[1] |
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
|
[2] |
翟明国, 杨树锋, 陈宁华, 等. 大数据时代: 地质学的挑战与机遇[J]. 中国科学院院刊, 2018, 33(8): 825-831.
|
[3] |
成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25.
DOI
|
[4] |
左仁广. 勘查地球化学数据挖掘与弱异常识别[J]. 地学前缘, 2019, 26(4): 67-75.
DOI
|
[5] |
刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用: 以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11): 3217-3224.
|
[6] |
周永章, 王俊, 左仁广, 等. 地质领域机器学习、 深度学习及实现语言[J]. 岩石学报, 2018, 34(11): 3173-3178.
|
[7] |
周永章, 李兴远, 郑义, 等. 钦杭结合带成矿地质背景及成矿规律[J]. 岩石学报, 2017, 33(3): 667-681.
|
[8] |
周永章, 张国桓, 吴勇庆, 等. 广东庞西垌地区矿产远景调查报告(文地幅、 石角幅、 塘蓬幅、 河唇幅, 1∶50000)[R]. 北京: 中国地质调查局, 2016.
|
[9] |
周永章, 曾长育, 李红中, 等. 钦州湾-杭州湾构造结合带(南段)地质演化和找矿方向[J]. 地质通报, 2012, 31(2/3): 486-491.
|
[10] |
广东省地质矿产局704地质大队. 中华人民共和国区域地质调查报告1∶50000塘蓬幅[R]. 湛江: 广东省地质矿产局 704地质大队, 1987.
|
[11] |
广东省地质矿产局704地质大队. 中华人民共和国区域地质调查报告1∶50000河唇幅[R]. 湛江: 广东省地质矿产局 704地质大队, 1994.
|
[12] |
广东省地质矿产局. 广东省区域地质志[R]. 北京: 地质出版社, 1988, 941.
|
[13] |
战明国, 彭松柏, 蔡明海, 等.云开地区重要成矿区带金、 银、 铜、 铅、 锌成矿地质背景及找矿靶区优选研究[M]. 海口: 海南出版社, 2006.
|
[14] |
DAVY M, GODSILL S. Detection of abrupt spectral changes using support vector machines: an application to audio signal segmentation[C]// Proceedings of IEEE international conference on acoustics speech and signal processing. Orlando: IEEE, 2002: 1313-1316.
|
[15] |
LECOMTE S, LENGELLE R, RICHARD C, et al. Abnormal events detection using unsupervised One-Class SVM - Application to audio surveillance and evaluation[C]// Proceedings of 2011 8th IEEE international conference on advanced video and signal based surveillance (AVSS). Klagenfurt: IEEE, 2011: 124-129.
|
[16] |
SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J C, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.
PMID
|
[17] |
吴定海, 张培林, 任国全, 等. 基于支持向量的单类分类方法综述[J]. 计算机工程, 2011, 37(5): 187-189.
DOI
|
[18] |
TAX D M J, DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66.
|
[19] |
VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 1995.
|
[20] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
|
[21] |
AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1-18.
|
[22] |
VALENTINE A P, TRAMPERT J. Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data[J]. Geophysical Journal International, 2012, 189(2): 1183-1202.
|
[23] |
RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: explicit invariance during feature extraction[C]// Proceedings of the 28th international conference on machine learning. Bellevue: ACM, 2011: 833-840.
|
[24] |
吴冲龙, 刘刚, 张夏林, 等. 地质科学大数据及其利用的若干问题探讨[J]. 科学通报, 2016, 61(16): 1797-1807.
|
[25] |
王成彬, 马小刚, 陈建国. 数据预处理技术在地学大数据中应用[J]. 岩石学报, 2018, 34(2): 303-313.
|
[26] |
张雪英, 叶鹏, 王曙, 等. 基于深度信念网络的地质实体识别方法[J]. 岩石学报, 2018, 34(2): 343-351.
|
[27] |
张雪英, 张春菊, 汪陈, 等. 面向中文文本的地质语义信息标注与语料库构建[J]. 高校地质学报, 2023, 29(3): 429-438.
|
[28] |
CHENG Q M, BONHAM-CARTER G, WANG W L, et al. A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China[J]. Computers and Geosciences, 2011, 37(5): 662-669.
|
[29] |
XIAO F, CHEN J G, ZHANG Z Y, et al. Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China[J]. Journal of Geochemical Exploration, 2012, 122: 90-100.
|
[30] |
肖凡, 陈建国, 侯卫生, 等. 钦-杭结合带南段庞西垌地区Ag-Au致矿地球化学异常信息识别与提取[J]. 岩石学报, 2017, 33(3): 779-790.
|
[31] |
AGTERBERG F P, BONHAM-CARTER G F, WRIGHT D F. Statistical pattern integration for mineral exploration[M]// Computer applications in resource estimation. Amsterdam: Elsevier, 1990: 1-21.
|
[32] |
BONHAM-CARTER G F. Geographic information systems for geoscientists: modelling with GIS[M]. Amsterdam: Elsevier, 1994.
|
[33] |
YU X T, XIAO F, ZHOU Y Z, et al. Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district[J]. Journal of Geochemical Exploration, 2019, 203: 87-95.
|
[34] |
余晓彤, 肖凡, 周永章, 等. 粤西庞西垌地区银金地球化学异常信息挖掘与提取[J]. 地质与勘探, 2019, 55(1): 77-86.
|