Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 146-158.DOI: 10.13745/j.esf.sf.2021.2.18
Previous Articles Next Articles
ZHANG Shengyu1(), ZHANG Menghuan2, WANG Ligang3, WAN Yuyu2,*()
Received:
2020-05-25
Revised:
2020-08-19
Online:
2021-09-25
Published:
2021-10-29
Contact:
WAN Yuyu
CLC Number:
ZHANG Shengyu, ZHANG Menghuan, WANG Ligang, WAN Yuyu. Degradation of naphthalene by microorganisms in groundwater: Characteristics and kinetics[J]. Earth Science Frontiers, 2021, 28(5): 146-158.
pH值 | 萘初始浓度C/(mg·L-1) | 温度T/℃ | 菌接种量I/% |
---|---|---|---|
4.09.0 | 5.00 | 10 | 5 |
8.0 | 1.005.00 | 10 | 5 |
8.0 | 5.00 | 1030 | 5 |
8.0 | 5.00 | 10 | 15 |
Table 1 Bacterial culture parameters for naphthalene degradation experiment
pH值 | 萘初始浓度C/(mg·L-1) | 温度T/℃ | 菌接种量I/% |
---|---|---|---|
4.09.0 | 5.00 | 10 | 5 |
8.0 | 1.005.00 | 10 | 5 |
8.0 | 5.00 | 1030 | 5 |
8.0 | 5.00 | 10 | 15 |
时段 | 物种数目 OTUnum | 多样性指数 Shannon | 多样性指数 Simpson | 丰度指数 Chao1 | 覆盖率 Coverage/% | 丰度指数 ACE |
---|---|---|---|---|---|---|
降解前 | 1 787 | 0.67 | 0.84 | 194 617.75 | 0.97 | 679 207.00 |
降解后 | 1 509 | 0.79 | 0.76 | 924 67.58 | 0.96 | 383 534.55 |
Table 2 Statistical table for alpha diversity indices (before and after microbial degradation)
时段 | 物种数目 OTUnum | 多样性指数 Shannon | 多样性指数 Simpson | 丰度指数 Chao1 | 覆盖率 Coverage/% | 丰度指数 ACE |
---|---|---|---|---|---|---|
降解前 | 1 787 | 0.67 | 0.84 | 194 617.75 | 0.97 | 679 207.00 |
降解后 | 1 509 | 0.79 | 0.76 | 924 67.58 | 0.96 | 383 534.55 |
Fig.10 Effect of temperature on naphthalene degradation (a) and average rate and efficiency of naphthalene degradation under different temperatures (b)
Fig.11 Effect of inoculum concentration on naphthalene degradation (a) and average rate and efficiency of naphthalene degradation under different inoculum concentrations (b)
方程名称 | 方程形式 |
---|---|
Guass | y=y0+ |
GuassAmp | y=y0+A |
LogNomal | y=y0+ |
Poisson | y=y0+ |
Pulse | y=y0+A(1- |
Table 3 Curve equations
方程名称 | 方程形式 |
---|---|
Guass | y=y0+ |
GuassAmp | y=y0+A |
LogNomal | y=y0+ |
Poisson | y=y0+ |
Pulse | y=y0+A(1- |
初始条件 | 常数 | 相关系数 R2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
萘初始浓度 C/(mg·L-1) | 温度 T/℃ | 菌接种量 I/% | pH值 | α | β | γ | |||||||||
5.00 | 10 | 5 | 8.0 | 2.721 | 36.14 | 24.27 | 0.951 | ||||||||
7.0 | 2.635 | 51.13 | 25.90 | 0.991 | |||||||||||
6.0 | 2.098 | 57.57 | 24.74 | 0.994 | |||||||||||
5.0 | 1.639 | 58.89 | 20.86 | 0.983 |
Table 4 Degradation kinetics of naphthalene at different pH fitted by GuassAmp model
初始条件 | 常数 | 相关系数 R2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
萘初始浓度 C/(mg·L-1) | 温度 T/℃ | 菌接种量 I/% | pH值 | α | β | γ | |||||||||
5.00 | 10 | 5 | 8.0 | 2.721 | 36.14 | 24.27 | 0.951 | ||||||||
7.0 | 2.635 | 51.13 | 25.90 | 0.991 | |||||||||||
6.0 | 2.098 | 57.57 | 24.74 | 0.994 | |||||||||||
5.0 | 1.639 | 58.89 | 20.86 | 0.983 |
初始条件 | 常数 | 相关系数 R2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH值 | 温度 T/℃ | 菌接种量 I/% | 萘初始浓度 C/(mg·L-1) | α | β | γ | |||||||||
8.0 | 10 | 5 | 5.00 | 2.721 | 36.14 | 24.27 | 0.951 | ||||||||
4.00 | 2.182 | 33.79 | 23.59 | 0.945 | |||||||||||
3.00 | 1.838 | 30.87 | 20.46 | 0.948 | |||||||||||
2.00 | 1.429 | 25.96 | 16.45 | 0.994 | |||||||||||
1.00 | 1.068 | 21.55 | 12.35 | 0.996 |
Table 5 Degradation kinetics of naphthalene under different initial concentrations fitted by GuassAmp model
初始条件 | 常数 | 相关系数 R2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH值 | 温度 T/℃ | 菌接种量 I/% | 萘初始浓度 C/(mg·L-1) | α | β | γ | |||||||||
8.0 | 10 | 5 | 5.00 | 2.721 | 36.14 | 24.27 | 0.951 | ||||||||
4.00 | 2.182 | 33.79 | 23.59 | 0.945 | |||||||||||
3.00 | 1.838 | 30.87 | 20.46 | 0.948 | |||||||||||
2.00 | 1.429 | 25.96 | 16.45 | 0.994 | |||||||||||
1.00 | 1.068 | 21.55 | 12.35 | 0.996 |
初始条件 | 常数 | 相关系数 R2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH值 | 萘初始浓度 C/(mg·L-1) | 菌接种量 I/% | 温度 T/℃ | α | β | γ | |||||||||
8.0 | 5.00 | 5 | 30 | 3.394 | 25.89 | 20.32 | 0.970 | ||||||||
20 | 2.946 | 30.30 | 22.27 | 0.958 | |||||||||||
10 | 2.721 | 36.14 | 24.27 | 0.951 |
Table 6 Degradation kinetics of naphthalene under different temperatures fitted by GuassAmp model
初始条件 | 常数 | 相关系数 R2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH值 | 萘初始浓度 C/(mg·L-1) | 菌接种量 I/% | 温度 T/℃ | α | β | γ | |||||||||
8.0 | 5.00 | 5 | 30 | 3.394 | 25.89 | 20.32 | 0.970 | ||||||||
20 | 2.946 | 30.30 | 22.27 | 0.958 | |||||||||||
10 | 2.721 | 36.14 | 24.27 | 0.951 |
初始条件 | 常数 | 相关系数 R2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH值 | 萘初始浓度 C/(mg·L-1) | 温度 T/℃ | 菌接种量 I/% | α | β | γ | |||||||||
8.0 | 5.00 | 10 | 5 | 2.271 | 36.14 | 24.27 | 0.951 | ||||||||
4 | 2.047 | 39.80 | 29.26 | 0.949 | |||||||||||
3 | 1.654 | 50.09 | 34.26 | 0.972 | |||||||||||
2 | 1.431 | 56.23 | 33.94 | 0.985 | |||||||||||
1 | 1.308 | 66.63 | 31.81 | 0.985 |
Table 7 Degradation kinetics of naphthalene under different inoculum concentrations fitted by GuassAmp model
初始条件 | 常数 | 相关系数 R2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH值 | 萘初始浓度 C/(mg·L-1) | 温度 T/℃ | 菌接种量 I/% | α | β | γ | |||||||||
8.0 | 5.00 | 10 | 5 | 2.271 | 36.14 | 24.27 | 0.951 | ||||||||
4 | 2.047 | 39.80 | 29.26 | 0.949 | |||||||||||
3 | 1.654 | 50.09 | 34.26 | 0.972 | |||||||||||
2 | 1.431 | 56.23 | 33.94 | 0.985 | |||||||||||
1 | 1.308 | 66.63 | 31.81 | 0.985 |
[1] | LOGESHWARAN P, MEGHARAJ M, CHADALAVADA S, et al. Petroleum hydrocarbons (PH) in groundwater aquifers:an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches[J]. Environmental Technology & Innovation, 2018, 10:175-193. |
[2] |
GOUVEIA V, ALMEIDA C M R, ALMEIDA T , et al. Indigenous microbial communities along the NW Portuguese Coast:potential for hydrocarbons degradation and relation with sediment contamination[J]. Marine Pollution Bulletin, 2018, 131:620-632.
DOI URL |
[3] |
BIACHE C, OUALI S, CÉBRON A, et al. Bioremediation of PAH-contamined soils:consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance[J]. Journal of Hazardous Materials, 2017, 329:1-10.
DOI URL |
[4] |
HUANG H Y, WU K J, KHAN A, et al. A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium[J]. Bioresource Technology, 2016, 207:370-378.
DOI URL |
[5] | 陈思尹, 吕卫光, 张娟琴, 等. 萘降解菌的分离及其联合修复作用的研究进展[J]. 环境科学与技术, 2017, 40(7):152-159. |
[6] | 刘建峰. Bio-trap技术研发及其在地下水中萘降解相关微生物群落研究中的应用[D]. 武汉: 中国地质大学(武汉), 2017. |
[7] | 郭亚男, 张馨予, 胥梦, 等. 低温萘降解菌的筛选、鉴定及降解条件优化[J]. 生物技术通报, 2019, 35(7):100-107. |
[8] | 尹勇, 戴中华, 蒋鹏, 等. 苏南某焦化厂场地土壤和地下水特征污染物分布规律研究[J]. 农业环境科学学报, 2012, 31(8):1525-1531. |
[9] |
OBEROI A S, PHILIP L, BHALLAMUDI S M. Biodegradation of various aromatic compounds by enriched bacterial cultures: part A: monocyclic and polycyclic aromatic hydrocarbons[J]. Applied Biochemistry and Biotechnology, 2015, 176(7):1870-1888.
DOI URL |
[10] | 杨瑞芳. 水体多环芳烃类污染物3DEEM光谱数据定量分析方法研究[D]. 合肥: 中国科学技术大学, 2016. |
[11] |
ZAFRA G, TAYLOR T D, ABSALÓN A E , et al. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium[J]. Journal of Hazardous Materials, 2016, 318:702-710.
DOI URL |
[12] |
EESHWARASINGHE D, LOGANATHAN P, KALARUBAN M, et al. Removing polycyclic aromatic hydrocarbons from water using granular activated carbon:kinetic and equilibrium adsorption studies[J]. Environmental Science and Pollution Research, 2018, 25(14):13511-13524.
DOI URL |
[13] | 吉芳英, 王晓东, 谭雪梅, 等. 高铁酸钾氧化系统中芳烃类物质转化特性[J]. 水处理技术, 2012, 38(10):47-49, 53. |
[14] | 高闯, 张全, 王继锋. 萘降解菌的筛选及其对多环芳烃的降解[J]. 化工环保, 2015, 35(1):17-20. |
[15] | 冯凯婕. 铁矿物对微生物降解萘的影响研究[D]. 长春: 吉林大学, 2019. |
[16] |
YU B, JIN X Y, KUANG Y, et al. An integrated biodegradation and nano-oxidation used for the remediation of naphthalene from aqueous solution[J]. Chemosphere, 2015, 141:205-211.
DOI URL |
[17] |
DUTTA K, SHITYAKOV S, KHALIFA I, et al. Effects of secondary carbon supplement on biofilm-mediated biodegradation of naphthalene by mutated naphthalene 1, 2-dioxygenase encoded by Pseudomonas putida strain KD9[J]. Journal of Hazardous Materials, 2018, 357:187-197.
DOI URL |
[18] |
ABO-STATE M A M, RIAD B Y, BAKR A A, et al. Biodegradation of naphthalene by Bordetella avium isolated from petroleum refinery wastewater in Egypt and its pathway[J]. Journal of Radiation Research and Applied Sciences, 2018, 11(1):1-9.
DOI URL |
[19] | VARJANI S J, UPASANI V N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants[J]. International Biodeterioration & Biodegradation, 2017, 120:71-83. |
[20] | 唐娜. 苍白杆菌生物膜降解萘的动力学研究[D]. 北京: 中国地质大学(北京), 2019. |
[21] |
RIBEIRO H, DE SOUSA T, SANTOS J P, et al. Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation[J]. Chemosphere, 2018, 199:54-67.
DOI URL |
[22] | WANG F K, LI C, WANG H J, et al. Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment[J]. International Biodeterioration & Biodegradation, 2016, 115:286-292. |
[23] | 王博, 刘兆普, 隆小华, 等. 一株萘降解菌的筛选及其降解途径[J]. 天然产物研究与开发, 2012, 24(12):1697-1702. |
[24] |
JEGAN J, VIJAYARAGHAVAN K, SENTHILKUMAR R, et al. Naphthalene degradation kinetics of Micrococcus sp., isolated from activated sludge[J]. CLEAN - Soil, Air, Water, 2010, 38(9):837-842.
DOI URL |
[25] |
LI C Y, ZHONG S, ZHANG F J, et al. Response of microbial communities to supercritical CO2 and biogeochemical influences on microbially mediated CO2-saline-sandstone interactions[J]. Chemical Geology, 2017, 473:1-9.
DOI URL |
[26] |
ZHANG J S, SUN Z T, LI Y Y, et al. Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity[J]. Journal of Hazardous Materials, 2009, 163(2/3):723-728.
DOI URL |
[27] |
KOS B, ŠUŠKOVI- J, VUKOVI- S, et al. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92[J]. Journal of Applied Microbiology, 2003, 94(6):981-987.
DOI URL |
[28] |
PŁAZA G A, ZJAWIONY I, BANAT I M. Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils[J]. Journal of Petroleum Science and Engineering, 2006, 50(1):71-77.
DOI URL |
[29] |
HASSANSHAHIAN M, BOROUJENI N A. Enrichment and identification of naphthalene-degrading bacteria from the Persian Gulf[J]. Marine Pollution Bulletin, 2016, 107(1):59-65.
DOI URL |
[30] | 刘小娜, 李彪, 唐晨, 等. 萘的微生物降解研究进展[J]. 生物加工过程, 2019, 17(6):581-589. |
[31] | 郭伟, 何孟常, 杨志峰. 土壤/沉积物中石油烃微生物降解研究综述[J]. 矿物岩石地球化学通报, 2007, 26(3):276-283. |
[32] |
ANYIKA C, ABDUL MAJID Z, IBRAHIM Z, et al. The impact of biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils: a review[J]. Environmental Science and Pollution Research, 2015, 22(5):3314-3341.
DOI URL |
[33] | LU X Y, ZHANG T, FANG H P, et al. Biodegradation of naphthalene by enriched marine denitrifying bacteria[J]. International Biodeterioration & Biodegradation, 2011, 65(1):204-211. |
[34] | 田晓娟, 唐凌天, 彭立娥, 等. 石油脱硫微生物菌株的筛选及鉴定的研究[J]. 地学前缘, 2008, 15(6):192-198. |
[35] | 朱星, 王若宇, 汪锐, 等. 萘降解菌的分离鉴定、生长特性和降解途径探究[J]. 环境污染与防治, 2017, 39(4):379-383. |
[36] | 田晶. 降解多环芳烃真菌的筛选及其性能的研究[D]. 石河子: 石河子大学, 2018. |
[37] | 赵晴. 疏水性石油烃降解菌强化降解系统的构建及其降解能力研究[D]. 武汉: 武汉大学, 2005. |
[38] | FARRELL A, QUILTY B. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 28(6):316-324. |
[39] | 雒晓芳, 温文静, 谭丽婵, 等. 两株芽孢杆菌对萘、菲、芘的降解特性研究[J]. 西北民族大学学报(自然科学版), 2016, 37(3):46-51. |
[40] | 史延华, 任磊, 贾阳, 等. 施氏假单胞菌YC-YH1的萘降解特性及产物分析[J]. 微生物学通报, 2015, 42(10):1866-1876. |
[1] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[2] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[3] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[4] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[5] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[6] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[7] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[8] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[9] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[10] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[11] | LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions [J]. Earth Science Frontiers, 2022, 29(3): 76-87. |
[12] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[13] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[14] | ZHAO Weidong, ZHAO Lu, GONG Jianshi, ZHOU Wenyi, QIAN Jiazhong. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14. |
[15] | XIE Fei, ZHANG Yuxi, LIU Jingtao, ZHOU Bing, XIANG Xiaoping. Groundwater quality and pollution assessment based on ‘hierarchical ladder evaluation method’: A case study of Tongchuan Cit [J]. Earth Science Frontiers, 2021, 28(5): 15-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||