Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (6): 156-174.DOI: 10.13745/j.esf.sf.2022.8.2
Previous Articles Next Articles
JIA Chengzao1(), CHEN Zhuxin2,3,*(), LEI Yongliang4, WANG Lining2,3, REN Rong2,3, SU Nan2,3, YANG Geng2,3
Received:
2022-07-07
Revised:
2022-07-27
Online:
2022-11-25
Published:
2022-10-20
Contact:
CHEN Zhuxin
CLC Number:
JIA Chengzao, CHEN Zhuxin, LEI Yongliang, WANG Lining, REN Rong, SU Nan, YANG Geng. Deformation mechanisms and structural models of the fold-thrust belts of central and western China[J]. Earth Science Frontiers, 2022, 29(6): 156-174.
Fig.1 Brittle detachment-type thrust faults and related structural accretion behaviors (a) Basic structural model. (b) Surface slope angle evolution with increasing shortening. (c) Structural height growth with increasing shortening.
Fig.2 Ductile sliding-type thrust faults and related structural accretion behaviors. (a) Basic structural model. (b) Surface slope angle evolution with increasing shortening. (c) Structural height growth with increasing shortening.
Fig.6 Three-dimensional spatial distribution of thrust blocks affected by competent-layer thickness. Left: Scale-like structure model. Right: Belted structure model.
Fig.8 Analogue models (left panel) and geological interpretations (right panel) of coupled double weak-layer detachments under influence of different exogenic geological processes
Fig.9 Deformation series showing the development and evolution of multi-stage multi-layer detachments under influence of exogenic geological processes. The shortening rate is 0.005 mm/s. Red and black segments indicate active and inactive faults, respectively.
Fig.12 Cross-sections of typical fold-thrust belts of central and western China with combined brittle-ductile detachments. (A) The Kuqa fold-thrust belt (adapted from [38]). (B) The southwestern Tarim fold-thrust belt (adapted from 56). (C) The Michangshan fold-thrust belt (adapted from [57]).
Fig.13 Deformation process of an analogue model with ductile/ductile double layer and an initial stratum wedge to develop coupled multi-layer detachments. Red and yellow segments indicate inactive and active faults, respectively.
Fig.14 Cross-sections of typical fold-thrust belts of central and western China with combined ductile detachments. (A) The Southwestern Sichuan fold-thrust belt. (B) The Eastern Sichuan fold-thrust belt.
Fig.15 A cross-section of the Southern Junggar fold-thrust belt with multi-layer detachments. Left: Seismic profile. Right: Structural interpretation.
Fig.17 Cross-sections of typical fold-thrust belts of central and western China with combined multi-layer detachments. (A) The Northwestern Sichuan fold-thrust belt. (B) The Southern Junggar fold-thrust belt.
Fig.19 (A) Schematic distribution map of the two types of characteristic rejuvenated foreland fold-thrust belts of central and western China, and (B) Cenozoic sedimentary (blue)/denudation (red) thicknesses in the foreland basin.
Fig.20 Hydrocarbon accumulation patterns in syn-sedimentary (left) and uplifted (right) rejuvenated foreland fold-thrust belts of central and western China
[1] | 贾承造, 李本亮, 雷永良, 等. 环青藏高原盆山体系构造与中国中西部天然气大气区[J]. 中国科学: 地球科学, 2013, 43(10): 1621-1631. |
[2] | 李本亮, 贾承造, 庞雄奇, 等. 环青藏高原盆山体系内前陆冲断构造变形的空间变化规律[J]. 地质学报, 2007, 81(9): 1200-1207. |
[3] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[4] |
何登发, 马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26(1): 1-12.
DOI |
[5] | 田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 272-282. |
[6] | 李伟, 陈竹新, 黄平辉, 等. 中国中西部典型前陆盆地超压体系形成机制与大气田关系[J]. 石油勘探与开发, 2021, 48(3): 536-548. |
[7] | 魏学斌, 沙威, 沈晓双, 等. 柴达木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 302-311. |
[8] | 张道伟, 马达德, 陈琰, 等. 柴达木盆地油气地质研究新进展及勘探成果[J]. 新疆石油地质, 2019, 40(5): 505-512. |
[9] | 杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 1-11. |
[10] | 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1): 1-13. |
[11] | 贾承造, 杨树锋, 陈汉林, 等. 特提斯北缘盆地群构造地质与天然气[M]. 北京: 石油工业出版社, 2001: 1-161. |
[12] | 杨树锋, 贾承造, 陈汉林, 等. 特提斯构造带的演化和北缘盆地群形成及塔里木天然气勘探远景[J]. 科学通报, 2002, 47(增刊1): 36-43. |
[13] | 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发, 2018, 45(4): 546-560. |
[14] |
何登发, 李德生, 何金有, 等. 塔里木盆地库车坳陷和西南坳陷油气地质特征类比及勘探启示[J]. 石油学报, 2013, 34(2): 201-218.
DOI |
[15] | 漆家福, 雷刚林, 李明刚, 等. 库车坳陷克拉苏构造带的结构模型及其形成机制[J]. 大地构造与成矿学, 2009, 33(1): 49-56. |
[16] | 漆家福, 雷刚林, 李明刚, 等. 库车坳陷—南天山盆山过渡带的收缩构造变形模式[J]. 地学前缘, 2009, 16(3): 120-128. |
[17] | 李本亮, 陈竹新, 雷永良, 等. 天山南缘与北缘前陆冲断带构造地质特征对比及油气勘探建议[J]. 石油学报, 2011, 21(3): 395-403. |
[18] | 管树巍, 张朝军, 何登发, 等. 前陆冲断带复杂构造解析与建模: 以准噶尔盆地南缘第一排背斜带为例[J]. 地质学报, 2006, 80(8): 1131-1140. |
[19] | 管树巍, 李本亮, 何登发, 等. 晚新生代以来天山南、北麓冲断作用的定量分析[J]. 地质学报, 2007, 81(6): 725-744. |
[20] | 管树巍, 陈竹新, 李本亮, 等. 再论库车克拉苏深部构造的性质与解释模型[J]. 石油勘探与开发, 2010, 37(5): 531-536. |
[21] | 程晓敢, 黄智斌, 陈汉林, 等. 西昆仑山前冲断带断裂特征及构造单元划分[J]. 岩石学报, 2012, 28(8): 2591-2601. |
[22] | 汪新, 王招明, 谢会文, 等. 塔里木库车坳陷新生代盐构造解析及其变形模拟[J]. 中国科学: 地球科学, 2010, 40(12): 1655-1668. |
[23] | 能源, 谢会文, 李勇, 等. 塔里木盆地库车坳陷中部构造变形样式及储层分布特征[J]. 地质科学, 2012, 48(3): 629-639. |
[24] | 汪伟, 尹宏伟, 周鹏, 等. 塔里木盆地含盐褶皱冲断带变形特征与变形机制[J]. 新疆石油地质, 2019, 40(1): 68-73. |
[25] | 余海波, 漆家福, 师骏, 等. 库车坳陷盐下构造对盐上盖层变形的影响因素分析[J]. 地质科学, 2015, 50(1): 50-62. |
[26] |
唐鹏程, 饶刚, 李世琴, 等. 库车褶皱-冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响[J]. 地学前缘, 2015, 22(1): 312-327.
DOI |
[27] | 汤良杰, 余一欣, 陈书平, 等. 含油气盆地盐构造研究进展[J]. 地学前缘, 2005, 12(4): 375-383. |
[28] |
DAVIS D, SUPPE J, DAHLEN F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research, 1983, 88(B2): 1153-1172.
DOI URL |
[29] | ALLEN P A, ALLEN J R. Basin analysis: principles and applications to petroleum play assessment[M]. 3nd Edition. Oxford: Blackwell Publising Ltd, 2013: 89-152. |
[30] | SMIT J H W, BRUN J P, SOKOUTIS D. Deformation of brittle-ductile thrust wedges in experiments and nature[J]. Journal of Geophysical Research, 2003, 108(B10): 2480. |
[31] | SHAW H J, CONNORS C, SUPPE J. Seismic interpretation of contractional fault-related folds: an AAPG seismic atlas[M]. Tulsa: American Association of Petroleum Geologists, 2005: 1-155. |
[32] | FOSSEN H. Structural geology[M]. Cambridge: Cambridge University Press, 2010: 371-392. |
[33] | HUDEC M R, JACKSON M P A. The salt mine: a digital atlas of salt tectonics[M]. Bath: Geological Society Publishing House, 2011: 141-160. |
[34] | 谢会文, 雷永良, 能源, 等. 挤压作用下盐岩流动的三维物理模拟分析[J]. 地质科学, 2012, 47(3): 824-835. |
[35] | 汪新, 唐鹏程, 谢会文, 等. 库车坳陷西段新生代盐构造特征及演化[J]. 大地构造与成矿学, 2009, 33(1): 57-65. |
[36] | 汪新, 王招明, 谢会文, 等. 塔里木库车坳陷新生代盐构造解析及其变形模拟[J]. 中国科学: 地球科学, 2010, 10(12): 1655-1668. |
[37] |
DAHLEN F A, SUPPE J, DAVIS D. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive coulomb theory[J]. Journal of Geophysical Research, 1984, 89 (B12): 10087-10101.
DOI URL |
[38] | 陈竹新, 雷永良, 贾东, 等. 构造变形物理模拟与构造建模技术及应用[M]. 北京: 科学出版社, 2019: 74-134. |
[39] |
WEIJERMARS R, JACKSON M P A, VENDEVILLE B. Rheological and tectonic modeling of salt provinces[J]. Tectonophysics, 1993, 217: 143-174.
DOI URL |
[40] | DAVIS D M, ENGELDER T. Thin-skinned deformation over salt[J]. Dynamical Geology of Salt and Related Structures, 1987: 301-337. |
[41] |
BOYER S E. Sedimentary basin taper as a factor controlling the geometry and advance of thrust belts[J]. American Journal of Science, 1995, 295(10): 1220-1254.
DOI URL |
[42] | ERICKSON S G. Influence of mechanical stratigraphy on folding vs faulting[J]. Journal of Structural Geology, 1996, 18(4): 431-435. |
[43] |
FERMOR P. Aspects of the three-dimensional structure of the Alberta foothills and front ranges[J]. Geological Society of America Bulletin, 1999, 111(3): 317-346.
DOI URL |
[44] |
DAVIS D M, ENGELDER T. The role of salt in fold-and-thrust belts[J]. Tectonophysics, 1985, 119(1/2/3/4): 67-88.
DOI URL |
[45] | DAHLEN F A, SUPPE J. Mechanics, growth, and erosion of mountain belts[J]. Geological Society of America Special Papers. Processes in Continental Lithospheric Deformation, 1988, 218: 161-178. |
[46] |
MASSOLI D, KOYI H A, BARCHI M R. Structural evolution of a fold and thrust belt generated by multiple décollements: analogue models and natural examples from the Northern Apennines (Italy)[J]. Journal of Structural Geology, 2006, 28: 185-199.
DOI URL |
[47] |
MORLEY C K. Interaction between critical wedge geometry and sediment supply in a deep-water fold belt[J]. Geology, 2007, 35: 139-142.
DOI URL |
[48] |
SUN C, JIA D, YIN H W, et al. Sandbox modeling of evolving thrust wedges with different preexisting topographic relief: implications for the Longmen Shan thrust belt, eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2016, 121, doi: 10.1002/2016JB013013.
DOI |
[49] | LIU H, MCCLAY K R, POWELL D. Physical models of thrust wedges[M]//MCCLAY K R. Thrust tectonics. London: Chapman and Hall, 1992: 71-81. |
[50] |
MULUGETA G. Modelling the geometry of Coulomb thrust wedges[J]. Journal of Structural Geology, 1988, 10: 847-859.
DOI URL |
[51] | 陈竹新, 李伟, 王丽宁, 等. 川西北地区构造地质结构与深层勘探层系分区[J]. 石油勘探与开发, 2019, 46(2): 397-408. |
[52] |
WANG C Y, CHEN H L, CHENG X G, et al. Evaluating the role of syn-thrusting sedimentation and interaction with frictional detachment in the structural evolution of the SW Tarim basin, NW China: insights from analogue modelling[J]. Tectonophysics, 2013, 608: 642-652.
DOI URL |
[53] |
CHEN H L, ZHANG Y Q, CHENG X G, et al. Using migrating growth strata to confirm a 230-km-long detachment thrust in the southern Tarim Basin[J]. Journal of Structural Geology, 2022, 154: 104488.
DOI URL |
[54] |
谢会文, 陈竹新, 李勇, 等. 塔里木盆地西秋—却勒冲断褶皱带地质结构特征及油气勘探区带[J]. 石油学报, 2012, 33(6): 932-940.
DOI |
[55] | MITRA S. Duplex structures and imbricate thrust systems: geometry, structural position, and hydrocarbon potential[J]. AAPG Bulletin, 1986, 70: 1087-1112. |
[56] |
LI T, CHEN J, FANG L, et al. The 2015 Mw 6.4 Pishan Earthquake: seismic hazards of an active blind wedge thrust system at the Western Kunlun Range front, Northwest Tibetan Plateau[J]. Seismological Research Letters, 2016, doi: 10.1785/0220150205.
DOI |
[57] | 陈竹新, 王丽宁, 杨光, 等. 川西南冲断带深层地质构造与潜在油气勘探领域[J]. 石油勘探与开发, 2020, 47(4): 653-667. |
[58] |
GU Z, WANG X, NUNNS A, et al. Structural styles and evolution of a thin-skinned fold-and-thrust belt with multiple detachments in the eastern Sichuan Basin, South China[J]. Journal of Structural Geology, 2020, 142: 104191.
DOI URL |
[1] | YANG Xuewen, WANG Qinghua, LI Yong, LÜ Xiuxiang, XIE Huiwen, WU Chao, WANG Cuili, WANG Xiang, MO Tao, WANG Rui. Formation mechanism of the Bozi-Dabei trillion cubic natural gas field, Kuqa foreland thrust belt [J]. Earth Science Frontiers, 2022, 29(6): 175-187. |
[2] | . Study on the Silurian sedimentary system of Western Hunan and the formation mode of typical foreland basin. [J]. Earth Science Frontiers, 2015, 22(6): 167-176. |
[3] | WANG Guan-Min, TUN Zhi-Beng, CHEN Qing-Hua. The characteristics of Late Triassic depositional sequence controlled by foreland thrustfaulting in southwestern Ordos Basin. [J]. Earth Science Frontiers, 2012, 19(1): 40-50. |
[4] | Hongjun Luo, Dag Nummedal, Shaofeng Liu. 3D flexural numerical modeling of foreland basins: An example from the Upper Cretaceous across the Southwestern Wyoming. [J]. Earth Science Frontiers, 2010, 17(4): 128-139. |
[5] | LI Ben-Liang WEI Guo-Ji GU Cheng-Cao. Some key tectonics characteristics of Chinese foreland basins and their petroleum exploration. [J]. Earth Science Frontiers, 2009, 16(4): 190-202. |
[6] | . [J]. Earth Science Frontiers, 2007, 14(6): 114-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||