Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 57-67.DOI: 10.13745/j.esf.sf.2022.8.56
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 6) • Previous Articles Next Articles
LI Chunsen1,2(), XU Xiao1,2,*(
), XIANG Bo1,2,*(
), GUO Xiaoyu1,2, WU You1,2, WU Jiajie1,2, LUO Xucong1,2, YU Jiahao1,2, TONG Xiaofei1,2, YUAN Zizhao1,2, LIN Yanqi1,2
Received:
2022-05-21
Revised:
2022-08-25
Online:
2023-03-25
Published:
2023-01-05
Contact:
XU Xiao,XIANG Bo
CLC Number:
LI Chunsen, XU Xiao, XIANG Bo, GUO Xiaoyu, WU You, WU Jiajie, LUO Xucong, YU Jiahao, TONG Xiaofei, YUAN Zizhao, LIN Yanqi. Moho geometry in the eastern North Himalayan tectonic belt: An example of the receiver function 3DCCP method[J]. Earth Science Frontiers, 2023, 30(2): 57-67.
Fig.1 Simplified geological maps of (a) the Himalayan tectonic belt and adjacent area (modified after [2] ) and (b) eastern North Himalayan tectonic belt (adapted from [9⇓⇓⇓⇓⇓-15])
Fig.2 Results of receiver-function analysis using (a) local station and (b) published broadband data and (c) distribution of piercing points at 70 km depth
Fig.8 (a) Location of subduction-front of the Indian crust according to different studies (modified from [4,6,7,12,15,17,51⇓⇓-54,57]) including this one (red stars), and (b) a model of deep crustal structure of the eastern North Himalayan tectonic belt and adjacent area.
[1] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1/2): 1-131.
DOI URL |
[2] |
GUO X Y, GAO R, ZHAO J M, et al. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau[J]. Earth-Science Reviews, 2018, 185: 751-762.
DOI URL |
[3] |
SHI D N, ZHAO W J, KLEMPERER S L, et al. West-east transition from underplating to steep subduction in the India-Tibet collision zone revealed by receiver-function profiles[J]. Earth and Planetary Science Letters, 2016, 452: 171-177.
DOI URL |
[4] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
DOI URL |
[5] |
ZHAO J M, YUAN X H, LIU H B, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11229-11233.
DOI PMID |
[6] |
GUO X Y, LI W H, GAO R, et al. Nonuniform subduction of the Indian crust beneath the Himalayas[J]. Scientific Reports, 2017, 7(1): 12497-12505.
DOI PMID |
[7] |
LI C, VAN DER HILST R D, MELTZER A S, et al. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 157-168.
DOI URL |
[8] |
GAO R, ZHOU H, GUO X Y, et al. Deep seismic reflection evidence on the deep processes of tectonic construction of the Tibetan Plateau[J]. Earth Science Frontiers, 2021, 28(5): 320-336.
DOI |
[9] | PAN G T, DING J, YAO D S, et al. Geological map of Qinghai-Xiang Tibet Plateau and adjacent areas (1∶1500000)[CM]. Chengdu: Chengdu Cartographic Publishing House, 2004. |
[10] |
FENG Y P, WANG G H, MENG Y K, et al. Kinematics, strain patterns, rheology, and geochronology of Woka ductile shear zone: product of uplift of Gangdese batholith and Great Counter Thrust activity[J]. Geological Journal, 2020, 55(11): 7251-7271.
DOI URL |
[11] |
LIU Z C, WU F Y, QIU Z L, et al. Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya[J]. Tectonophysics, 2017, 721: 106-122.
DOI URL |
[12] |
DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780: 228395-228407.
DOI URL |
[13] |
UNSWORTH M J, JONES A G, WEI W, et al. Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81.
DOI URL |
[14] |
SHI D N, KLEMPERER S L, SHI J Y, et al. Localized foundering of Indian lower crust in the India-Tibet collision zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(40): 24742-24749.
DOI PMID |
[15] |
SHI D N, WU Z H, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414: 6-15.
DOI URL |
[16] |
LI J T, SONG X D. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8296-8300.
DOI PMID |
[17] |
NABELEK J, HETENYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946): 1371-1375.
DOI PMID |
[18] |
NELSON K D, ZHAO W, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results[J]. Science, 1996, 274(5293): 1684-1693.
PMID |
[19] |
SHIN Y H, SHUM C K, BRAITENBERG C, et al. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Scientific Reports, 2015, 5: 11681-11688.
DOI PMID |
[20] |
TENG J W, ZHANG Z J, ZHANG X K, et al. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles[J]. Tectonophysics, 2013, 609: 202-216.
DOI URL |
[21] |
LI Y H, GAO M T, WU Q J. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics, 2014, 611: 51-60.
DOI URL |
[22] |
BAI L, KLEMPERER S L, MORI J, et al. Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal[J]. Science Advances, 2019, 5(6): eaav0723.
DOI URL |
[23] |
LEBEDEV S, ADAM J M C, MEIER T. Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies[J]. Tectonophysics, 2013, 609: 377-394.
DOI URL |
[24] |
HOPPER E, GAHERTY J B, SHILLINGTON D J, et al. Preferential localized thinning of lithospheric mantle in the melt-poor Malawi Rift[J]. Nature Geoscience, 2020, 13(8): 584-589.
DOI URL |
[25] | GOLOS E M, FISCHER K M. New insights into lithospheric structure and melting beneath the Colorado Plateau[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(3): 1-25. |
[26] |
GILBERT H. Crustal structure and signatures of recent tectonism as infl uenced by ancient terranes in the western United States[J]. Geosphere, 2012, 8(1): 141-158.
DOI URL |
[27] |
XU M J, HUANG Z C, WANG L S, et al. Lateral variation of the mantle transition zone beneath the Tibetan Plateau: insight into thermal processes during Indian-Asian collision[J]. Physics of the Earth and Planetary Interiors, 2020, 301: 106452-106465.
DOI URL |
[28] | XU M J, HUANG Z C, WANG L S, et al. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): 1-14. |
[29] |
XIN H L, ZHANG H J, KANG M, et al. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismological Research Letters, 2018, 90(1): 229-241.
DOI URL |
[30] |
TAPPONNIER P, ZHIQIN X, ROGER F, et al. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 2001, 294(5547): 1671-1679.
PMID |
[31] |
WANG E, KAMP P J, XU G, et al. Flexural bending of southern Tibet in a retro foreland setting[J]. Scientific Reports, 2015, 5: 12076.
DOI PMID |
[32] |
JESSUP M J, LANGILLE J M, DIEDESCH T F, et al. Gneiss dome formation in the Himalaya and southern Tibet[J]. Geological Society, London, Special Publications, 2019, 483(1): 401-422.
DOI URL |
[33] |
MURPHY M A, YIN A. Structural evolution and sequence of thrusting in the Tethyan fold-thrust belt and Indus-Yalu suture zone, Southwest Tibet[J]. Geological Society of America Bulletin, 2003, 115(1): 21-34.
DOI URL |
[34] |
ZHANG J J, SANTOSH M, WANG X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21(4): 939-960.
DOI URL |
[35] |
HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110(6): 1541-1575.
DOI URL |
[36] | 侯增谦, 郑远川, 卢占武, 等. 青藏高原巨厚地壳: 生长、 加厚与演化[J]. 地质学报, 2020, 94(10): 2792-2815. |
[37] |
LEE H Y, CHUNG S L, LO C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 2009, 477(1/2): 20-35.
DOI URL |
[38] |
MO X X, HOU Z Q, NIU Y L, et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242.
DOI URL |
[39] |
GUAN Q, ZHU D C, ZHAO Z D, et al. Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith[J]. Gondwana Research, 2012, 21(1): 88-99.
DOI URL |
[40] |
CHUNG S L, LIU D Y, JI J Q, et al. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1025.
DOI URL |
[41] | 莫宣学, 赵志丹, 邓晋福, 等. 印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148. |
[42] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67.
DOI URL |
[43] |
ZHU D C, ZHAO Z D, NIU Y L, et al. The Lhasa terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
DOI URL |
[44] | WANG J M, WU F Y, RUBATTO D, et al. Early Miocene rapid exhumation in southern Tibet: insights from p-T-t-D-magmatism path of Yardoi dome[J]. Lithos, 2018, 304/305/306/307: 38-56. |
[45] |
BIAN S, GONG J F, ZUZA A V, et al. Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan-Tibetan orogen[J]. Earth and Planetary Science Letters, 2020, 544: 116383.
DOI URL |
[46] |
YIN A, HARRISON T M, MURPHY M A, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11): 1644-1664.
DOI URL |
[47] |
XU Q, ZHAO J M, PEI S P, et al. Imaging lithospheric structure of the eastern Himalayan syntaxis: new insights from receiver function analysis[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2323-2332.
DOI URL |
[48] |
LIGORRíA J P, AMMON C J. Iterative deconvolution and receiver-function estimation[J]. Bulletin of the Seismological Society of America, 1999, 89(5): 1395-1400.
DOI URL |
[49] |
HAUCK M L, NELSON K D, BROWN L D, et al. Crustal structure of the Himalayan orogen at 90° east longitude from Project INDEPTH deep reflection profiles[J]. Tectonics, 1998, 17(4): 481-500.
DOI URL |
[50] |
WANG G, THYBO H, ARTEMIEVA I M. No mafic layer in 80 km thick Tibetan crust[J]. Nature Communications, 2021, 12(1): 1069.
DOI PMID |
[51] |
XU Q, ZHAO J M, YUAN X H, et al. Detailed configuration of the underthrusting Indian lithosphere beneath western Tibet revealed by receiver function images[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8257-8769.
DOI URL |
[52] |
XU Q, ZHAO J M, YUAN X H, et al. Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting[J]. Gondwana Research, 2015, 27(4): 1487-1493.
DOI URL |
[53] |
ZHANG Z, WANG Y, HOUSEMAN G A, et al. The Moho beneath western Tibet: shear zones and eclogitization in the lower crust[J]. Earth and Planetary Science Letters, 2014, 408: 370-377.
DOI URL |
[54] | PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): 1-38. |
[55] |
GUO X Y, LI C S, GAO R, et al. The India-Eurasia convergence system: Late Oligocene to Early Miocene passive roof thrusting driven by deep-rooted duplex stacking[J]. Geosystems and Geoenvironment, 2022, 1(1): 100006.
DOI URL |
[56] |
ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312.
DOI URL |
[57] |
BIJWAARD H, SPAKMAN W. Non-linear global P-wave tomography by iterated linearized inversion[J]. Geophysical Journal International, 2000, 141(1): 71-82.
DOI URL |
[1] | CAI Wei, LU Zhanwu, HUANG Rong, LI Wenhui, LUO Yinhe, WANG Guangwen, MU Qing, CHENG Yongzhi, CHEN Si, WANG Guan, CHEN Zilong. Crustal structure beneath the Cuonadong dome in southern Tibet revealed by receiver functions from a short-period dense array [J]. Earth Science Frontiers, 2024, 31(1): 170-180. |
[2] | LI Qiang, WU Jianping. Crustal thickness and Poisson’s ratio beneath the continental margin of southeastern China and the tectonic implications [J]. Earth Science Frontiers, 2023, 30(5): 408-419. |
[3] | MU Qing, HUANG Rong, YAN Jiayong, LU Zhanwu, LUO Yinhe, ZHANG Yongqian, JIANG Xiaohuan, WEN Hongbin, WEI Penglong, ZHOU Wanli. Constraining the crustal structure of the southern segment of the north-south gravity lineament by the receiver function H-κ-c method [J]. Earth Science Frontiers, 2023, 30(5): 369-383. |
[4] | JIANG Xiaohuan, HUANG Rong, ZHU Lupei, LU Zhanwu, LUO Yinhe, ZHANG Rongtang, XU Hao. Crustal structure beneath a seismic linear array in the Western Junggar, northwestern China by RF-RTM imaging [J]. Earth Science Frontiers, 2023, 30(5): 358-368. |
[5] | CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(5): 314-333. |
[6] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[7] | XU Xiao, YU Jiahao, XIANG Bo, GUO Xiaoyu, LI Chunsen, LUO Xucong, TONG Xiaofei, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Deep crustal structure of the southeastern Lhasa Terrane [J]. Earth Science Frontiers, 2023, 30(3): 221-232. |
[8] | ZHOU Pengzhe, GAO Rui, YE Zhuo. Crustal anisotropy study in the central Qilian Mountains: Evidence from teleseismic P wave receiver functions [J]. Earth Science Frontiers, 2022, 29(4): 265-277. |
[9] | WU Jiajie, XU Xiao, GUO Xiaoyu, LU Zhanwu, WU You, XIANG Bo, YU Yang, LI Chunsen, YU Jiahao, TONG Xiaofei, LUO Xucong. Crustal structure of the Cona rift, eastern Himalaya [J]. Earth Science Frontiers, 2022, 29(4): 221-230. |
[10] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. Detailed structure of the Earth’s crust and upper mantle of the Severomuysk segment of the Baikal rift zone according to teleseismic data [J]. Earth Science Frontiers, 2022, 29(2): 378-392. |
[11] | LOU Hai, WANG Chun-Yong, TAO Zhi-Xiang, LI Gong-Yi, SU Wei, LV Zhi-Yong. Subsection feature of the deep structure and material properties of Longmenshan fault zone. [J]. Earth Science Frontiers, 2010, 17(5): 128-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||