Tethys ocean[J]. AGU Fall Meeting Abstracts, 2008, 89: T33C-2077. |
[38] | 尹安. 喜马拉雅-青藏高原造山带地质演化: 显生宙亚洲大陆生长[J]. 地球学报, 2001 (3): 193-230. |
[39] |
ROGER F, JOLIVET M, MALAVIEILLE J. Tectonic evolution of the Triassic fold belts of Tibet[J]. Comptes Rendus Geoscience, 2008, 340(2): 180-189.
DOI URL |
[40] |
ROGER F, JOLIVET M, MALAVIEILLE J. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to present: a synthesis[J]. Journal of Asian Earth Sciences, 2010, 39(4): 254-269.
DOI URL |
[41] |
WU C, YIN A, ZUZA A V, et al. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system[J]. Lithosphere, 2016, 8(3): 254-292.
DOI URL |
[42] |
WU C, ZUZA A V, CHEN X, et al. Tectonics of the eastern Kunlun range: Cenozoic reactivation of a Paleozoic—Early Mesozoic orogen[J]. Tectonics, 2019, 38(5): 1609-1650.
DOI URL |
[43] | 张季生, 高锐, 李秋生, 等. 松潘-甘孜和西秦岭造山带地球物理特征及基底构造研究[J]. 地质论评, 2007 (2): 261-266+300. |
[44] |
TANG Y, ZHANG Y, TONG L. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence[J]. Journal of Asian Earth Sciences, 2018, 151: 285-300.
DOI URL |
[45] | 盛海洋. 青藏高原东北缘若尔盖盆地晚新近纪沉积的岩石地层学[J]. 地质科学, 2008, 43(3): 445-472. |
[46] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
DOI URL |
[47] | HARKINS N, KIRBY E. Fluvial terrace riser degradation and determination of slip rates on strike-slip faults: an example from the Kunlun fault, China[J]. Geophysical Research Letters, 2008, 35(5). https://doi.org/10.1029/2007GL033073. |
[48] |
ZHU L, JI L, JIANG F. Variations in Locking Along the East Kunlun fault, Tibetan Plateau, China, using GPS and leveling data[J]. Pure and Applied Geophysics, 2020, 177(1): 215-245.
DOI |
[49] |
WEN X, YI G, XU X. Background and precursory seismicities along and surrounding the Kunlun fault before the MS 8.1, 2001, Kokoxili earthquake, China[J]. Journal of Asian Earth Sciences, 2007, 30(1): 63-72.
DOI URL |
[50] |
XIONG X, SHAN B, ZHENG Y, et al. Stress transfer and its implication for earthquake hazard on the Kunlun fault, Tibet[J]. Tectonophysics, 2010, 482(1/2/3/4): 216-225.
DOI URL |
[51] |
REN J, XU X, YEATS R S, et al. Millennial slip rates of the Tazang fault, the eastern termination of Kunlun fault: implications for strain partitioning in eastern Tibet[J]. Tectonophysics, 2013, 608: 1180-1200.
DOI URL |
[52] |
KIRBY E, WHIPPLEK X, BURCHFIEL B C, et al. Neotectonics of the Min Shan, China: implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2000, 112(3): 375-393.
DOI URL |
[53] | 颜丹平, 孙铭, 巩凌霄, 等. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 2020, 26(5): 615-633. |
[54] | 单新建, 屈春燕, 龚文瑜, 等. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 2017, 60(12): 4527-4536. |
[55] | KIRBY E, REINERS P W, KROL M A, et al. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: inferences from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Tectonics, 2002, 21(1): 1-20. |
[56] |
YANG Z, SHEN C, RATSCHBACHER L, et al. Sichuan Basin and beyond: eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(6): 4712-4740.
DOI URL |
[57] |
TAN X, LIU Y, LEE Y H, et al. Parallelism between the maximum exhumation belt and the Moho ramp along the eastern Tibetan Plateau margin: coincidence or consequence?[J]. Earth and Planetary Science Letters, 2019, 507: 73-84.
DOI URL |
[58] | 叶天竺, 黄崇轲, 邓志奇.1: 250 万中华人民共和国数字地质图空间数据库[J]. 中国地质, 2017, 44(增刊1): 19-24. |
[59] |
WEI Z, LI Z, CHEN L, et al. Crustal structure underneath central China across the Tibetan Plateau, the North China craton, the South China Block and the Qinling-Dabie orogen constrained by multifrequency receiver function and surface wave data[J]. Journal of Asian Earth Sciences, 2020, 202: 104535.
DOI URL |
[60] |
AMMON C J. The isolation of receiver effects from teleseismic P waveforms[J]. Bulletin of the Seismological Society of America, 1991, 81(6): 2504-2513.
DOI URL |
[61] | ZHU L, KANAMORI H. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2969-2980. |
[62] |
XU M, HUANG H, HUANG Z, et al. Insight into the subducted Indian slab and origin of the Tengchong volcano in SE Tibet from receiver function analysis[J]. Earth and Planetary Science Letters, 2018, 482: 567-579.
DOI URL |
[63] |
PASYANOS M E, MASTERS T G, LASKE G, et al. LITHO1.0: an updated crust and lithospheric model of the Earth[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2153-2173.
DOI URL |
[64] | WAN B, YANG X, TIAN X, et al. Seismological evidence for the earliest global subduction network at 2 Ga ago[J]. Science Advances, 2020, 6(32). https://doi.org/10.1126/sciadv.abc5491. |
[65] |
TANG Y, ZHANG Y, TONG L. Provenance of Middle to Late Triassic sedimentary rocks in the Zoige depression in the NE part of the Songpan-Ganzi Flysch Basin: petrography, heavy minerals, and zircon U-Pb geochronology[J]. Geological Journal, 2017, 52: 449-462.
DOI URL |
[66] | 吴珍汉, 叶培盛, 赵文津, 等. 东昆仑南部晚新生代逆冲推覆构造系统[J]. 地质通报, 2007 (4): 448-456. |
[67] |
STORTI F, HOLDSWORTH R E, SALVINI F. Intraplate strike-slip deformation belts[J]. Geological Society, London, Special Publications, 2003, 210(1): 1-14.
DOI URL |
[68] | 郑文俊, 袁道阳, 何文贵, 等. 甘肃东南地区构造活动与2013年岷县—漳县MS 6.6级地震孕震机制[J]. 地球物理学报, 2013, 056(12): 4058-4071. |
[69] |
KIM Y S, SANDERSON D J. Structural similarity and variety at the tips in a wide range of strike-slip faults: a review[J]. Terra Nova, 2006, 18(5): 330-344.
DOI URL |
[1] | LI Qiang, WU Jianping. Crustal thickness and Poisson’s ratio beneath the continental margin of southeastern China and the tectonic implications [J]. Earth Science Frontiers, 2023, 30(5): 408-419. |
[2] | XU Xiao, YU Jiahao, XIANG Bo, GUO Xiaoyu, LI Chunsen, LUO Xucong, TONG Xiaofei, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Deep crustal structure of the southeastern Lhasa Terrane [J]. Earth Science Frontiers, 2023, 30(3): 221-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||