Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 227-238.DOI: 10.13745/j.esf.sf.2022.1.41
Previous Articles Next Articles
LIU Xuena1,2(), LI Haiming1,2,*(
), LI Mengdi1,2, ZHANG Weihua3, XIAO Han1,2
Received:
2022-01-30
Revised:
2022-02-08
Online:
2022-05-25
Published:
2022-04-28
Contact:
LI Haiming
CLC Number:
LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain[J]. Earth Science Frontiers, 2022, 29(3): 227-238.
Fig.1 Schematic map showing the location of gas station sampling sites and groundwater flow field in the Tianjin coastal plain area. Adapted from [19].
组分及参数 | 样本量 | 极大值 | 极小值 | 均值 | 标准差 | 变异系数/% |
---|---|---|---|---|---|---|
TDS | 84 | 2.30×104 | 656.00 | 4 376.54 | 5 289.01 | 120.85 |
K+ | 84 | 149.00 | 0.59 | 24.46 | 37.78 | 154.46 |
Na+ | 84 | 6.98×103 | 50.30 | 1 184.35 | 1 568.53 | 132.44 |
Ca2+ | 84 | 929.00 | 18.20 | 158.20 | 141.47 | 89.42 |
Mg2+ | 84 | 939.00 | 7.24 | 174.91 | 188.50 | 107.77 |
| 84 | 1.89×103 | 87.00 | 688.45 | 267.73 | 38.89 |
Cl- | 84 | 1.20×104 | 35.00 | 1 930.96 | 2 988.43 | 154.76 |
| 84 | 1.44×103 | 33.00 | 399.99 | 337.47 | 84.37 |
| 84 | ND | ND | |||
| 84 | 148.00 | ND | 9.61 | 19.74 | 205.36 |
| 84 | 5.57 | ND | 0.18 | 0.61 | 344.54 |
Mn | 84 | 8.02 | ND | 0.70 | 1.32 | 187.17 |
Fe | 84 | 2.54 | ND | 0.19 | 0.53 | 271.73 |
pH值 | 84 | 8.73 | 6.80 | 7.43 | 0.34 | 4.56 |
Table 1 Statistics of gas station groundwater hydrochemical indexes for the study area
组分及参数 | 样本量 | 极大值 | 极小值 | 均值 | 标准差 | 变异系数/% |
---|---|---|---|---|---|---|
TDS | 84 | 2.30×104 | 656.00 | 4 376.54 | 5 289.01 | 120.85 |
K+ | 84 | 149.00 | 0.59 | 24.46 | 37.78 | 154.46 |
Na+ | 84 | 6.98×103 | 50.30 | 1 184.35 | 1 568.53 | 132.44 |
Ca2+ | 84 | 929.00 | 18.20 | 158.20 | 141.47 | 89.42 |
Mg2+ | 84 | 939.00 | 7.24 | 174.91 | 188.50 | 107.77 |
| 84 | 1.89×103 | 87.00 | 688.45 | 267.73 | 38.89 |
Cl- | 84 | 1.20×104 | 35.00 | 1 930.96 | 2 988.43 | 154.76 |
| 84 | 1.44×103 | 33.00 | 399.99 | 337.47 | 84.37 |
| 84 | ND | ND | |||
| 84 | 148.00 | ND | 9.61 | 19.74 | 205.36 |
| 84 | 5.57 | ND | 0.18 | 0.61 | 344.54 |
Mn | 84 | 8.02 | ND | 0.70 | 1.32 | 187.17 |
Fe | 84 | 2.54 | ND | 0.19 | 0.53 | 271.73 |
pH值 | 84 | 8.73 | 6.80 | 7.43 | 0.34 | 4.56 |
水化学指标 | 各主因子载荷 | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
Na+ | 0.98 | 0.04 | 0.09 | 0.06 |
Cl- | 0.96 | -0.02 | 0.17 | 0.04 |
K+ | 0.94 | -0.04 | -0.17 | 0.09 |
Mg2+ | 0.89 | 0.02 | 0.31 | 0.08 |
Mn | 0.80 | -0.12 | 0.02 | -0.08 |
Fe | -0.03 | 0.90 | -0.13 | 0.02 |
TPH | -0.36 | 0.72 | 0.16 | -0.08 |
| 0.17 | 0.72 | -0.09 | -0.12 |
Ca2+ | 0.36 | -0.07 | 0.80 | 0.11 |
pH | 0.10 | 0.05 | -0.79 | 0.15 |
| 0.31 | -0.03 | 0.36 | 0.34 |
| -0.06 | -0.05 | 0.15 | 0.82 |
| 0.08 | -0.10 | -0.28 | 0.73 |
特征值 | 4.57 | 1.88 | 1.72 | 1.39 |
方差贡献率/% | 35.16 | 14.49 | 13.18 | 10.72 |
累积方差贡献率/% | 35.16 | 49.65 | 62.83 | 73.55 |
Table 2 Main factor loadings of groundwater hydrochemical indexes
水化学指标 | 各主因子载荷 | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
Na+ | 0.98 | 0.04 | 0.09 | 0.06 |
Cl- | 0.96 | -0.02 | 0.17 | 0.04 |
K+ | 0.94 | -0.04 | -0.17 | 0.09 |
Mg2+ | 0.89 | 0.02 | 0.31 | 0.08 |
Mn | 0.80 | -0.12 | 0.02 | -0.08 |
Fe | -0.03 | 0.90 | -0.13 | 0.02 |
TPH | -0.36 | 0.72 | 0.16 | -0.08 |
| 0.17 | 0.72 | -0.09 | -0.12 |
Ca2+ | 0.36 | -0.07 | 0.80 | 0.11 |
pH | 0.10 | 0.05 | -0.79 | 0.15 |
| 0.31 | -0.03 | 0.36 | 0.34 |
| -0.06 | -0.05 | 0.15 | 0.82 |
| 0.08 | -0.10 | -0.28 | 0.73 |
特征值 | 4.57 | 1.88 | 1.72 | 1.39 |
方差贡献率/% | 35.16 | 14.49 | 13.18 | 10.72 |
累积方差贡献率/% | 35.16 | 49.65 | 62.83 | 73.55 |
电子受体 | 生物降解反应 | 自由能/(kJ·mol-1) | 反应顺序 | |
---|---|---|---|---|
| 5CH2O+4 | (3) | -448 | 1st |
Mn4+ | CH2O+3CO2+2MnO2+H2O→Mn2+4 | (5) | -349 | 2nd |
Fe3+ | CH2O+7CO2+4Fe(OH)3→Fe2++8 | (4) | -114 | 3rd |
| 2CH2O+ | (6) | -77 | 4th |
Table 3 Biodegradation kinetics of TPH in the presence of 4 electron acceptors used in this study
电子受体 | 生物降解反应 | 自由能/(kJ·mol-1) | 反应顺序 | |
---|---|---|---|---|
| 5CH2O+4 | (3) | -448 | 1st |
Mn4+ | CH2O+3CO2+2MnO2+H2O→Mn2+4 | (5) | -349 | 2nd |
Fe3+ | CH2O+7CO2+4Fe(OH)3→Fe2++8 | (4) | -114 | 3rd |
| 2CH2O+ | (6) | -77 | 4th |
[1] | 康丽娟, 孙从军, 杨青, 等. 加油站地下储罐系统渗漏污染物监测研究[J]. 环境科学与管理, 2014, 39(2): 53-57. |
[2] | WU Q, ZHANG X F, ZHANG Q J. Current situation and control measures of groundwater pollution in gas station[J]. IOP Conference Series: Earth and Environmental Science, 2017, 94: 012005. |
[3] |
BAI X, SONG K, LIU J, et al. Health risk assessment of groundwater contaminated by oil pollutants based on numerical modeling[J]. International Journal of Environmental Research and Public Health, 2019, 16(18): 3245.
DOI URL |
[4] | 左慧君, 金文房, 高建村. 克拉玛依石化公司储油罐腐蚀现状调查及防腐对策[J]. 新疆石油学院学报, 2002, 14(3): 70-73. |
[5] | 李纯, 武强. 地下水有机污染的研究进展[J]. 工程勘察, 2007, 35(1): 27-30. |
[6] | 王威. 浅层地下水中石油类特征污染物迁移转化机理研究[D]. 长春: 吉林大学, 2012. |
[7] | 焦珣, 苏小四, 吕航. 某石油类污染场地地下水石油烃生物降解的地球化学证据[J]. 地质科学, 2012, 47(2): 499-506. |
[8] |
BORDEN R C, GOMEZ C A, BECKER M T. Geochemical Indicators of intrinsic bioremediation[J]. Ground Water, 1995, 33(2): 180-189.
DOI URL |
[9] | 路莹. 浅层地下水系统石油类污染物的生物降解机制研究[D]. 长春: 吉林大学, 2013. |
[10] |
SCHREIBER M E, CAREY G R, FEINSTEIN D T, et al. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation[J]. Journal of Contaminant Hydrology, 2004, 73(1/2/3/4): 99-127.
DOI URL |
[11] |
HERON G, CROUZET C, BOURG A C, et al. Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques[J]. Environmental Science and Technology, 1994, 28(9): 1698-1705.
DOI URL |
[12] | 赵琪, 苏小四, 左恩德, 等. 某石油烃污染场地包气带介质及含水介质TPH污染特征[J]. 科技导报, 2015, 33(7): 25-29. |
[13] | 苏小四, 吕航, 张文静, 等. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. 吉林大学学报(地球科学版), 2011, 41(3): 847-854. |
[14] | COMMITTEE ON INTRINSIC REMEDIATION, WATER SCIENCE AND TECHNOLOGY BOARD, BOARD ON RADIOACTIVE WASTE MANAGEMENT, et al. Natural attenuation for groundwater remediation[M]. Washington, D.C.: National Academy Press, 2000. |
[15] |
LEE J Y, CHEON J Y, LEE K K, et al. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer[J]. Journal of Contaminant Hydrology, 2001, 50(1/2): 139-158.
DOI URL |
[16] | 党江艳. 石油微污染地下水水环境要素变化特征及微生物强化修复[D]. 长春: 吉林大学, 2015. |
[17] |
BÁEZ-CAZULL S E, MCGUIRE J T, COZZARELLI I M, et al. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis[J]. Journal of Environmental Quality, 2008, 37(1): 30-46.
DOI URL |
[18] | 吕航, 刘明遥, 苏小四, 等. 主因子分析方法在确定地下水石油烃生物降解过程中的应用[J]. 中南大学学报(自然科学版), 2013, 44(8): 3552-3560. |
[19] | 天津市地质矿产局. 天津市地质环境图集[M]. 北京: 地质出版社, 2004. |
[20] | 高惠璇. 应用多元统计分析[M]. 北京: 北京大学出版社, 2005. |
[21] |
FARNHAM I M, JOHANNESSON K H, SINGH A K, et al. Factor analytical approaches for evaluating groundwater trace element chemistry data[J]. Analytica Chimica Acta, 2003, 490(1/2): 123-138.
DOI URL |
[22] | 吴春勇, 苏小四, 郭金淼, 等. 鄂尔多斯沙漠高原白垩系地下水水化学演化的多元统计分析[J]. 世界地质, 2011, 30(2): 244-253. |
[23] |
LIU C W, LIN K H, KUO Y M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan[J]. The Science of the Total Environment, 2003, 313(1/2/3): 77-89.
DOI URL |
[24] | 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析[J]. 中国地质, 2016, 43(4): 1446-1456. |
[25] | 崔佳琪, 李仙岳, 史海滨, 等. 河套灌区地下水化学演变特征及形成机制[J]. 环境科学, 2020, 41(9): 4011-4020. |
[26] | 高燕燕. 关中平原地下水化学成分时空演化规律及人体健康风险评价[D]. 西安: 长安大学, 2020. |
[27] |
LI Z, CHEN Y N, YANG J, et al. Potential evapotranspiration and its attribution over the past 50 years in the arid region of Northwest China[J]. Hydrological Processes, 2014, 28(3): 1025-1031.
DOI URL |
[28] |
SU H, KANG W D, XU Y J, et al. Assessment of groundwater quality and health risk in the oil and gas field of Dingbian county, Northwest China[J]. Exposure and Health, 2017, 9(4): 227-242.
DOI URL |
[29] | 梁国玲, 孙继朝, 黄冠星, 等. 珠江三角洲地区地下水锰的分布特征及其成因[J]. 中国地质, 2009, 36(4): 899-906. |
[30] | 曾昭华. 长江中下游地区地下水中Mn元素的背景特征及其形成[J]. 上海地质, 2004, 25(1): 9-12. |
[31] | 韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究:碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406. |
[32] | 于炳松, 赖兴运. 成岩作用中的地下水碳酸体系与方解石溶解度[J]. 沉积学报, 2006, 24(5): 627-635. |
[33] | 宁卓, 蔡萍萍, 张敏, 等. 某石油污染地下水溶解性无机碳低异常的微生物地球化学成因探析[J]. 环境科学学报, 2019, 39(4): 1140-1147. |
[34] |
DAI L J, WANG L Q, LIANG T, et al. Geostatistical analyses and co-occurrence correlations of heavy metals distribution with various types of land use within a watershed in eastern QingHai-Tibet Plateau, China[J]. Science of the Total Environment, 2019, 653: 849-859.
DOI URL |
[35] |
ROCHA C, CASQUIN A P, PEREIRA R O. Correlations chart: tool to analyse the dynamics of water quality parameters[J]. Revista Brasileira De Engenharia Agrícola e Ambiental, 2019, 23(5): 383-390.
DOI URL |
[36] |
SEI A, FATHEPURE B Z. Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake[J]. Journal of Applied Microbiology, 2009, 107(6): 2001-2008.
DOI URL |
[37] | ABOU KHALIL C, PRINCE V L, PRINCE R C, et al. Occurrence and biodegradation of hydrocarbons at high salinities[J]. Science of The Total Environment, 2021, 762: 143165. |
[38] | 董军. 垃圾渗滤液在地下环境中的氧化还原分带及污染物的降解机理研究[D]. 长春: 吉林大学, 2006. |
[1] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[2] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[3] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[4] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[5] | ZHENG Jiarui, LENG Wenpeng, WANG Jiajia, ZHI Liqin, WANG Shuo, LI Jiabin, GUO Peng, WEI Wenxia, SONG Yun. Bioremediation technologies for cleaning up chlorinated-hydrocarbon contaminated sites—a review [J]. Earth Science Frontiers, 2024, 31(2): 157-172. |
[6] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[7] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[8] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[9] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[10] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[11] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[12] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[13] | GUO Yongli, XIAO Qiong, ZHANG Cheng, WU Qing. Characteristics of petroleum hydrocarbon-polluted karst groundwater environment: A case study of groundwater source in Dawu, Zibo City, northern China [J]. Earth Science Frontiers, 2023, 30(2): 539-547. |
[14] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[15] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||