Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4): 37-46.DOI: 10.13745/j.esf.sf.2024.5.11
Previous Articles Next Articles
JI Xiaohui1(), DONG Yuhang1, YANG Zhongji1, YANG Mei2, HE Mingyue2, WANG Yuzhu1
Received:
2024-01-05
Revised:
2024-03-27
Online:
2024-07-25
Published:
2024-07-10
CLC Number:
JI Xiaohui, DONG Yuhang, YANG Zhongji, YANG Mei, HE Mingyue, WANG Yuzhu. Mineral question-answering system in Chinese based on multi-hop reasoning in knowledge graphs[J]. Earth Science Frontiers, 2024, 31(4): 37-46.
模型参数 | 值 |
---|---|
每批样本数量 | 32 |
学习率 | 0.001 |
Dropout | 0.2 |
迭代数量 | 30 |
优化器 | Adam |
LSTM神经元数量 | 512 |
Table 1 Mineral question head recognition model parameters
模型参数 | 值 |
---|---|
每批样本数量 | 32 |
学习率 | 0.001 |
Dropout | 0.2 |
迭代数量 | 30 |
优化器 | Adam |
LSTM神经元数量 | 512 |
模型 | F1评分/% | 准确率P/% | 召回率R/% |
---|---|---|---|
Bert | 85.93 | 79.29 | 93.77 |
Bert-BiLSTM | 87.51 | 84.61 | 94.79 |
Bert-BiLSTM-CRF(ours) | 90.39 | 86.64 | 97.36 |
Table 2 Comparison of mineral question head recognition models
模型 | F1评分/% | 准确率P/% | 召回率R/% |
---|---|---|---|
Bert | 85.93 | 79.29 | 93.77 |
Bert-BiLSTM | 87.51 | 84.61 | 94.79 |
Bert-BiLSTM-CRF(ours) | 90.39 | 86.64 | 97.36 |
模型参数 | 值 |
---|---|
每批样本数量 | 32 |
学习率 | 0.001 |
Dropout | 0.2 |
迭代数量 | 50 |
优化器 | Adam |
知识图谱向量长度 | 512 |
Table 3 Mineral question entity link model parameters
模型参数 | 值 |
---|---|
每批样本数量 | 32 |
学习率 | 0.001 |
Dropout | 0.2 |
迭代数量 | 50 |
优化器 | Adam |
知识图谱向量长度 | 512 |
模型 | F1评分/% | 准确率P/% | 召回率R/% |
---|---|---|---|
Bert | 91.32 | 88.43 | 94.41 |
知识图谱文本表示(ours) | 94.45 | 96.14 | 92.81 |
Table 4 Comparison of mineral question entity link models
模型 | F1评分/% | 准确率P/% | 召回率R/% |
---|---|---|---|
Bert | 91.32 | 88.43 | 94.41 |
知识图谱文本表示(ours) | 94.45 | 96.14 | 92.81 |
模型 | F1评分/% | 准确率P/% | 召回率R/% |
---|---|---|---|
Bert | 87.38 | 89.75 | 85.14 |
基于知识图谱文本表示(ours) | 91.93 | 94.59 | 89.46 |
Table 5 Comparison of mineral question answering multi-hop reasoning models
模型 | F1评分/% | 准确率P/% | 召回率R/% |
---|---|---|---|
Bert | 87.38 | 89.75 | 85.14 |
基于知识图谱文本表示(ours) | 91.93 | 94.59 | 89.46 |
[1] | YU Y Q, WANG Y Z, MU J Q, et al. Chinese mineral named entity recognition based on BERT model[J]. Expert Systems with Applications, 2022, 206: 117727. |
[2] | LIU C J, JI X H, DONG Y H, et al. Chinese mineral question and answering system based on knowledge graph[J]. Expert Systems with Applications, 2023, 231: 120841. |
[3] | 周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018. |
[4] | 周永章, 陈川, 张旗, 等. 地质大数据分析的若干工具与应用[J]. 大地构造与成矿学, 2020, 44(2): 173-182. |
[5] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
DOI |
[6] | 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、 人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777. |
[7] | 周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究[J]. 中国科学: 地球科学, 2021, 51(7): 1070-1079. |
[8] | 冉一早, 董少春, 王汝成, 等. 铌钽矿床知识图谱的构建及应用实践[J]. 高校地质学报, 2023, 29(3): 359-371. |
[9] |
张春菊, 刘文聪, 张雪英, 等. 基于本体的金矿知识图谱构建方法[J]. 地球信息科学学报, 2023, 25(7): 1269-1281.
DOI |
[10] | 张悦. 矿物领域知识图谱构建技术研究与实现[D]. 北京: 中国地质大学(北京), 2021. |
[11] | 燕群. 矿床知识图谱构建方法及找矿预测应用: 以甘肃寨上-马坞金矿集区为例[D]. 长春: 吉林大学, 2022. |
[12] | 陈忠良, 袁峰, 李晓晖, 等. 基于BERT-BiLSTM-CRF模型的中文岩石描述文本命名实体与关系联合提取[J]. 地质论评, 2022, 68(2): 742-750. |
[13] | YIH W T, CHANG M W, HE X D, et al. Semantic parsing via staged query graph generation: question answering with knowledge base[C]//Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1:long papers). Stroudsburg, USA: Association for Computational Linguistics, 2015: 1321-1331. |
[14] | ZHENG W G, YU J X, ZOU L, et al. Question answering over knowledge graphs[J]. Proceedings of the VLDB Endowment, 2018, 11(11): 1373-1386. |
[15] | SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]// Proceedings of the 58th annual meeting of the association for computational linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 4498-4507. |
[16] | 张天杭, 李婷婷, 张永刚. 基于知识图谱嵌入的多跳中文知识问答方法[J]. 吉林大学学报(理学版), 2022, 60(1): 119-126. |
[17] | 叶蕾, 张宇迪, 杨旭华. 利用知识图谱的多跳可解释问答[J/OL]. 小型微型计算机系统, 2023: 1-11[2024-04-24]. https://kns.cnki.net/kcms/detail/21.1106.TP.20230519.0923.002.html. |
[18] | DOWNS B. IMA Mineral List[EB/OL]. (2018-03-04)[2024-04-24]. https://rruff.info/ima/. |
[19] | BARTHELMY D. Mineralogy database[DB/OL]. (2009-03-05)[2024-04-24]. http://webmineral.com/. |
[20] | Hudson Institute of Mineralogy. Mindat[EB/OL]. (2020-05-15)[2024-04-24]. https://www.mindat.org/. |
[21] | Mineralogical Society of America. American mineralogist crystal structure database[DB/OL]. (2019-04-01)[2024-04-24]. http://rruff.geo.arizona.edu/AMS/amcsd.php. |
[22] | 中国地质大学北京. 国家岩矿化石标本资源共享平台[EB/OL]. (2003-01-01)[2024-04-24]. http://www.nimrf.net.cn/. |
[23] | ABUJABAL A, YAHYA M, RIEDEWALD M, et al. Automated template generation for question answering over knowledge graphs[C]// Proceedings of the 26th international conference on World Wide Web. Perth, Australia: ACM, 2017: 1191-1200. |
[24] | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd international conference on machine learning, New York: ACM, 2016: 2071-2080. |
[25] | WANG Q, MAO Z D, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743. |
[26] | DEVLIN J, CHANG M, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics:human language technologies. Minneapolis, Minnesota: Association for Computational Linguistics, 2019: 4171-4186. |
[1] | ZENG Zhaoyang, NING Shuzheng, WANG Ziguo. Strategic mineral resources in coal: A case study on gallium and germanium [J]. Earth Science Frontiers, 2024, 31(6): 331-349. |
[2] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[3] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[4] | WAN Chengzhou, JI Xiaohui, YANG Mei, HE Mingyue, ZHANG Zhaochong, ZENG Shan, WANG Yuzhu. Mineral image recognition based on progressive deep learning across different granularity levels [J]. Earth Science Frontiers, 2024, 31(4): 112-118. |
[5] | YUAN Feng, LI Xiaohui, TIAN Weidong, ZHOU Guanqun, WANG Jinju, GE Can, GUO Xianzheng, ZHENG Chaojie. Key issues in three-dimensional predictive modeling of mineral prospectivity [J]. Earth Science Frontiers, 2024, 31(4): 119-128. |
[6] | YE Yuxin, LIU Jiawen, ZENG Wanxin, YE Shuisheng. Ontology-guided knowledge graph construction for mineral prediction [J]. Earth Science Frontiers, 2024, 31(4): 16-25. |
[7] | WANG Chengbin, WANG Mingguo, WANG Bo, CHEN Jianguo, MA Xiaogang, JIANG Shu. Knowledge graph-infused quantitative mineral resource forecasting [J]. Earth Science Frontiers, 2024, 31(4): 26-36. |
[8] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[9] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[10] | ZHU Biaobiao, CAO Wei, YU Pengpeng, ZHANG Qianlong, GUO Lanxuan, YUAN Guiqiang, HAN Feng, WANG Hanyu, ZHOU Yongzhang. Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace [J]. Earth Science Frontiers, 2024, 31(4): 73-86. |
[11] | WANG Lin, JI Xiaohui, YANG Mei, HE Mingyue, ZHANG Zhaochong, ZENG Shan, WANG Yuzhu. Mineral identification based on data augmentation and ensemble learning [J]. Earth Science Frontiers, 2024, 31(4): 87-94. |
[12] | LIU Ye, HAN Yubo, ZHU Wenrui. Mineral component identification and intelligent interpretation: Information sharing and transfer learning across different lithologies [J]. Earth Science Frontiers, 2024, 31(4): 95-111. |
[13] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[14] | CHEN Ke, SHAO Yongjun, LIU Zhongfa, ZHANG Junke, LI Yongshun, CHEN Yuying. The controlling role of magmatic factors on the differential mineralization in the Tongling ore district, eastern China: Evidence from the mineralogy of amphibole and plagioclase [J]. Earth Science Frontiers, 2024, 31(3): 199-217. |
[15] | GU Hao, YANG Zeqiang, GAO Meng, TANG Xiangwei, WANG Dongxiao, LIU Kuisong, YANG Shuren, GUO Yueshan, WANG Yun, WANG Gongwen. Three-dimensional geological modeling and mineral prospectivity mapping in the Weishancheng gold-silver district, Henan, China [J]. Earth Science Frontiers, 2024, 31(3): 245-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||