Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 167-174.DOI: 10.13745/j.esf.sf.2021.2.13
Previous Articles Next Articles
ZHANG Yuling(), YIN Siqi, SI Chaoqun, WANG Xi, CHU Wenlei
Received:
2020-05-10
Revised:
2020-08-09
Online:
2021-09-25
Published:
2021-10-29
CLC Number:
ZHANG Yuling, YIN Siqi, SI Chaoqun, WANG Xi, CHU Wenlei. Characteristics of scoria adsorption of Escherichia coli phage in groundwater[J]. Earth Science Frontiers, 2021, 28(5): 167-174.
[1] | World Health Organization. Guidelines for drinking-water quality[M]. 4th ed. Geneva: IWA Publishing, 2011: 263-264. |
[2] |
SCHIJVEN J F, HASSANIZADEH S M, DE RODA HUSMAN A M. Vulnerability of unconfined aquifers to virus contamination[J]. Water Research, 2010, 44(4):1170-1181.
DOI URL |
[3] |
KOKKINOS P, SYNGOUNA V I, TSELEPI M A, et al. Transport of human adenoviruses in water saturated laboratory columns[J]. Food and Environmental Virology, 2015, 7(2):122-131.
DOI URL |
[4] |
RAMBAGS F, TANNER C C, STOTT R, et al. Bacteria and virus removal in denitrifying bioreactors: effects of media type and age[J]. Ecological Engineering, 2019, 138:46-53.
DOI URL |
[5] |
BORCHARDT M A, BERTZ P D, SPENCER S K, et al. Incidence of enteric viruses in groundwater from household wells in Wisconsin[J]. Applied and Environmental Microbiology, 2003, 69(2):1172-1180.
DOI URL |
[6] |
LEE S G, JHEONG W H, SUH C I, et al. Nationwide groundwater surveillance of noroviruses in South Korea, 2008[J]. Applied and Environmental Microbiology, 2011, 77(4):1466-1474.
DOI URL |
[7] | 金晓琳, 张克斌, 胡福泉. 噬菌体最佳保存方法探讨[J]. 第三军医大学学报, 2001, 23(7):863-864. |
[8] |
GUO M T, HUANG J J, HU H Y, et al. UV inactivation and characteristics after photoreactivation of Escherichia coli with plasmid: health safety concern about UV disinfection[J]. Water Research, 2012, 46(13):4031-4036.
DOI URL |
[9] | 巢猛, 杨国桃, 林朝晖, 等. 次氯酸钠消毒工艺在东江原水自来水厂的应用[J]. 城镇供水, 2017(6):9-11, 60. |
[10] |
ZHENG X, SHEN Z P, CHENG C, et al. Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light[J]. Environmental Pollution, 2018, 237:452-459.
DOI URL |
[11] |
FARAHBAKHSH K, SMITH D W. Removal of coliphages in secondary effluent by microfiltration-mechanisms of removal and impact of operating parameters[J]. Water Research, 2004, 38(3):585-592.
DOI URL |
[12] | 邬晓龄. SiO2/PVDF复合纳滤膜的制备及其去除模型病毒的性能研究[D]. 广州: 华南理工大学, 2013: 34-44. |
[13] | 王秋英, 赵炳梓, 张佳宝, 等. 噬菌体MS2和φX174的双层琼脂平板和液体培养基扩增方法的建立[J]. 土壤, 2007, 39(2):297-300. |
[14] |
JIN S, FALLGREN P H, MORRIS J M, et al. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites[J]. Science and Technology of Advanced Materials, 2007, 8(1/2):67-70.
DOI URL |
[15] | 周玉芬, 郑祥, 雷洋, 等. 活性污泥对病毒的生物吸附特性[J]. 环境科学, 2012, 33(5):1621-1624. |
[16] |
CHENG R, KANG M, ZHUANG S T, et al. Removal of bacteriophage f2 in water by Fe/Ni nanoparticles: optimization of Fe/Ni ratio and influencing factors[J]. Science of the Total Environment, 2019, 649:995-1003.
DOI URL |
[17] |
JOTHIKUMAR N, CLIVER D O. Elution and reconcentration of coliphages in water from positively charged membrane filters with urea-arginine phosphate buffer[J]. Journal of Virological Methods, 1997, 65(2):281-286.
DOI URL |
[18] | 王华, 黄海, 郝越力. 三种国产活性炭吸附去除水中病毒能力的比较[J]. 环境与健康杂志, 2008, 25(7):611-615. |
[19] | 沈林林, 赵炳梓, 张佳宝, 等. 背景溶液对纳米氧化铁吸附病毒的影响[J]. 环境科学, 2010, 31(4):983-989. |
[20] | 郑耀通, 林奇英, 谢联辉. 水体病毒浓缩条件的优化[J]. 中国病毒学, 2004, 19(1):62-66. |
[21] |
CORMIER J, JANES M. A double layer plaque assay using spread plate technique for enumeration of bacteriophage MS2[J]. Journal of Virological Methods, 2014, 196:86-92.
DOI URL |
[22] | 张文静, 周晶晶, 刘丹, 等. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展, 2016, 27(4):629-638. |
[23] | 李冬, 曹瑞华, 曾辉平, 等. 高铁锰氨氮地下水净化试验及氧化动力学[J]. 中国环境科学, 2017, 37(11):4140-4150. |
[24] | 李硕. 病毒在包气带的环境行为特征研究[D]. 长春: 吉林大学, 2018: 39-73. |
[25] | 李硕, 苏杰, 高峰, 等. 地下水酸碱环境对肠道病毒胶体迁移规律的影响[J]. 吉林大学学报(理学版), 2018, 56(2):452-455. |
[1] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[2] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[3] | MA Chang, GE Jiawang, ZHAO Xiaoming, LIAO Jin, YAO Zhe, ZHU Jitian, FANG Xiaoyu, XIANG Zhu. Quaternary Qiongdongnan Basin in South China Sea: Shelf-edge trajectory migration and deep-water depositional models [J]. Earth Science Frontiers, 2022, 29(4): 55-72. |
[4] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[5] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[6] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[7] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[8] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[9] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[10] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[11] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[12] | LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions [J]. Earth Science Frontiers, 2022, 29(3): 76-87. |
[13] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[14] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[15] | LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits [J]. Earth Science Frontiers, 2022, 29(1): 29-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||