Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 199-217.DOI: 10.13745/j.esf.sf.2023.12.60
Previous Articles Next Articles
CHEN Ke1,2(), SHAO Yongjun1,2, LIU Zhongfa1,2,*(
), ZHANG Junke1,2, LI Yongshun1,2, CHEN Yuying1,2
Received:
2022-11-26
Revised:
2023-12-15
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
CHEN Ke, SHAO Yongjun, LIU Zhongfa, ZHANG Junke, LI Yongshun, CHEN Yuying. The controlling role of magmatic factors on the differential mineralization in the Tongling ore district, eastern China: Evidence from the mineralogy of amphibole and plagioclase[J]. Earth Science Frontiers, 2024, 31(3): 199-217.
Fig.3 (a) Geological map of the Shizishan ore field; (b) Typical cross-section of the Dongguashan deposit. a modified after [27]; b modified after [32].
Fig.15 Si-(Si+Ti+Al)(a),Mg-(Mg+Fe2+)(b),TiO2-Al2O3(c),(Na+K)-IVAl(d),AlT-Si(e) and Ca-(Fe2++Fe3+)-Mg(f) plots for amphibole from the Qingshanjiao and Jitou quartz (monzo) diorite
[1] | MEINERT L D, DIPPLE G, NICOLESCU S. World skarn deposits[M]//KESLER S E, HANNINGTON M D. Economic Geology 100th anniversary volume. Littleton: Society of Economic Geologists, 2005: 236-299. |
[2] | 中国地质科学院矿产资源研究所. 中国铁矿资源分布图(1:5000000)[R]. 北京: 中国地质科学院矿产资源研究所, 2018. |
[3] | 中国地质科学院矿产资源研究所. 中国铜矿资源分布图(1:5000000)[R]. 北京: 中国地质科学院矿产资源研究所, 2018. |
[4] | 肖鑫. 铜陵矿集区斑岩-矽卡岩型铜金矿床成矿作用研究[D]. 合肥: 合肥工业大学, 2019. |
[5] | 王跃. 铜陵矿集区Fe、 Cu同位素地球化学研究[D]. 北京: 中国地质科学院, 2011. |
[6] | 周涛发, 王世伟, 袁峰, 等. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用[J]. 岩石学报, 2016, 32(2): 271-288. |
[7] | 谢建成, 杨晓勇, 肖益林, 等. 铜陵矿集区中生代侵入岩成因及成矿意义[J]. 地质学报, 2012, 86(3): 423-459. |
[8] | 常印佛, 刘湘培, 吴言昌. 长江中下游铜铁成矿带[M]. 北京: 地质出版社, 1991. |
[9] | 徐兆文, 陆现彩, 凌洪飞, 等. 安徽冬瓜山层状铜矿床成矿机制及热液叠加改造作用时代研究[J]. 地质学报, 2005, 79(3): 372. |
[10] | 毛景文, 邵拥军, 谢桂青, 等. 长江中下游成矿带铜陵矿集区铜多金属矿床模型[J]. 矿床地质, 2009, 28(2): 109-119. |
[11] | 周涛发, 张乐骏, 袁峰, 等. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J]. 地学前缘, 2010, 17(2): 306-319. |
[12] | LI Y, SELBY D, LI X H, et al. Multisourced metals enriched by magmatic-hydrothermal fluids in stratabound deposits of the Middle-Lower Yangtze River metallogenic belt, China[J]. Geology, 2018, 46(5): 391-394. |
[13] | XU Y M, JIANG S Y, ZHU J X. Factors controlling the formation of large porphyry Cu deposits: a case study from the Jiurui ore district of Middle-Lower Yangtze River Metallogenic Belt using in situ zircon and apatite chemistry from syn-mineralization intrusions[J]. Ore Geology Reviews, 2021, 133: 104082. |
[14] | XIAO X, ZHOU T F, WHITE N C, et al. Multiple generations of titanites and their geochemical characteristics record the magmatic-hydrothermal processes and timing of the Dongguashan porphyry-skarn Cu-Au system, Tongling district, eastern China[J]. Mineralium Deposita, 2021, 56(2): 363-380. |
[15] | RIDOLFI F, RENZULLI A, PUERINI M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology, 2010, 160(1): 45-66. |
[16] | RUPRECHT P, WÖRNER G. Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones[J]. Journal of Volcanology and Geothermal Research, 2007, 165(3/4): 142-162. |
[17] | 方林茹, 唐冬梅, 秦克章, 等. 角闪石成分对东天山铜镍矿床岩浆过程的指示意义[J]. 岩石学报, 2019, 35(7): 2061-2085. |
[18] | COOTE A C, SHANE P. Crystal origins and magmatic system beneath Ngauruhoe volcano (New Zealand) revealed by plagioclase textures and compositions[J]. Lithos, 2016, 260: 107-119. |
[19] | PAN Y M, DONG P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, East Central China: intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 1999, 15(4): 177-242. |
[20] | MAO J W, WANG Y T, LEHMANN B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 2006, 29(3/4): 307-324. |
[21] | MAO J W, XIE G Q, DUAN C, et al. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China[J]. Ore Geology Reviews, 2011, 43(1): 294-314. |
[22] | 周涛发, 范裕, 袁峰. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 2008, 24(8): 1665-1678. |
[23] | 唐永成, 吴言昌, 储国正, 等. 安徽沿江地区铜金多金属矿床地质[M]. 北京: 地质出版社, 1998. |
[24] | 徐晓春, 尹滔, 楼金伟, 等. 铜陵冬瓜山层控矽卡岩型铜金矿床的成因机制: 硫同位素制约[J]. 岩石学报, 2010, 26(9): 2739-2750. |
[25] | XU X C, ZHANG Z Z, LIU Q N, et al. Thermodynamic study of the association and separation of copper and gold in the Shizishan ore field, Tongling, Anhui Province, China[J]. Ore Geology Reviews, 2011, 43(1): 347-358. |
[26] | 陆三明. 安徽铜陵狮子山铜金矿田岩浆作用与流体成矿[D]. 合肥: 合肥工业大学, 2007. |
[27] | 郭维民, 陆建军, 蒋少涌, 等. 安徽铜陵狮子山矿田岩浆岩年代学、 Hf同位素、 地球化学及岩石成因[J]. 中国科学: 地球科学, 2013, 43(8): 1268-1286. |
[28] | 陆顺富, 李锦伟, 曾键年, 等. 铜陵地区狮子山矿田侵入岩地球化学特征及成岩机制探讨[J]. 地质科技情报, 2014, 33(5): 43-52. |
[29] | LIU Z F, SHAO Y J, ZHANG Y, et al. Geochemistry and geochronology of the Qingshanjiao granites: implications for the genesis of the Dongguashan copper (gold) ore deposit in the Tongling ore district, eastern China[J]. Ore Geology Reviews, 2018, 99: 42-57. |
[30] | ZHANG Y, SHAO Y J, LI H B, et al. Genesis of the Xinqiao Cu-S-Fe-Au deposit in the Middle-Lower Yangtze River Valley metallogenic belt, eastern China: constraints from U-Pb-Hf, Rb-Sr, S, and Pb isotopes[J]. Ore Geology Reviews, 2017, 86: 100-116. |
[31] | 王彦斌, 刘敦一, 蒙义峰, 等. 安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义[J]. 中国地质, 2004, 31(2): 169-173. |
[32] | 郭维民, 陆建军, 章荣清, 等. 安徽铜陵冬瓜山矿床中磁黄铁矿矿石结构特征及其成因意义[J]. 矿床地质, 2010, 29(3): 405-414. |
[33] | 臧文拴, 吴淦国, 张达, 等. 铜陵新桥铁矿田地质地球化学特征及成因浅析[J]. 大地构造与成矿学, 2004, 28(2): 187-193. |
[34] | LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. |
[35] | JOCHUM K P, WEIS U, STOLL B, et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397-429. |
[36] | WU S, WÖRNER G, JOCHUM K P, et al. The preparation and preliminary characterisation of three synthetic andesite reference glass materials (ARM-1, ARM-2, ARM-3) for in situ microanalysis[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 567-584. |
[37] | PATON C, HELLSTROM J, PAUL B, et al. Iolite: freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518. |
[38] | LEAKE B E, WOOLLEY A R, ARPS C E, et al. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names[J]. American Mineralogist, 1997, 82(9/10): 1019-1037. |
[39] | 吴平霄, 吴金平, 李才伟, 等. 斜长石韵律环带的结晶速率方程及其动力学机制[J]. 岩石学报, 1998, 14(3): 388-394. |
[40] | CAO M, QIN K, LI G, et al. Magmatic process recorded in plagioclase at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China[J]. Journal of Asian Earth Sciences, 2014, 82(15): 136-150. |
[41] | BROWNE B L, EICHELBERGER J C, PATINO L C, et al. Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan[J]. Journal of Volcanology and Geothermal Research, 2006, 154(1/2): 103-116. |
[42] | 李武显, 董传万, 周新民. 平潭和漳州深成杂岩中斜长石捕虏晶与岩浆混合作用[J]. 岩石学报, 1999, 15(2): 286-290. |
[43] | MARTEL C, ALI A R, POUSSINEAU S, et al. Basalt-inherited microlites in silicic magmas: evidence from Mount Pelée (Martinique, French West Indies)[J]. Geology, 2006, 34(11): 905-908. |
[44] | 姜常义, 安三元. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J]. 矿物岩石, 1984, 4(3): 1-9. |
[45] | 谢应雯, 张玉泉. 横断山区花岗岩类中角闪石的标型特征及其成因意义[J]. 矿物学报, 1990, 10(1): 35-45. |
[46] | ANNEN C, ZELLMER G F. Dynamics of crustal magma transfer, storage and differentiation[J]. Geological Society, London, Special Publications, 2008, 304(1): 1330. |
[47] | 罗照华, 郭晶, 黑慧欣, 等. 东昆仑造山带家琪式斑岩型Cu-Mo矿床中花岗闪长岩的斜长石晶体群及其成矿意义[J]. 矿物岩石地球化学通报, 2018, 37(2): 214-228, 371. |
[48] | 刘小丽, 程素华, 张宏远. 花岗质岩浆的变压结晶作用及其动力学意义: 以北京房山岩体为例[J]. 现代地质, 2015, 29(3): 514-528. |
[49] | 罗照华, 李德东, 潘颖, 等. 中国东部黄山的成山过程及其构造意义[J]. 地学前缘, 2009, 16(3): 250-260. |
[50] | RICHARDS J P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny[J]. Lithos, 2015, 233: 27-45. |
[51] | JUGO P J, LUTH R W, RICHARDS J P. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 497-503. |
[52] | BAO X, HE W, MAO J, et al. Redox states and genesis of Cu-and Au-mineralized granite porphyries in the Jinshajiang Cu-Au metallogenic belt, SW China: studies on the zircon chemistry[J]. Mineralium Deposita, 2023, 58: 1123-1142. |
[53] | ZAJACZ Z, CANDELA P A, PICCOLI P M, et al. Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation[J]. Geochimica et Cosmochimica Acta, 2012, 91: 140-159. |
[1] | WANG Wenlu, LI Xiaowei, ZHANG Zeming, TIAN Zuolin, LI Zengsheng, SUN Yuqin, LIU Qiang, DING Huixia, HAO Zhaoge. Genetic mineralogy of Late Cretaceous intermediate intrusive rocks in the eastern segment of the Gangdese Belt, southern Tibet—construction of a trans-crustal magma system [J]. Earth Science Frontiers, 2023, 30(2): 183-214. |
[2] | LI Shengrong, SHEN Junfeng, LI Lin, ZHANG Huafeng. Considerations on big data-based genetic mineralogical research [J]. Earth Science Frontiers, 2021, 28(3): 76-86. |
[3] | DONG Guochen, LI Shengrong, SHEN Junfeng, DONG Pengsheng, LI Huawei, YIN Guodong, TANG Jiahui. Genetic mineralogy of natural heavy placer minerals and its effectiveness in mineral prospecting [J]. Earth Science Frontiers, 2020, 27(5): 171-178. |
[4] | ZHANG Juquan, LIANG Xian, YAN Lina, LI Shengrong, SHEN Junfeng, LU Jing, WU Weizhe, LI Qing. The mineralogical records of magmatic process: cases from Mesozoic intrusive rocks in the Handan-Xingtai region [J]. Earth Science Frontiers, 2020, 27(5): 70-87. |
[5] | LUO Zhaohua. Mineralogical constraints on the formation of cumulates in layered intrusions in the Pan-Xi region, Sichuan Province, China [J]. Earth Science Frontiers, 2020, 27(5): 61-69. |
[6] | JIANG Junyi,SU Shangguo,WANG Jingjiao. Mineralogical evidence for fluid activities in the metallogeny of the Talnakh magmatic Cu-Ni sulfide deposit in Norilsk, Russia [J]. Earth Science Frontiers, 2019, 26(6): 228-243. |
[7] | LIU Lulu,SU Shangguo,YANG Ruina,LUO Zhaohua1,CUI Xiaoliang. Characteristics and research significance of matrix minerals in Tanling poly-phenocryst plagioporphyry, Wu'an, Hebei Province [J]. Earth Science Frontiers, 2019, 26(1): 286-299. |
[8] | ZHANG Ruigang,HE Wenyan,GAO Xue,LI Mengmeng. Magma mixing of the Daocheng batholith of western Sichuan: mineralogical evidences. [J]. Earth Science Frontiers, 2018, 25(6): 226-239. |
[9] | SUN Ling-Zhi, LING Zong-Cheng, LIU Jian-Zhong. The spectral characteristics and remote detection of minerals in lunar Orientale Basin [J]. Earth Science Frontiers, 2014, 21(6): 188-203. |
[10] | . Petrology and metamorphic temperaturepressure conditions of Xilinhot Group, Inner Mongolia, China. [J]. Earth Science Frontiers, 2012, 19(5): 136-143. |
[11] | LI Qing-Rong HU Gong SHEN Dun-Feng LI Guo-Wu ZHANG Xiu-Bao. On the connotation and methodology of environmentalbiological mineralogy. [J]. Earth Science Frontiers, 2008, 15(6): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||