Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 362-374.DOI: 10.13745/j.esf.sf.2025.3.25
Previous Articles Next Articles
ZHU Renguo1(), XIAO Huayun2,*(
)
Received:
2025-02-11
Revised:
2025-02-22
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
ZHU Renguo, XIAO Huayun. Sources and nitrogen isotope fractionation mechanisms of atmospheric amino acids[J]. Earth Science Frontiers, 2025, 32(3): 362-374.
源 | 样本 数量 | δ15N值/‰ | |||
---|---|---|---|---|---|
平均值 | 分析精度 | 最小值 | 最大值 | ||
植物源中游离Gly | 21 | -13.4 | 3.0 | -19.3 | -7.6 |
土壤源中游离Gly | 5 | 5.2 | 3.5 | 1.2 | 9.4 |
生物质燃烧源游离Gly | 6 | 22.4 | 4.4 | 16.9 | 27.3 |
植物源中结合Gly | 5 | -11.1 | 2.7 | -13.2 | -6.6 |
土壤源中结合Gly | 7 | 2.6 | 4.6 | -1.6 | 7.8 |
生物质燃烧源结合Gly | 6 | 19.2 | 0.6 | 18.1 | 19.8 |
Table 1 Nitrogen isotope values of major sources of free and combined glycine release (modified after [27])
源 | 样本 数量 | δ15N值/‰ | |||
---|---|---|---|---|---|
平均值 | 分析精度 | 最小值 | 最大值 | ||
植物源中游离Gly | 21 | -13.4 | 3.0 | -19.3 | -7.6 |
土壤源中游离Gly | 5 | 5.2 | 3.5 | 1.2 | 9.4 |
生物质燃烧源游离Gly | 6 | 22.4 | 4.4 | 16.9 | 27.3 |
植物源中结合Gly | 5 | -11.1 | 2.7 | -13.2 | -6.6 |
土壤源中结合Gly | 7 | 2.6 | 4.6 | -1.6 | 7.8 |
生物质燃烧源结合Gly | 6 | 19.2 | 0.6 | 18.1 | 19.8 |
[1] | BARBARO E, FELTRACCO M, CESARI D, et al. Characterization of the water soluble fraction in ultrafine, fine, and coarse atmospheric aerosol[J]. Science of the Total Environment, 2019, 658: 1423-1439. |
[2] | FELTRACCO M, BARBARO E, KIRCHGEORG T, et al. Free and combined L-and D-amino acids in Arctic aerosol[J]. Chemosphere, 2019, 220: 412-421. |
[3] | SZYRMER W, ZAWADZKI I. Biogenic and anthropogenic sources of ice-forming nuclei: a review[J]. Bulletin of the American Meteorological Society, 1997, 78: 209-228. |
[4] | ZHANG Q, ANASTASIO C. Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California[J]. Atmospheric Environment, 2003, 37(16): 2247-2258. |
[5] | MOPPER K, ZIKA R G. Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling[J]. Nature, 1987, 325(6101): 246-249. |
[6] | MCGREGOR K G, ANASTASIO C. Chemistry of fog waters in California’s Central Valley: 2. Photochemical transformations of amino acids and alkyl amines[J]. Atmospheric Environment, 2001, 35(6): 1091-1104. |
[7] | DE HAAN D O, CORRIGAN A L, SMITH K W, et al. Secondary organic aerosol-forming reactions of glyoxal with amino acids[J]. Environmental Science & Technology, 2009, 43(8): 2818-2824. |
[8] | HUFFMAN J A, PRENNI A J, DEMOTT P J, et al. High concentrations of biological aerosol particles and ice nuclei during and after rain[J]. Atmospheric Chemistry and Physics, 2013, 13(13): 6151-6164. |
[9] | MANDALAKIS M, APOSTOLAKI M, TZIARAS T, et al. Free and combined amino acids in marine background atmospheric aerosols over the Eastern Mediterranean[J]. Atmospheric Environment, 2011, 45: 1003-1009. |
[10] |
SAMY S, ROBINSON J, HAYS M D. An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols[J]. Analytical and Bioanalytical Chemistry, 2011, 401(10): 3103-3113.
DOI PMID |
[11] |
JAENICKE R. Abundance of cellular material and proteins in the atmosphere[J]. Science, 2005, 308(5718): 73-73.
PMID |
[12] | KANG H, XIE Z Q, HU Q H. Ambient protein concentration in PM10 in Hefei, central China[J]. Atmospheric Environment, 2012, 54(5): 73-79. |
[13] | MATOS J T V, DUARTE R M B O, DUARTE A C. Challenges in the identification and characterization of free amino acids and proteinaceous compounds in atmospheric aerosols: a critical review[J]. Trends in Analytical Chemistry, 2016, 75: 97-107. |
[14] |
ARMSTRONG D W, KULLMAN J P, CHEN X H, et al. Composition and chirality of amino acids in aerosol/dust from laboratory and residential enclosures[J]. Chirality, 2001, 13(3): 153-158.
PMID |
[15] | DI FILIPPO P, POMATA D, RICCARDI C, et al. Free and combined amino acids in size-segregated atmospheric aerosol samples[J]. Atmospheric Environment, 2014, 98: 179-189. |
[16] | REN L J, BAI H H, YU X, et al. Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China[J]. Atmospheric Research, 2018, 203: 28-35. |
[17] | 朱慧晓, 朱仁果, 程丽琴, 等. 南昌市PM2.5中结合氨基酸的浓度组成及来源[J]. 中国环境科学, 2022, 42(10): 4509-4516. |
[18] | 朱玉雯, 朱仁果, 方小珍, 等. 森林地区PM2.5中氨基酸的水平、 来源及转化[J]. 中国环境科学, 2021, 41(1): 81-90. |
[19] | ABE R Y, AKUTSU Y, KAGEMOTO H. Protein amino acids as markers for biological sources in urban aerosols[J]. Environmental Chemistry Letters, 2016, 14: 155-161. |
[20] | MIGUEL A G, CASS G R, GLOVSKY M M, et al. Allergens in paved road dust and airborne Particles[J]. Environmental Science & Technology, 1999, 33(23): 4159-4168. |
[21] | WEDYAN M A, PRESTON M R. The coupling of surface seawater organic nitrogen and the marine aerosol as inferred from enantiomer-specific amino acid analysis[J]. Atmospheric Environment, 2008, 42: 8698-8705. |
[22] | MACE K A, ARTAXO P, DUCE R A. Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16): 4512. |
[23] | SONG T L, WANG S, ZHANG Y Y, et al. Proteins and amino acids in fine particulate matter in rural Guangzhou, Southern China: seasonal cycles, sources, and atmospheric processes[J]. Environmental Science & Technology, 2017, 51: 6773-6781. |
[24] | XU Y, WU D S, XIAO H Y, et al. Dissolved hydrolyzed amino acids in precipitation in suburban Guiyang, southwestern China: seasonal variations and potential atmospheric processes[J]. Atmospheric Environment, 2019, 211: 247-255. |
[25] | ZHU R G, XIAO H Y, LV Z, et al. Nitrogen isotopic composition of free Gly in aerosols at a forest site[J]. Atmospheric Environment, 2020, 222: 117179. |
[26] | SCALABRIN E, ZANGRANDO R, BARBARO E, et al. Amino acids in Arctic aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10453-10463. |
[27] | ZHU R G, XIAO H Y, ZHU Y W, et al. Sources and transformation processes of proteinaceous matter and free amino acids in PM2.5[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(5): e2020JD032375. |
[28] | SAMY S, ROBINSON J, RUMSEY I C, et al. Speciation and trends of organic nitrogen in southeastern U. S. fine particulate matter (PM2. 5)[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 1996-2006. |
[29] | ZHU R G, XIAO H Y, WEN Z Q, et al. Oxidation of proteinaceous matter by ozone and nitrogen dioxide in PM2.5: reaction mechanisms and atmospheric implications[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16): e2021JD034741. |
[30] | BARBARO E, ZANGRANDO R, VECCHIATO M, et al. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol[J]. Atmospheric Chemistry and Physics, 2015, 15: 5457-5469. |
[31] | MATSUMOTO K, UEMATSU M. Free amino acids in marine aerosols over the western North Pacific Ocean[J]. Atmospheric Environment, 2005, 39(11): 2163-2170. |
[32] | ZHU R G, XIAO H Y, LUO L, et al. Measurement report: Hydrolyzed amino acids in fine and coarse atmospheric aerosol in Nanchang, China: concentrations, compositions, sources and possible bacterial degradation state[J]. Atmospheric Chemistry and Physics, 2021, 21(4): 2585-2600. |
[33] | SHEN Y, GUILDERSON T P, SHERWOOD O A, et al. Amino acid δ13C and δ15N patterns from sediment trap time series and deep-sea corals: implications for biogeochemical and ecological reconstructions in paleoarchives[J]. Geochimica et Cosmochimica Acta, 2021, 297: 288-307. |
[34] | YOSHITO C, YUICHIRO K, NANAKO O O, et al. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies[J]. Marine Ecology Progress Series, 2007, 342: 85-90. |
[35] | BOL R, OSTLE N J, PETZKE K J. Compound specific plant amino acid δ15N values differ with functional plant strategies in temperate grassland[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(6): 661-667. |
[36] | OSTLE N J, BOL R, PETZKE K J, et al. Compound specific δ15N‰ values: amino acids in grassland and arable soils[J]. Soil Biology & Biochemistry, 1999, 31(12): 1751-1755. |
[37] | PAOLINI M, ZILLER L, LAURSEN K H, et al. Compound-specific δ15N and δ13C analyses of amino acids for potential discrimination between organically and conventionally grown wheat[J]. Journal of Agricultural & Food Chemistry, 2015, 63(25): 5841. |
[38] | FRASER R A, BOGAARD A, HEATON T, et al. Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices[J]. Journal of Archaeological Science, 2011, 38(10): 2790-2804. |
[39] | CALLEJA M L, BATISTA F, PEACOCK M, et al. Changes in compound specific δ15N amino acid signatures and d/l ratios in marine dissolved organic matter induced by heterotrophic bacterial reworking[J]. Marine Chemistry, 2013, 149: 32-44. |
[40] | PHILBEN M, BILLINGS S A, EDWARDS K A, et al. Amino acid δ15N indicates lack of N isotope fractionation during soil organic nitrogen decomposition[J]. Biogeochemistry, 2018, 138(1): 69-83. |
[41] | EDGAR HARE P, FOGEL M L, STAFFORD JR T W, et al. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins[J]. Journal of Archaeological Science, 1991, 18(3): 277-292. |
[42] |
FOGEL M L, TUROSS N. Transformation of plant biochemicals to geological macromolecules during early diagenesis[J]. Oecologia, 1999, 120(3): 336-346.
DOI PMID |
[43] | MCCARTHY M D, LEHMAN J, KUDELA R. Compound-specific amino acid δ15N patterns in marine algae: tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean[J]. Geochimica et Cosmochimica Acta, 2013, 103: 104-120. |
[44] | SHERWOOD O A, LEHMANN M F, SCHUBERT C J, et al. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals[J]. Proceedings of the National Academy of Sciences, 2011, 108(3): 1011-1015. |
[45] | CHIMIAK L, EILER J, SESSIONS A, et al. Isotope effects at the origin of life: fingerprints of the Strecker synthesis[J]. Geochimica et Cosmochimica Acta, 2022, 321: 78-98. |
[46] | WEN Z Q, LI B, XIAO H Y, et al. Combined positive matrix factorization (PMF) and nitrogen isotope signature analysis to provide insights into the source contribution to aerosol free amino acids[J]. Atmospheric Environment, 2022, 268: 118799. |
[47] |
GE P, LUO G, LUO Y, et al. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication[J]. Chemosphere, 2018, 210: 215-223.
DOI PMID |
[48] | HO K F, HO S S H, HUANG R J, et al. Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China[J]. Atmospheric Environment, 2015, 106: 252-261. |
[49] | VIOLAKI K, MIHALOPOULOS N. Water-soluble organic nitrogen (WSON) in size-segregated atmospheric particles over the Eastern Mediterranean[J]. Atmospheric Environment, 2010, 44: 4339-4345. |
[50] | BARBARO E, ZANGRANDO R, MORET I, et al. Free amino acids in atmospheric particulate matter of Venice, Italy[J]. Atmospheric Environment, 2011, 45: 5050-5057. |
[51] | ANASTASIO C, MCGREGOR K G. Photodestruction of dissolved organic nitrogen species in fog waters[J]. Aerosol Science and Technology, 2000, 32: 106-119. |
[52] | DAUWE B, MIDDELBURG J J, HERMANN P M J, et al. Linking diagenetic alteration of amino acids and bulk organic matter reactivity[J]. Limnology and Oceanography, 1999, 44(7): 1809-1814. |
[53] |
LIU FB, LAI SC, TONG HJ, et al. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals[J]. Analytical and Bioanalytical Chemistry, 2017, 409(9): 2411-2420.
DOI PMID |
[54] | HU W, WANG ZH, HUANG S, et al. Biological aerosol particles in polluted regions[J]. Current Pollution Reports, 2020, 6(2): 65-89. |
[55] | GE XL, WEXLER A S, CLEGG S L. Atmospheric amines-Part I. A review[J]. Atmospheric Environment, 2011, 45: 524-546. |
[56] |
MCKINNEY C R, MCCREA J M, EPSTEIN S, et al. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios[J]. Review of Scientific Instruments, 1950, 21(8): 724-730.
PMID |
[57] | BIDIGARE R R, KENNICUTT M C, KEENEY-KENNICUTT W L, et al. Isolation and purification of chlorophylls a and b for the determination of stable carbon and nitrogen isotope compositions[J]. Analytical Chemistry, 1991, 63(2): 130-133. |
[58] | ENGEL M H, GOODFRIEND G A, QIAN Y, et al. Indigeneity of organic matter in fossils: a test using stable isotope analysis of amino acid enantiomers in Quaternary mollusk shells[J]. Proceedings of the National Academy of Sciences, 1994, 91(22): 10475-10478. |
[59] | MATTHEWS D E, HAYES J M. Isotope-ratio-monitoring gas chromatography-mass spectrometry[J]. Analytical Chemistry, 1978, 50(11): 1465-1473. |
[60] |
BRAND W A. High precision isotope ratio monitoring techniques in mass spectrometry[J]. Journal of Mass Spectrometry, 1996, 31(3): 225-235.
PMID |
[61] |
BRENNA J T, CORSO T N, TOBIAS H J, et al. High-precision continuous-flow isotope ratio mass spectrometry[J]. Mass Spectrometry Reviews, 1997, 16(5): 227-258.
DOI PMID |
[62] |
BRENNA J T. Natural intramolecular isotope measurements in physiology: elements of the case for an effort toward high-precision position-specific isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2001, 15(15): 1252-1262.
PMID |
[63] | METGES C C, PETZKE K J. Measurement of 15N/14N Isotopic composition in individual plasma free amino acids of human adults at natural abundance by gas chromatography-combustion isotope ratio mass spectrometry[J]. Analytical Biochemistry, 1997, 247(1): 158-164. |
[64] |
METGES C C, DAENZER M. 13C gas chromatography-combustion isotope ratio mass spectrometry analysis of N-pivaloyl amino acid esters of tissue and plasma samples[J]. Analytical Biochemistry, 2000, 278(2): 156-164.
PMID |
[65] | HOFMANN D, GEHRE M, JUNG K. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS)[J]. Isotopes in Environmental and Health Studies, 2003, 39(3): 233-244. |
[66] | HOFMANN D, JUNG K, SEGSCHNEIDER H J, et al. 15N/14N analysis of amino acids with GC-C-IRMS-Methodical investigations and ecotoxicological applications[J]. Isotopes in Environmental and Health Studies, 1995, 31(3/4): 367-375. |
[67] |
冯晓娟, 王依云, 刘婷, 等. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394.
DOI |
[68] | SIMPSON I A, BOL R, BULL I D, et al. Interpreting early land management through compound specific stable isotope analysis of archaeological soils[J]. Rapid Communications in Mass Spectrometry, 1999, 13: 1315-1319. |
[69] | MOLERO G, ARANJUELO I, TEIXIDOR P, et al. Measurement of 13C and 15N isotope labeling by gas chromatography/combustion/isotope ratio mass spectrometry to study amino acid fluxes in a plant-microbe symbiotic association[J]. Rapid Communications in Mass Spectrometry, 2011, 25(5): 599-607. |
[70] | METGES C C, PETZKE K J, HENNIG U. Gas chromatography/combustion/isotope ratio mass spectrometric comparison of N-acetyl- and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples: a pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs[J]. Journal of Mass Spectrometry, 1996, 31(4): 367-376. |
[71] | SEGSCHNEIDER H J, HOFMANN D, SCHMIDT G, et al. Incorporation of 15NO2 nitrogen into individual amino acids by sunflowers using GC-C-IRMS[J]. Isotopes in Environmental and Health Studies, 1995, 31(3-4): 315-325. |
[72] |
MOLERO G, TCHERKEZ G, ARAUS J L, et al. On the relationship between C and N fixation and amino acid synthesis in nodulated alfalfa (Medicago sativa)[J]. Functional Plant Biology, 2014, 41(4): 331-341.
DOI PMID |
[73] |
MACKO S A, UHLE M E, ENGEL M H, et al. Stable nitrogen isotope analysis of amino acid enantiomers by gas chromatography/combustion/isotope ratio mass spectrometry[J]. Analytical Chemistry, 1997, 69(5): 926-929.
DOI PMID |
[74] | JIMÉNEZ-MARTÍN E, RUIZ J, PÉREZ-PALACIOS T, et al. Gas chromatography-mass spectrometry method for the determination of free amino acids as their dimethyl-tert-butylsilyl (TBDMS) derivatives in animal source food[J]. Journal of Agricultural and Food Chemistry, 2012, 60(10): 2456-2463. |
[75] | MACE K A, KUBILAY N, DUCE R A. Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: an association with atmospheric dust[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D10). DOI: 10.1029/2002JD002997. |
[76] |
SIMPSON I A, BOL R, BULL I D, et al. Interpreting early land management through compound specific stable isotope analyses of archaeological soils[J]. Rapid Communications in Mass Spectrometry, 1999, 13(13): 1315-1319.
PMID |
[77] | DENIRO M J, SCHOENINGER M J, HASTORF C A. Effect of heating on the stable carbon and nitrogen isotope ratios of bone collagen[J]. Journal of Archaeological Science, 1985, 12(1): 1-7. |
[78] | FERNANDES R, MEADOWS J, DREVES A, et al. A preliminary study on the influence of cooking on the C and N isotopic composition of multiple organic fractions of fish (mackerel and haddock)[J]. Journal of Archaeological Science, 2014, 50: 153-159. |
[79] | BOND T C, STREETS D G, YARBER K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D14): D14203. |
[80] | KELEMEN S R, GORBATY M L, KWIATEK P J. Quantification of nitrogen forms in argonne premium coals[J]. Energy & Fuels, 1994, 8(4): 896-906. |
[81] | ZHANG Y X, SCHAUER J J, ZHANG Y H, et al. Characteristics of particulate carbon emissions from real-world Chinese coal combustion[J]. Environmental Science & Technology, 2008, 42: 5068-5073. |
[82] | DUAN X L, JIANG Y, WANG B B, et al. Household fuel use for cooking and heating in China: results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey (CEERHAPS)[J]. Applied Energy, 2014, 136: 692-703. |
[83] | KUNWAR B, KAWAMURA K. One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts[J]. Atmospheric Chemistry and Physics, 2014, 14(4): 1819-1836. |
[84] | CHAN M N, CHOI M Y, NG N L, et al. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species[J]. Environmental Science & Technology, 2005, 39: 1555-1562. |
[85] | ZHU R G, XIAO H Y, CHENG L Q, et al. Measurement report: characterization of sugars and amino acids in atmospheric fine particulates and their relationship to local primary sources[J]. Atmospheric Chemistry and Physics, 2022, 22(21): 14019-14036. |
[86] | ANCA-COUCE A, SOMMERSACHER P, EVIC N, et al. Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions[J]. Fuel, 2018, 222: 529-537. |
[87] | ZONG Z, SHI XL, SUN ZY, et al. Nitrogen isotopic composition of NOx from residential biomass burning and coal combustion in North China[J]. Environmental Pollution, 2022, 304: 119238. |
[88] | MILNE P J, ZIKA R G. Amino acid nitrogen in atmospheric aerosols: occurrence, sources and photochemical modification[J]. Journal of Atmospheric Chemistry, 1993, 16(4): 361-398. |
[89] | YANG H, YU J Z, HO S S H, et al. The chemical composition of inorganic and carbonaceous materials in PM2. 5 in Nanjing, China[J]. Atmospheric Environment, 2005, 39(20): 3735-3749. |
[90] | YAN G, KIM G, KIM J, et al. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: implications on bacterial contributions to atmospheric organic matter[J]. Geochimica et Cosmochimica Acta, 2015, 153: 1-14. |
[91] | ZHU R G, XIAO H Y, YIN M J, et al. Kinetic nitrogen isotope effects of 18 amino acids degradation during burning processes[J]. Scientific Reports, 2024, 14(1): 14559. |
[92] | REN Q Q, ZHAO C S. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid[J]. Environmental Science & Technology, 2012, 46(7): 4236-4240. |
[93] | ROBERTS J M, STOCKWELL C E, YOKELSON R J, et al. The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study[J]. Atmospheric Chemistry and Physics, 2020, 20(14): 8807-8826. |
[94] | ZHU R G, XIAO H Y, ZHOU Z K, et al. Thermal degradation of 18 amino acids during pyrolytic processes[J]. Scientific Reports, 2024, 14(1): 29192. |
[95] | ZHOU P, XIONG SJ, ZHANG YX, et al. Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18181-18188. |
[96] | KUNDU S, KAWAMURA K, ANDREAE T W, et al. Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil[J]. Journal of Aerosol Science, 2010, 41(1): 118-133. |
[97] | VERMEULEN I, BLOCK C, VANDECASTEELE C. Estimation of fuel-nitrogen oxide emissions from the element composition of the solid or waste fuel[J]. Fuel, 2012, 94: 75-80. |
[98] | TCHERKEZ G. Natural 15N/14N isotope composition in C3 leaves: are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites?[J]. Functional Plant Biology, 2011, 38(1): 1-12. |
[99] |
O’LEARY M H, URBERG M, YOUNG A P. Nitrogen isotope effects on the papain-catalyzed hydrolysis of N-benzoyl-L-argininamide[J]. Biochemistry, 1974, 13(10): 2077-2081.
PMID |
[100] | TUREKIAN V C, MACKO S, BALLENTINE D, et al. Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: laboratory studies[J]. Chemical Geology, 1998, 152(1/2): 181-192. |
[1] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||