Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (3): 190-207.DOI: 10.13745/j.esf.sf.2021.1.14
Previous Articles Next Articles
XIAO Fan1,2,3,4(), WANG Kaiqi1
Received:
2020-01-05
Revised:
2020-02-27
Online:
2021-05-20
Published:
2021-05-23
CLC Number:
XIAO Fan, WANG Kaiqi. Fault and intrusion control on copper mineralization in the Dexing porphyry copper deposit in Jiangxi, China: A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling[J]. Earth Science Frontiers, 2021, 28(3): 190-207.
Fig.1 (A) Tectonic sketch map showing the temporal-spatial distribution of the Late Mesozoic magmatic rocks in the South China Craton (modified from [51]) and (B) geological map of the Dexing mineralization district (modified from [42])
Fig.2 (A) Geological and tectonic map of the Dexing orefield (modified from [43]) and (B-D) sketch map showing the attitude and morphology of copper orebodies in each deposit (modified from [40])
岩体 | 地表 形态 | 规模 | 产状 | |||
---|---|---|---|---|---|---|
长度/m | 宽度/m | 面积/km2 | 倾伏向/(°) | 倾伏角/(°) | ||
富家坞 | 梯形 | 650 | 300 | 0.2 | 310 | 40 |
铜厂 | 三角形 | 1 300 | 300~800 | 0.7 | 320 | 45~50 |
朱砂红 | 岩枝和 岩脉群 | ≤450 | ≤80 | 0.06 | 340 | 60~70 |
Table 1 Geometric parameters of the Fujiawu, Tongchang and Zhushahong intrusions
岩体 | 地表 形态 | 规模 | 产状 | |||
---|---|---|---|---|---|---|
长度/m | 宽度/m | 面积/km2 | 倾伏向/(°) | 倾伏角/(°) | ||
富家坞 | 梯形 | 650 | 300 | 0.2 | 310 | 40 |
铜厂 | 三角形 | 1 300 | 300~800 | 0.7 | 320 | 45~50 |
朱砂红 | 岩枝和 岩脉群 | ≤450 | ≤80 | 0.06 | 340 | 60~70 |
模型单元 | 密度/ (kg·m-3) | 杨氏模量/ (1010 Pa) | 泊松比 | 孔隙率 | 渗透率/ (10-12 m2) | 导热系数/ (W·m-1·K-1) | 恒压热容/ (J·kg-1·K-1) |
---|---|---|---|---|---|---|---|
地 层 | 2 650 | 7.0 | 0.25 | 0.25 | 0.40 | 3.1 | 880 |
侵入体 | 2 850 | 8.0 | 0.25 | 0.21 | 0.45 | 2.9 | 680 |
断 裂 | 1 800 | 0.28 | 0.35 | 0.40 | 40.0 | 2.8 | 820 |
Table 2 Rock parameters applied in the numerical models
模型单元 | 密度/ (kg·m-3) | 杨氏模量/ (1010 Pa) | 泊松比 | 孔隙率 | 渗透率/ (10-12 m2) | 导热系数/ (W·m-1·K-1) | 恒压热容/ (J·kg-1·K-1) |
---|---|---|---|---|---|---|---|
地 层 | 2 650 | 7.0 | 0.25 | 0.25 | 0.40 | 3.1 | 880 |
侵入体 | 2 850 | 8.0 | 0.25 | 0.21 | 0.45 | 2.9 | 680 |
断 裂 | 1 800 | 0.28 | 0.35 | 0.40 | 40.0 | 2.8 | 820 |
模型 | a/m | b/m | c/m | α/(°) | β/(°) | d/m |
---|---|---|---|---|---|---|
M1 | 650 | 300 | 1 556 | 40 | 70 | 1 |
M2 | 650 | 300 | 1 556 | 40 | 70 | 2 |
M3 | 650 | 300 | 1 556 | 40 | 70 | 5 |
M4 | 650 | 300 | 1 556 | 40 | 70 | 10 |
M5 | 650 | 300 | 1 556 | 50 | 70 | 1 |
M6 | 650 | 300 | 1 556 | 50 | 70 | 2 |
M7 | 650 | 300 | 1 556 | 50 | 70 | 5 |
M8 | 650 | 300 | 1 556 | 50 | 70 | 10 |
M9 | 650 | 300 | 1 556 | 60 | 70 | 1 |
M10 | 650 | 300 | 1 556 | 60 | 70 | 2 |
M11 | 650 | 300 | 1 556 | 60 | 70 | 5 |
M12 | 650 | 300 | 1 556 | 60 | 70 | 10 |
M13 | 1 300 | 800 | 1 556 | 40 | 70 | 1 |
M14 | 1 300 | 800 | 1 556 | 40 | 70 | 2 |
M15 | 1 300 | 800 | 1 556 | 40 | 70 | 5 |
M16 | 1 300 | 800 | 1 556 | 40 | 70 | 10 |
M17 | 1 300 | 800 | 1 556 | 50 | 70 | 1 |
M18 | 1 300 | 800 | 1 556 | 50 | 70 | 2 |
M19 | 1 300 | 800 | 1 556 | 50 | 70 | 5 |
M20 | 1 300 | 800 | 1 556 | 50 | 70 | 10 |
M21 | 1 300 | 800 | 1 556 | 60 | 70 | 1 |
M22 | 1 300 | 800 | 1 556 | 60 | 70 | 2 |
M23 | 1 300 | 800 | 1 556 | 60 | 70 | 5 |
M24 | 1 300 | 800 | 1 556 | 60 | 70 | 10 |
M25 | 450 | 80 | 1 556 | 40 | 70 | 1 |
M26 | 450 | 80 | 1 556 | 40 | 70 | 2 |
M27 | 450 | 80 | 1 556 | 40 | 70 | 5 |
M28 | 450 | 80 | 1 556 | 40 | 70 | 10 |
M29 | 450 | 80 | 1 556 | 50 | 70 | 1 |
M30 | 450 | 80 | 1 556 | 50 | 70 | 2 |
M31 | 450 | 80 | 1 556 | 50 | 70 | 5 |
M32 | 450 | 80 | 1 556 | 50 | 70 | 10 |
M33 | 450 | 80 | 1 556 | 60 | 70 | 1 |
M34 | 450 | 80 | 1 556 | 60 | 70 | 2 |
M35 | 450 | 80 | 1 556 | 60 | 70 | 5 |
M36 | 450 | 80 | 1 556 | 60 | 70 | 10 |
Table 3 List of numerical models with model parameters
模型 | a/m | b/m | c/m | α/(°) | β/(°) | d/m |
---|---|---|---|---|---|---|
M1 | 650 | 300 | 1 556 | 40 | 70 | 1 |
M2 | 650 | 300 | 1 556 | 40 | 70 | 2 |
M3 | 650 | 300 | 1 556 | 40 | 70 | 5 |
M4 | 650 | 300 | 1 556 | 40 | 70 | 10 |
M5 | 650 | 300 | 1 556 | 50 | 70 | 1 |
M6 | 650 | 300 | 1 556 | 50 | 70 | 2 |
M7 | 650 | 300 | 1 556 | 50 | 70 | 5 |
M8 | 650 | 300 | 1 556 | 50 | 70 | 10 |
M9 | 650 | 300 | 1 556 | 60 | 70 | 1 |
M10 | 650 | 300 | 1 556 | 60 | 70 | 2 |
M11 | 650 | 300 | 1 556 | 60 | 70 | 5 |
M12 | 650 | 300 | 1 556 | 60 | 70 | 10 |
M13 | 1 300 | 800 | 1 556 | 40 | 70 | 1 |
M14 | 1 300 | 800 | 1 556 | 40 | 70 | 2 |
M15 | 1 300 | 800 | 1 556 | 40 | 70 | 5 |
M16 | 1 300 | 800 | 1 556 | 40 | 70 | 10 |
M17 | 1 300 | 800 | 1 556 | 50 | 70 | 1 |
M18 | 1 300 | 800 | 1 556 | 50 | 70 | 2 |
M19 | 1 300 | 800 | 1 556 | 50 | 70 | 5 |
M20 | 1 300 | 800 | 1 556 | 50 | 70 | 10 |
M21 | 1 300 | 800 | 1 556 | 60 | 70 | 1 |
M22 | 1 300 | 800 | 1 556 | 60 | 70 | 2 |
M23 | 1 300 | 800 | 1 556 | 60 | 70 | 5 |
M24 | 1 300 | 800 | 1 556 | 60 | 70 | 10 |
M25 | 450 | 80 | 1 556 | 40 | 70 | 1 |
M26 | 450 | 80 | 1 556 | 40 | 70 | 2 |
M27 | 450 | 80 | 1 556 | 40 | 70 | 5 |
M28 | 450 | 80 | 1 556 | 40 | 70 | 10 |
M29 | 450 | 80 | 1 556 | 50 | 70 | 1 |
M30 | 450 | 80 | 1 556 | 50 | 70 | 2 |
M31 | 450 | 80 | 1 556 | 50 | 70 | 5 |
M32 | 450 | 80 | 1 556 | 50 | 70 | 10 |
M33 | 450 | 80 | 1 556 | 60 | 70 | 1 |
M34 | 450 | 80 | 1 556 | 60 | 70 | 2 |
M35 | 450 | 80 | 1 556 | 60 | 70 | 5 |
M36 | 450 | 80 | 1 556 | 60 | 70 | 10 |
[1] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1):3-41.
DOI URL |
[2] |
WILKINSON J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6:917-925.
DOI URL |
[3] | 侯增谦. 斑岩Cu-Mo-Au矿床: 新认识与新进展[J]. 地学前缘, 2004, 11(1):131-144. |
[4] | 芮宗瑶, 张洪涛, 陈仁义, 等. 斑岩铜矿研究中若干问题探讨[J]. 矿床地质, 2006, 25(4):491-500. |
[5] |
SILLITOE R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 1972, 67:184-197.
DOI URL |
[6] |
RICHARDS J P, BOYCE A J, PRINGLE M S. Geological evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization[J]. Economic Geology, 2001, 96:271-305.
DOI URL |
[7] |
RICHARDS J P. Tectonic-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8):1515-1533.
DOI URL |
[8] |
COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818.
DOI URL |
[9] | 侯增谦, 潘小菲, 杨志明, 等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2):332-351. |
[10] | 侯增谦, 杨志明, 王端, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2):20-44. |
[11] | 杨志明, 侯增谦. 初论碰撞造山环境斑岩矿成矿模型[J]. 矿床地质, 2009, 28(5):515-538. |
[12] |
HOU Z Q, ZHOU Y, WANG R, et al. Recycling of metal-fertilized lower crust: origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 2017, 45(6):563-566.
DOI URL |
[13] |
SHINOHARA H, KAZAHAYA K, LOWENSTERN J B. Volatile transport in a convecting magma column: implications for porphyry Mo mineralization[J]. Geology, 1995, 23:1091-1094.
DOI URL |
[14] |
BLUNDY J, MAVROGENES J, TATTITCH B, et al. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs[J]. Nature Geoscience, 2015, 8:235-240.
DOI URL |
[15] | 於崇文, 岑况, 鲍征宇, 等. 成矿作用动力学[M]. 北京: 地质出版社, 1998. |
[16] | PHILLIPS O M. Flow and reactions in permeable rocks[M]. Cambridge, UK: Cambridge University Press, 1991. |
[17] | ZHAO C B, HOBBS B E, ORD A. Fundamentals of computational geosciences: numerical methods and algorithms[M]. Berlin: Springer, 2009. |
[18] | 刘亮明. 浅成岩体引发的流体超压与岩石破裂及其对成矿的制约[J]. 地学前缘, 2011, 18(5):78-89. |
[19] | 池国祥, 薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5):1-18. |
[20] |
ZHANG Y H, ROBINSON J, SCHAUBS P M. Numerical modelling of structural controls on fluid flow and mineralization[J]. Geoscience Frontiers, 2011, 2(3):449-461.
DOI URL |
[21] | 贾蔡, 袁峰, 张明明, 等. 宁芜盆地白象山铁矿床成矿作用过程数值模拟[J]. 岩石学报, 2014, 30(4):1031-1040. |
[22] | 林舸, ZHAO C B, 王岳军, 等. 含矿流体混合反应与成矿作用的动力平衡模拟研究[J]. 岩石学报, 2003, 19(2):275-282. |
[23] | 朱江建, 陈广浩, 龚贵伦, 等. 广东河台金矿糜棱岩化过程构造-流体成矿研究[J]. 地学前缘, 2011, 18(5):67-77. |
[24] | 赵崇斌, HOBBS B E, ORD A. 用计算地球科学研究方法探讨地质现象的动力学机制: 以断层中等距成矿分布为例[J]. 中国科学: D辑, 2008, 38(5):646-652. |
[25] | 刘亮明, 周瑞超, 赵崇斌. 构造应力环境对浅成岩体成矿系统的制约: 从安庆月山岩体冷却过程动力学计算模拟结果分析[J]. 岩石学报, 2010, 26(9):2869-2878. |
[26] | 王语, 周永章, 肖凡, 等. 基于成矿条件数值模拟和支持向量机算法的深部成矿预测: 以粤北凡口铅锌矿为例[J]. 大地构造与成矿学, 2020, 44(2):222-230. |
[27] |
HOBBS B E, ZHANG Y, ORD A. Application of coupled deformation, fluid flow, thermal and chemical modelling to predictive mineral exploration[J]. Journal of Geochemical Exploration, 2000, 69/70:505-509.
DOI URL |
[28] |
LAMY-CHAPPUIS B, HEINRICH C A, DRIESNER T, et al. Mechanisms and patterns of magmatic fluid transport in cooling hydrous intrusions[J]. Earth and Planetary Science Letters, 2020, 535. DOI: 10.1016/j.epsl.2020.116111
DOI |
[29] |
SUN T, LIU L. Delineating the complexity of Cu-Mo mineralization in a porphyry intrusion by computational and fractal modeling: a case study of the Chehugou deposit in the Chifeng district, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2014, 144:128-143.
DOI URL |
[30] |
WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338:1613-1616.
DOI URL |
[31] |
KORGES M, WEIS P, ANDERSEN C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552. DOI: 10.1016/j.epsl.2020.116584
DOI |
[32] | LI J K, ZHANG D H, WANG D H. Numerical simulations of heat and mass transfer for the Tongchang porphyry copper deposit, Dexing, Jiangxi Province, China[M]//MAO J, BIERLEIN F P. Mineral deposit research: meeting the global challenge, Vols 1 and 2. Berlin, Heidelberg: Springer, 2005: 425-428. |
[33] |
GOW P A, UPTON P, ZHAO C B, et al. Copper-gold mineralisation in New Guinea: numerical modelling of collision, fluid flow and intrusion-related hydrothermal systems[J]. Australian Journal of Earth Sciences, 2002, 49:753-771.
DOI URL |
[34] |
GUILLOU-FROTTIER L, BUROV E. The development and fracturing of plutonic apexes: implications for porphyry ore deposits[J]. Earth and Planetary Science Letters, 2003, 214:341-356.
DOI URL |
[35] |
LIU L M, LI J F, ZHOU R C, et al. 3D modeling of the porphyry-related Dawangding gold deposit in south China: Implications for ore genesis and resources evaluation[J]. Journal of Geochemical Exploration, 2016, 164:164-185.
DOI URL |
[36] |
HU X Y, LI X H, YUAN F, et al. Numerical modeling of ore-forming processes within the Chating Cu-Au porphyry-type deposit, China: Implications for the longevity of hydrothermal systems and potential uses in mineral exploration[J]. Ore Geology Reviews, 2020, 116. DOI: 10.1016/j.orefeorev.2019.103230
DOI |
[37] | 毛景文, 张建东, 郭春丽. 斑岩铜矿-浅成低温热液银铅锌-远接触带热液金矿矿床模型: 一个新的矿床模型: 以德兴地区为例[J]. 地球科学与环境学报, 2010, 32(1):1-14. |
[38] | 王国光, 倪培, 赵超, 等. 德兴大型铜金矿集区的研究进展和成矿模式[J]. 岩石学报, 2019, 35(12):3644-3658. |
[39] | 周清, 姜耀辉, 廖世勇, 等. 德兴斑岩铜矿床研究新进展[J]. 地质论评, 2013, 59(5):933-940. |
[40] | 朱训, 黄崇轲, 芮宗瑶. 德兴斑岩铜矿[M]. 北京: 地质出版社, 1983. |
[41] | 芮宗瑶, 黄崇轲, 齐国明. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社, 1984. |
[42] |
MAO J W, ZHANG J D, PIRAJNO F, et al. Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal Hydrothermal Au deposits in the Dexing area, Jiangxi province, East China: a linked ore system[J]. Ore Geology Reviews, 2011, 43(1):203-216.
DOI URL |
[43] | WANG Q, XU J F, JIAN P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1):110-144. |
[44] |
LIU X, FAN H R, SANTOSH M, et al. Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic: implication for the formation of the Dexing porphyry copper deposit, Southeastern China[J]. Lithos, 2012, 150:85-100.
DOI URL |
[45] |
WANG G G, NI P, YAO J, et al. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit, South China: constraints from high-Mg adakitic rocks[J]. Ore Geology Reviews, 2015, 67:109-126.
DOI URL |
[46] |
WANG G G, NI P, LI L, et al. Petrogenesis of the Middle Jurassic andesitic dikes in the giant Dexing porphyry copper ore field, South China: implications for mineralization[J]. Journal of Asian Earth Sciences, 2020, 196. DOI: 10.1016/j.jseaes.2020.104375
DOI |
[47] | 芮宗瑶, 张立生, 陈振宇, 等. 斑岩铜矿的源岩或源区探讨[J]. 岩石学报, 2004, 20(2):229-238. |
[48] | 於崇文. 成矿作用动力学: 理论体系和方法论[J]. 地学前缘, 1994, 1(3):54-82. |
[49] | 於崇文. 成矿动力系统在混沌边缘的分形生长: 一种新的成矿理论与方法论[J]. 矿物岩石地球化学通报, 2002, 21(2):31-41. |
[50] | 朱金初, 金章东, 饶冰, 等. 德兴铜厂斑岩铜矿流体过程[J]. 南京大学学报(自然科学版), 2002, 38(3):418-434. |
[51] |
HOU Z Q, PAN X F, LI Q Y, et al. The giant Dexing porphyry Cu-Mo-Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting[J]. Mineralium Deposita, 2013, 48:1019-1045.
DOI URL |
[52] |
ZHANG D H, YU C W, BAO Z Y, et al. Ore zoning and dynamics of ore-forming processes of Yinshan polymetallic deposit in Dexing, Jiangxi[J]. Chinese Journal of Geochemistry, 1997, 16:123-132.
DOI URL |
[53] | 郭国章, 任启江, 方长泉, 等. 德兴斑岩铜矿成矿过程中地下热水运移的动力学模拟[J]. 地球化学, 1994, 1(4):402-410. |
[54] |
HE W W, BAO Z Y, LI T P. One-dimensional reactive transport models of alteration in the Tongchang porphyry copper deposit, Dexing district, Jiangxi Province, China[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1999, 94(3):307-323.
DOI URL |
[55] | 於崇文. 江西德兴斑岩铜矿田成矿作用的流体动力分形弥散机制[J]. 地质论评, 1995, 41(3):211-220. |
[56] |
ZHOU Q, JIANG Y H, ZHAO P, et al. Origin of the Dexing ore-bearing porphyries, South China: elemental and Sr-Nd-Pb-Hf isotopic constraints[J]. International Geology Review, 2012, 54(5):572-592.
DOI URL |
[57] | 闵康, 高剑峰, 齐有强, 等. LA-ICP-MS/FT方法在矿床保存研究中的应用: 以赣东北德兴铜矿和银山铅锌矿床为例[J]. 大地构造与成矿学, 2020, 44(1):80-91. |
[58] | 毛景文, 胡瑞忠, 陈毓川, 等. 大规模成矿作用与大型矿集[M]. 北京: 地质出版社, 2006. |
[59] | LI L, NI P, WANG G G, et al. Multi-stage fluid boiling and formation of the giant Fujiawu porphyry Cu-Mo deposit in South China[J]. Ore Geology Reviews, 2017(81):898-911. |
[60] | 李利, 倪培, 王国光, 等. 德兴斑岩铜矿田黄铁矿Re-Os同位素定年及其地质意义[J]. 矿床地质, 2018, 37(6):1168-1178. |
[61] | 潘小菲, 宋玉财, 王淑贤, 等. 德兴铜厂斑岩型铜金矿床热液演化过程[J]. 地质学报, 2009, 83(12):1929-1950. |
[62] | GROTE K, ANTONSSON E. Springer handbook of mechanical engineering[M]. Switzerland: Springer International Publishing, 2009. |
[63] | HERTZBERG R. Deformation and fracture mechanics of engineering materials[M]. Hoboken, USA: John Wiley & Sons, 1996. |
[64] | BOWER A F. Applied mechanics of solids[M]. Boca Raton, USA: CRC Press, 2009. |
[65] | BEAR J. Hydraulics of groundwater[M]. New York: Dover Publications, 1979. |
[66] | INGEBRITSEN S E, SANFORD W E. Groundwater in geologic processes[M]. Cambridge, United Kingdom: Cambridge University Press, 1998. |
[67] | SLEEP N H, FUJITA K. Principles of geophysics[M]. Oxford, UK: Blackwell Science, 1997. |
[68] | TURCOTTE D L, SCHUBERT G. Geodynamics[M]. Cambridge, United Kingdom: Cambridge University Press, 2002. |
[69] | BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962(33):1482-1498. |
[70] | BEAR J, BACHMAT Y. Introduction to modeling of transport phenomena in porous media[M]. Dordrecht: Springer, 1990. |
[71] |
POWERS J M. On the necessity of positive semi-definite conductivity and onsager reciprocity in modeling heat conduction in anisotropic media[J]. Journal of Heat Transfer, 2004, 126(5):670-675.
DOI URL |
[72] | NIELD D A, BEJAN A. Convection in porous media[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. |
[73] | SCHON J H. Physical properties of rocks: a workbook[M]. Amsterdam, the Netherlands: Elsevier B. V., 2011. |
[74] | 胡宝群, 吕古贤, 王方正, 等. 岩石圈中热压系数的计算[J]. 地学前缘, 2008, 15(3):123-129. |
[75] |
LIU L M, SUN T, ZHOU R C. Epigenetic genesis and magmatic intrusion’s control on the Dongguashan stratabound Cu-Au deposit, Tongling, China: evidence from field geology and numerical modeling[J]. Journal of Geochemical Exploration, 2014, 144:97-114.
DOI URL |
[76] |
OSSANDÓN G, FRÉRAUT R, GUSTAFSON L B, et al. Geology of the Chuquicamata mine: a progress report[J]. Economic Geology, 2001, 96:249-270.
DOI URL |
[77] |
FRIKKEN P H, COOKE D R, WALSHE J L, et al. Mineralogical and isotopic zonation in the Sur-Sur tourmaline breccia, Río Blanco-Los Bronces Cu-Mo deposit, Chile: implications for ore genesis[J]. Economic Geology, 2005, 100:935-961.
DOI URL |
[78] | VARGAS R, GUSTAFSON L B, VUKASOVIC M, et al. Ore breccias in the Rio Blanco-Los Bronces porphyry copper deposit, Chile[J]. Society of Economic Geologists Special Publication, 1999, 7:281-297. |
[1] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[2] | JU Wei, YANG Hui, HOU Guiting, NING Weike, LI Yongkang, LIANG Xiaobai. Development and distribution pattern of fault-controlled fractures in complex structural deformation zones [J]. Earth Science Frontiers, 2024, 31(5): 130-138. |
[3] | SHI Siyu, LI Bisong, LI Rangbin, ZOU Yutao. Typical strike-slip fault zones in southeastern Sichuan: Fault characteristics and potential for fault-controlled fractured vuggy reservoirs [J]. Earth Science Frontiers, 2024, 31(5): 288-300. |
[4] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
[5] | NIU Lujia, SHI Chengyue, WANG Zhangang, ZHOU Yongzhang. InterfaceGrid: Gridding representation of 3D geological models for complex geological structures [J]. Earth Science Frontiers, 2024, 31(4): 129-138. |
[6] | LI Fenglei, LIN Chengyan, REN Lihua, ZHANG Guoyin, GUAN Baozhu. Characteristics of deep karst fracture-cavity reservoir formation controlled by multi-phase faults matching in the northern Tarim Basin [J]. Earth Science Frontiers, 2024, 31(4): 219-236. |
[7] | TONG Kui, LI Zhiwu, LIU Shugen, I.Tonguç UYSAL, SHI Zejin, LI Jinxi, Andrew TODD, WU Wenhui, WANG Zijian, LIU Shengwu, LI Ke, HUA Tian. Middle Eocene thrusting deformation along the Anninghe fault and its regional tectonic implication: Insight from K-Ar dating of authigenic illite-bearing fault gouge [J]. Earth Science Frontiers, 2024, 31(4): 297-313. |
[8] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[9] | YIN Qingqing, TANG Juxing, XIANG Xinkui, ZHAO Xiaoyan, WANG Fangyue, XU Yumin, GUO Hu, YU Zhendong, XIE Jinling, DAI Jingjing, PENG Bo. Petrogenesis of reductive S-type granites in the Pengshan district, northern Jiangxi Province, and their implications for tin enrichment: Insights from zircon trace elements [J]. Earth Science Frontiers, 2024, 31(3): 133-149. |
[10] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[11] | ZHANG Jian, HE Yubei, FAN Yanxia. Geophysical analysis of heat source composition in the Fujian coastal geothermal anomaly area [J]. Earth Science Frontiers, 2024, 31(3): 392-401. |
[12] | XU Jishan, PENG Jianbing, SUI Wanghua, AN Haibo, LI Zuodong, XU Wenjie, DONG Peijie. Formation mechanism and tectonic implication of Xinyi earth fissures in Tan-Lu fault transition section [J]. Earth Science Frontiers, 2024, 31(3): 470-481. |
[13] | MA Yongsheng, CAI Xunyu, LI Huili, ZHU Dongya, ZHANG Juntao, YANG Min, DUAN Jinbao, DENG Shang, YOU Donghua, WU Chongyang, CHEN Senran. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata [J]. Earth Science Frontiers, 2023, 30(6): 1-13. |
[14] | ZHU Xiuxiang, CAO Zicheng, LONG Hui, ZENG Jianhui, HUANG Cheng, CHEN Xuyun. Experimental simulation and characteristics of hydrocarbon accumulation in strike-slip fault zone in Shunbei area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 289-304. |
[15] | ZENG Shuai, QIU Nansheng, LI Huili, MA Anlai, ZHU Xiuxiang, JIA Jingkun, ZHANG Mengfei. Differential overpressure distribution in Ordovician carbonates, Shuntuoguole area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 305-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||