Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (3): 170-189.DOI: 10.13745/j.esf.sf.2021.1.23
Previous Articles Next Articles
LI Nan1(), CAO Rui1,3, YE Huishou1, LI Qiang2, WANG Yitian1, LÜ Xiping2, GUO Na1,4, SU Yuanxiang2, HAO Jianrui1, XIAO Yang5, ZHANG Shuai1,3, CHU Wenkai1,3
Received:
2021-03-20
Revised:
2021-03-25
Online:
2021-05-20
Published:
2021-05-23
CLC Number:
LI Nan, CAO Rui, YE Huishou, LI Qiang, WANG Yitian, LÜ Xiping, GUO Na, SU Yuanxiang, HAO Jianrui, XIAO Yang, ZHANG Shuai, CHU Wenkai. Three-dimensional modeling and comprehensive quantitative mineral resources assessment: A case study of the Haoyaoerhudong gold deposit in Inner Mongolia[J]. Earth Science Frontiers, 2021, 28(3): 170-189.
矿床类型 | 控矿要素 | 地质特征描述 | 变量类型 | 成矿地质异常表现 |
---|---|---|---|---|
黑 色 岩 系 浩 尧 尔 忽 洞 金 矿 床 | 构造 | 构造带特征 | 断裂影响范围 | 断裂缓冲区 |
构造发育及展布特征 | 局部构造 构造方向 | 断裂上下盘 控矿断裂方位 | ||
构造容矿特征 | 有利成矿位置 | 向斜南翼“弧形”构造提供容矿空间 | ||
地层 | 地层含矿特征 | 成矿有利岩系 有利赋矿层位 | 碳质板岩及千枚岩及片岩系 比鲁特第一、第二岩性段 | |
围岩蚀变 | 有利围岩蚀变 | 成矿有利蚀变 | 绢云母化、泥化 | |
地球化学 | 土壤岩屑地球化学 | 指示元素和组合异常 | Au,As,PCA元素组合异常 | |
构造叠加晕立体模型 | 头晕-尾晕 | 头晕、尾晕 空间分带特征 |
Table 1 The conceptual model for ore prospecting in the Haoyaerhudong gold deposit in Inner Mongolia
矿床类型 | 控矿要素 | 地质特征描述 | 变量类型 | 成矿地质异常表现 |
---|---|---|---|---|
黑 色 岩 系 浩 尧 尔 忽 洞 金 矿 床 | 构造 | 构造带特征 | 断裂影响范围 | 断裂缓冲区 |
构造发育及展布特征 | 局部构造 构造方向 | 断裂上下盘 控矿断裂方位 | ||
构造容矿特征 | 有利成矿位置 | 向斜南翼“弧形”构造提供容矿空间 | ||
地层 | 地层含矿特征 | 成矿有利岩系 有利赋矿层位 | 碳质板岩及千枚岩及片岩系 比鲁特第一、第二岩性段 | |
围岩蚀变 | 有利围岩蚀变 | 成矿有利蚀变 | 绢云母化、泥化 | |
地球化学 | 土壤岩屑地球化学 | 指示元素和组合异常 | Au,As,PCA元素组合异常 | |
构造叠加晕立体模型 | 头晕-尾晕 | 头晕、尾晕 空间分带特征 |
数据类型 | 比例尺 | 数据描述 |
---|---|---|
钻孔数据库 | 收集333个钻孔,平均间距50 m;岩心的采样长度0.04~2.4 m | |
剖面 | 收集67个剖面,平均间距100 m | |
地质地形图 | 1:10 000 | 覆盖整个研究区 |
土壤地球 化学采样 | 1:10 000 | As、Sb、Hg、B、Au、Ag、Cu、Pb、Zn、Bi、Mo、W、Mn、Co、Sn、Ni 16种成矿元素和指示元素。其中,Au和Hg的单位10-9;其他元素单位为10-6 |
构造叠加晕采样 | 与地球化学元素与土壤地球化学采样相同。其中,金、银单位g/t | |
蚀变矿物采样 | 其中,11条勘探线上18条钻孔,共17 521个ASD高光谱数据 | |
高精度 重磁数据 | 多比例尺 | 其中,1:25 000航磁和1:50 000重力覆盖整个研究区 |
音频大地 电磁测深 | 覆盖研究区的5条CSAMT剖面 |
Table 2 Investigative scope in the study area
数据类型 | 比例尺 | 数据描述 |
---|---|---|
钻孔数据库 | 收集333个钻孔,平均间距50 m;岩心的采样长度0.04~2.4 m | |
剖面 | 收集67个剖面,平均间距100 m | |
地质地形图 | 1:10 000 | 覆盖整个研究区 |
土壤地球 化学采样 | 1:10 000 | As、Sb、Hg、B、Au、Ag、Cu、Pb、Zn、Bi、Mo、W、Mn、Co、Sn、Ni 16种成矿元素和指示元素。其中,Au和Hg的单位10-9;其他元素单位为10-6 |
构造叠加晕采样 | 与地球化学元素与土壤地球化学采样相同。其中,金、银单位g/t | |
蚀变矿物采样 | 其中,11条勘探线上18条钻孔,共17 521个ASD高光谱数据 | |
高精度 重磁数据 | 多比例尺 | 其中,1:25 000航磁和1:50 000重力覆盖整个研究区 |
音频大地 电磁测深 | 覆盖研究区的5条CSAMT剖面 |
Fig.5 Geochemical map of element gold (left) based on 5317 debris samples collected along the margins of the Haoyaoerhudong syncline at 5 m grid resolution (right)
Fig.13 Results of principle component analysis. (a) PC1 variation function in a direction of 145°; (b) PC1 variation function in a direction of 235°; (c) The double plot.
指标 | 元素各指标值/10-9 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Au | As | Sb | W | Pb | Ag | Cu | Hg | Mo | Sn | Zn | |
含矿体背景值 | 0.15 | 25.57 | 0.14 | 3.73 | 11.39 | 0.23 | 63.50 | 5.28 | 2.48 | 3.26 | 97.22 |
含矿体异常下限 | 0.47 | 67.37 | 0.28 | 8.19 | 19.07 | 0.46 | 122.18 | 8.72 | 5.64 | 5.18 | 157.14 |
围岩背景值 | 0.087 | ||||||||||
围岩异常下限 | 0.25 |
Table 3 Background values and anomaly lower limits for Au, As, Sb, W, Pb, Ag, Cu, Hg, Mo, Sn and Zn
指标 | 元素各指标值/10-9 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Au | As | Sb | W | Pb | Ag | Cu | Hg | Mo | Sn | Zn | |
含矿体背景值 | 0.15 | 25.57 | 0.14 | 3.73 | 11.39 | 0.23 | 63.50 | 5.28 | 2.48 | 3.26 | 97.22 |
含矿体异常下限 | 0.47 | 67.37 | 0.28 | 8.19 | 19.07 | 0.46 | 122.18 | 8.72 | 5.64 | 5.18 | 157.14 |
围岩背景值 | 0.087 | ||||||||||
围岩异常下限 | 0.25 |
Fig.17 Variations of sericite contents and Au mineralization grade along borehole 9700-6. (a) Relationship between sericite wavelength and mineralized Au grade; (b) Relationship between sericite wavelength and sericite content; (c) Relationship between sericite content and mineralized Au grade.
Fig.19 (a) The sericite wavelength anomaly in sericitization, (b) the sericite content anomaly in sericitization, and (c) the mud-montmorillonite zone
证据项 | W+ | S(W+) | W- | S(W-) | C |
---|---|---|---|---|---|
比鲁特地层第一岩性段(B1) | 0.904 617 37 | 0.115 942 52 | -0.082 234 61 | 0.043 739 4 | 0.986 851 98 |
比鲁特地层第二岩性段(B2) | 1.603 304 77 | 0.053 066 02 | -0.822 776 48 | 0.065 776 2 | 2.426 081 25 |
F2断层200 m缓冲 | 1.456 114 51 | 0.044 521 12 | -1.805 420 08 | 0.112 556 67 | 3.261 534 59 |
B1与B2接触面200 m缓冲 | 1.306 517 32 | 0.049 658 25 | -0.978 255 33 | 0.073 835 99 | 2.284 772 64 |
东Au | 4.390 216 87 | 0.096 644 6 | -0.362 505 66 | 0.049 062 12 | 4.752 722 54 |
东As | 4.486 868 84 | 0.112 640 56 | -0.265 757 12 | 0.046 733 05 | 4.752 625 96 |
东Sb | 4.563 403 02 | 0.138 667 06 | -0.173 603 71 | 0.044 621 64 | 4.737 006 73 |
东W | 4.265 405 84 | 0.103 607 97 | -0.288 988 52 | 0.047 296 99 | 4.554 394 37 |
东Pb | 2.845 327 14 | 0.132 260 01 | -0.109 441 46 | 0.043 325 47 | 2.954 768 6 |
东Ag | 3.768 717 88 | 0.119 730 58 | -0.171 561 42 | 0.044 621 98 | 3.940 279 31 |
东Cu | 3.358 389 69 | 0.142 475 47 | -0.104 820 49 | 0.043 165 82 | 3.463 210 18 |
东Hg | 4.058 685 78 | 0.128 622 96 | -0.162 811 2 | 0.044 404 63 | 4.221 496 97 |
东Mo | 3.137 898 96 | 0.129 495 2 | -0.121 866 49 | 0.043 567 38 | 3.259 765 45 |
东Sn | 3.022 190 16 | 0.149 485 9 | -0.087 616 33 | 0.042 814 22 | 3.109 806 49 |
东Zn | 2.540 958 07 | 0.157 295 15 | -0.071 566 3 | 0.042 509 05 | 2.612 524 36 |
绢云母波长 | 3.906 079 06 | 0.106 788 86 | -0.232 147 75 | 0.045 996 3 | 4.138 226 81 |
绢云母含量 | 3.025 919 37 | 0.101 537 51 | -0.202 201 62 | 0.045 432 22 | 3.228 120 99 |
蒙脱石带 | 6.033 252 15 | 0.239 567 14 | -0.147 663 45 | 0.044 021 28 | 6.180 915 6 |
Table 4 WOE for 17 predictor variables
证据项 | W+ | S(W+) | W- | S(W-) | C |
---|---|---|---|---|---|
比鲁特地层第一岩性段(B1) | 0.904 617 37 | 0.115 942 52 | -0.082 234 61 | 0.043 739 4 | 0.986 851 98 |
比鲁特地层第二岩性段(B2) | 1.603 304 77 | 0.053 066 02 | -0.822 776 48 | 0.065 776 2 | 2.426 081 25 |
F2断层200 m缓冲 | 1.456 114 51 | 0.044 521 12 | -1.805 420 08 | 0.112 556 67 | 3.261 534 59 |
B1与B2接触面200 m缓冲 | 1.306 517 32 | 0.049 658 25 | -0.978 255 33 | 0.073 835 99 | 2.284 772 64 |
东Au | 4.390 216 87 | 0.096 644 6 | -0.362 505 66 | 0.049 062 12 | 4.752 722 54 |
东As | 4.486 868 84 | 0.112 640 56 | -0.265 757 12 | 0.046 733 05 | 4.752 625 96 |
东Sb | 4.563 403 02 | 0.138 667 06 | -0.173 603 71 | 0.044 621 64 | 4.737 006 73 |
东W | 4.265 405 84 | 0.103 607 97 | -0.288 988 52 | 0.047 296 99 | 4.554 394 37 |
东Pb | 2.845 327 14 | 0.132 260 01 | -0.109 441 46 | 0.043 325 47 | 2.954 768 6 |
东Ag | 3.768 717 88 | 0.119 730 58 | -0.171 561 42 | 0.044 621 98 | 3.940 279 31 |
东Cu | 3.358 389 69 | 0.142 475 47 | -0.104 820 49 | 0.043 165 82 | 3.463 210 18 |
东Hg | 4.058 685 78 | 0.128 622 96 | -0.162 811 2 | 0.044 404 63 | 4.221 496 97 |
东Mo | 3.137 898 96 | 0.129 495 2 | -0.121 866 49 | 0.043 567 38 | 3.259 765 45 |
东Sn | 3.022 190 16 | 0.149 485 9 | -0.087 616 33 | 0.042 814 22 | 3.109 806 49 |
东Zn | 2.540 958 07 | 0.157 295 15 | -0.071 566 3 | 0.042 509 05 | 2.612 524 36 |
绢云母波长 | 3.906 079 06 | 0.106 788 86 | -0.232 147 75 | 0.045 996 3 | 4.138 226 81 |
绢云母含量 | 3.025 919 37 | 0.101 537 51 | -0.202 201 62 | 0.045 432 22 | 3.228 120 99 |
蒙脱石带 | 6.033 252 15 | 0.239 567 14 | -0.147 663 45 | 0.044 021 28 | 6.180 915 6 |
[1] |
ZHAO P D, CHENG Q M, XIA Q L. Quantitative prediction for deep mineral exploration[J]. Journal of China University of Geosciences, 2008, 19(4):309-318.
DOI URL |
[2] | 赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5):1-10. |
[3] | 陈建平, 吕鹏, 吴文, 等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007(5):54-62. |
[4] | 陈建平, 于萍萍, 史蕊, 等. 区域隐伏矿体三维定量预测评价方法研究[J]. 地学前缘, 2014, 21(5):211-220. |
[5] | 肖克炎, 李楠, 孙莉, 等. 基于三维信息技术大比例尺三维立体矿产预测方法及途径[J]. 地质学刊, 2012, 36(3):229-236. |
[6] | 赵鹏大, 李紫金, 胡光道. 重点成矿区三维立体矿床统计预测: 以安徽月山地区为例[M]. 武汉: 中国地质大学出版社, 1992. |
[7] |
STEADMAN J A, LARGE R R, MEFFRE S, et al. Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile Deposit, Kalgoorlie, Western Australia[J]. Economic Geology, 2015, 110:1157-1191.
DOI URL |
[8] | GOLDFARB R J, BAKER T, DUBÉ B, et al. Distribution, character, and genesis of gold deposits in metamorphic terranes[M]//One Hundredth Anniversary Volume. Mclean: Society of Economic Geologists, 2005: 407-450. |
[9] |
LARGE R, MASLENNIKOV V, ROBERT F, et al. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi log deposit, Lena Gold province, Russia[J]. Economic Geology, 2007, 102(7):1233-1267.
DOI URL |
[10] |
CAMERON E M, HATTORI K. Archean gold mineralization and oxidized hydrothermal fluids[J]. Economic Geology, 1987, 82:1177-1191.
DOI URL |
[11] |
CAMERON E M. Archean gold: relation to granulite formation and redox zoning in the crust[J]. Geology, 1988, 16(2):109-112.
DOI URL |
[12] |
CHIARADIA M, SCHALTEGGER U, SPIKINGS R, et al. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?: an invited paper[J]. Economic Geology, 2013, 108:565-584.
DOI URL |
[13] | EINAUDI M, HEDENQUIST J, INAN E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments[J]. Society of Economic Geologists Special Publication, 2003, 10:285-313. |
[14] |
EVANS K, PHILLIPS G, POWELL R. Rock-buffering of auriferous fluids in altered rocks associated with the Golden Mile-style mineralization, Kalgoorlie gold field, Western Australia[J]. Economic Geology, 2006, 101:805-818.
DOI URL |
[15] | 杨彪, 李以科, 杨轩, 等. 内蒙古浩尧尔忽洞金矿床与典型穆龙套式矿床对比研究[J]. 矿床地质, 2014, 33(增刊1):467-468. |
[16] | ZHANG H D, LIU J C, XU Q, et al. Geochronology, isotopic chemistry, and gold mineralization of the black slate-hosted Haoyaoerhudong gold deposit, northern North China Craton[J]. Ore Geology Reviews, 2020, 117. |
[17] |
BIERLEIN F P, WILDE A R, New constraints on the polychromous nature of the giant Muruntau gold deposit from wall-rock alteration and ore paragenetic studies[J]. Australian Journal of Earth Sciences, 2010, 57:839-854.
DOI URL |
[18] |
GRAUPNER T, NIEDERMANN S, KEMPE U, et al. Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data[J]. Geochimica et Cosmochimica Acta, 2006, 70(21):5356-5370.
DOI URL |
[19] |
KEMPE U, BELYATSKY B, KRYMSKY R, et al. Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): implications for the age and sources of gold mineralization[J]. Mineralium Deposita 2001, 36(5):379-392.
DOI URL |
[20] |
KEMPE U, GRAUPNER T, SELTMANN R, et al. The Muruntau gold deposit (Uzbekistan): a unique ancient hydrothermal system in the southern Tien Shan[J]. Geoscience Frontiers, 2016, 7(3):495-528.
DOI URL |
[21] |
MORELLI R M, CREASER R A, SELTMANNEl R, et al. Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite[J]. Geology, 2007, 35(9):795-798.
DOI URL |
[22] |
WILDE A R, LAYER P, MERNACH T, et al. The giant Muruntau deposit: geologic, geochronologic, and fluid inclusion constraints on ore genesis[J]. Economic Geology, 2001, 96:633-644.
DOI URL |
[23] |
MEFFRE S, LARGE R R, Scott R, et al. Age and pyrite Pb-isotopic composition of the giant Sukhoi log sediment-hosted gold deposit, Russia[J]. Geochimica et Cosmochimica Acta, 2008, 72:2377-2391.
DOI URL |
[24] |
YAKUBCHUK A, STEIN H, WILDE A. Results of pilot Re-Os dating of sulfides from the Sukhoi log and Olympiada orogenic gold deposits, Russia[J]. Ore Geology Reviews, 2014, 59:21-28.
DOI URL |
[25] |
ARNE D C, BIERLEIN F P, MORGAN J W, et al. Re-Os dating of sulfides associated with gold mineralization in central Victoria, Australia[J]. Economic Geology, 2001, 96:1455-1459.
DOI URL |
[26] |
THOMAS H V, LARGE R E, BULL S W, et al. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: insights for ore genesis[J]. Economic Geology, 2011, 106:1-31.
DOI URL |
[27] |
RASMUSSEN B, MUELLER A G, FLETCHER I R. Zirconolite and xenotime U-Pb age constraints on the emplacement of the Golden Mile Dolerite sill and gold mineralization at Mt Charlotte mine, Eastern Goldfields Province, Yilgarn Craton, Western Australia[J]. Contributions to Mineralogy and Petrology, 2009, 157:559-572.
DOI URL |
[28] | 李以科, 王安建, 张强, 等. 内蒙古浩尧尔忽洞金、 铁、 石墨整装勘查区找矿进展及建议[J]. 矿床地质, 2014, 33(增刊1):895-896. |
[29] |
Liu Y F, NIE F J, JIANG S H, et al. Geology, geochronology and sulphur isotope geochemistry of the black schist-hosted Haoyaoerhudong gold deposit of Inner Mongolia, China: Implications for ore genesis[J]. Ore Geology Reviews, 2016, 73:253-269.
DOI URL |
[30] | 李惠. 金矿化探的最佳指示元素组合[J]. 地质与勘探, 1989(6):22. |
[31] | 林晓琳. 金矿化探及对化探找金的建议[J]. 科学技术创新, 2015(36):177. |
[32] | 王学求, 张必敏, 于学峰, 等. 金矿立体地球化学探测模型与深部钻探验证[J]. 地球学报, 2020, 41(6):133-149. |
[33] | 王义天. 乌拉特中旗浩尧尔忽洞金矿成矿规律与找矿预测研究[R]. 乌拉特中旗: 内蒙古太平矿业有限公司, 2020. |
[34] |
GOLDFARB R J, GROVES D I. Orogenic gold: common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233:2-26.
DOI URL |
[35] | HAEBERLIN Y, MORITZ R, FONTBORE L, et al. Carboniferous orogenic gold deposits at Pataz, Eastern Andean Cordillera, Peru: geological and structural framework, paragenesis, alteration, and / geochronology[J]. Economic Geology, 2004, 99:73-112. |
[36] |
LAWLEY C, SELBY D, IMBER J. Re-Os molybdenite, pyrite, and chalcopyrite geochronology, Lupa goldfield, southwestern Tanzania: tracing metallogenic time scales at midcrustal shear zones hosting Orogenic Au deposits[J]. Economic Geology, 2013, 108:1591-1613.
DOI URL |
[37] |
LI Q L, LI X H, LAN Z W, et al. Monazite and xenotime U-Th-Pb geochronology by ion microprobe: dating highly fractionated granites at Xihuashan tungsten mine, SE China[J]. Contributions to Mineralogy and Petrology, 2013, 166:65-80.
DOI URL |
[38] |
MEFFRE S, LARGE R R, STEADMAN J A, et al. Multi-stage enrichment processes for large gold-bearing ore deposits[J]. Ore Geology Reviews, 2016, 76:268-279.
DOI URL |
[39] |
PHILLIPS D, Fu B, WILSON C J, et al. Timing of gold mineralisation in the western Lachlan orogen, SE Australia: a critical overview[J]. Australian Journal of Earth Sciences, 2012, 59:495-525.
DOI URL |
[40] |
ROBERTS S, PALMER M R, WALLER L. Sm-Nd and REE characteristics of tourmaline and scheelite from the Bjorkdal gold deposit, northern Sweden: evidence of an intrusion-related gold deposit?[J]. Economic Geology, 2006, 101:1415-1425.
DOI URL |
[41] |
VIELREICHER N M, GROVES D I, SNEE L W, et al. Broad synchroneity of three gold mineralization styles in the Kalgoorlie Goldfield: SHRIMP, U-Pb, and/geochronological evidence[J]. Economic Geology, 2010, 105:187-227.
DOI URL |
[42] |
YUAN F, LI X, ZHANG M, et al. Three-dimensional weights of evidence-based prospectivity modeling: a case study of the Baixiangshan mining area, Ningwu Basin, Middle and Lower Yangtze Metallogenic Belt, China[J]. Journal of Geochemical Exploration, 2014, 145:82-97.
DOI URL |
[43] | 朱裕生. 论矿床成矿模式[J]. 地质论评, 1993, 39(3):216-222. |
[44] |
XIAO K, LI N, PORWAL A, et al. GIS-based 3D prospectivity mapping: a case study of Jiama copper-polymetallic deposit in Tibet, China[J]. Ore Geology Reviews, 2015, 71:611-632.
DOI URL |
[45] |
LI X, YUAN F, ZHANG M, et al. Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China[J]. Ore Geology Reviews, 2015, 71:633-654.
DOI URL |
[46] |
PERROUTY S, LINDSAY M D, JESSELL M W. 3D modeling of the Ashanti Belt, southwest Ghana: evidence for a litho-stratigraphic control on gold occurrences within the Birimian Sefwi Group[J]. Ore Geology Reviews, 2014, 63:252-264.
DOI URL |
[47] |
WANG G W, LI R X, CARRANZA E J, et al. 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China[J]. Ore Geology Reviews, 2015, 71(1):592-610.
DOI URL |
[48] |
CHENG Q M. Mapping singularities with steam sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32, 314-324.
DOI URL |
[49] | 内蒙古太平矿业有限公司. 乌拉特中旗浩尧尔忽洞金矿成矿规律与找矿预测研究[R]. 乌拉特中旗: 内蒙古太平矿业有限公司, 2020. |
[50] | THOMPSON A J, SCOTT K, HUNTINGTON J, et al. Mapping mineralogy with reflectance spectroscopy: examples from volcanogenic massive sulfide deposits[J]. Economic Geology, 2009, 16:25-40. |
[51] | 杨志明, 侯增谦, 杨竹森, 等. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用: 以西藏念村矿区为例[J]. 矿床地质, 2012, 31(4):699-717. |
[52] | 王琨, 肖克炎, 丛源. 对数比变换和偏最小二乘法在地球化学组合异常提取中的应用: 以湘西北铅锌矿为例[J]. 物探与化探, 2015, 39(1):141-148. |
[53] | AGTERBERG F P, BONHAM-CARTER G F, CHENG Q, et al. Weights of evidence modelling and weighted logistic regression for mineral potential mapping[C]. Computers & Geosciences, 1993, 25:13-32. |
[54] |
CHENG Q M. BoostWofE: a new sequential weights of evidence model reducing the effect of conditional dependency[J]. Mathematical Geosciences, 2015, 47(5):591-621.
DOI URL |
[1] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[2] | ZHAO Shengxian, LI Bo, CHEN Xin, LIU Wenping, ZHANG Chenglin, JI Chunhai, LIU Yongyang, LIU Dongchen, CAO lieyan, CHEN Yulong, LI Jiajun, LEI Yue, TAN Jingqiang. Structural differences of shale laminae and their controlling mechanisms in the Wufeng-Longmaxi Formations in Tiangongtang, southwestern Sichuan [J]. Earth Science Frontiers, 2024, 31(5): 75-88. |
[3] | LIU Ye, HAN Yubo, ZHU Wenrui. Mineral component identification and intelligent interpretation: Information sharing and transfer learning across different lithologies [J]. Earth Science Frontiers, 2024, 31(4): 95-111. |
[4] | JI Xiaohui, DONG Yuhang, YANG Zhongji, YANG Mei, HE Mingyue, WANG Yuzhu. Mineral question-answering system in Chinese based on multi-hop reasoning in knowledge graphs [J]. Earth Science Frontiers, 2024, 31(4): 37-46. |
[5] | WANG Chengbin, WANG Mingguo, WANG Bo, CHEN Jianguo, MA Xiaogang, JIANG Shu. Knowledge graph-infused quantitative mineral resource forecasting [J]. Earth Science Frontiers, 2024, 31(4): 26-36. |
[6] | YE Yuxin, LIU Jiawen, ZENG Wanxin, YE Shuisheng. Ontology-guided knowledge graph construction for mineral prediction [J]. Earth Science Frontiers, 2024, 31(4): 16-25. |
[7] | YUAN Feng, LI Xiaohui, TIAN Weidong, ZHOU Guanqun, WANG Jinju, GE Can, GUO Xianzheng, ZHENG Chaojie. Key issues in three-dimensional predictive modeling of mineral prospectivity [J]. Earth Science Frontiers, 2024, 31(4): 119-128. |
[8] | NIU Lujia, SHI Chengyue, WANG Zhangang, ZHOU Yongzhang. InterfaceGrid: Gridding representation of 3D geological models for complex geological structures [J]. Earth Science Frontiers, 2024, 31(4): 129-138. |
[9] | JIANG Zhaoxia, LI Sanzhong, SUO Yanhui, WU Lixin. Prospects for submarine hydrogen exploration and extraction technologies [J]. Earth Science Frontiers, 2024, 31(4): 183-190. |
[10] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[11] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[12] | WANG Kunyi, ZHOU Yongzhang. Machine-readable expression of unstructured geological information and intelligent prediction of mineralization associated anomaly areas in Pangxidong District, Guangdong, China [J]. Earth Science Frontiers, 2024, 31(4): 47-57. |
[13] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[14] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[15] | ZHU Biaobiao, CAO Wei, YU Pengpeng, ZHANG Qianlong, GUO Lanxuan, YUAN Guiqiang, HAN Feng, WANG Hanyu, ZHOU Yongzhang. Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace [J]. Earth Science Frontiers, 2024, 31(4): 73-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||