[1] |
郝慧珍, 顾庆, 胡修棉. 基于机器学习的矿物智能识别方法研究进展与展望[J]. 地球科学, 2021, 46(9): 3091-3106.
|
[2] |
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、 人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777.
|
[3] |
徐述腾, 周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 2018, 34(11): 3244-3252.
|
[4] |
彭伟航, 白林, 商世为, 等. 基于改进InceptionV3模型的常见矿物智能识别[J]. 地质通报, 2019, 38(12): 2059-2066.
|
[5] |
郭艳军, 周哲, 林贺洵, 等. 基于深度学习的智能矿物识别方法研究[J]. 地学前缘, 2020, 27(5): 39-47.
DOI
|
[6] |
LIU C Z, LI M C, ZHANG Y, et al. An enhanced rock mineral recognition method integrating a deep learning model and clustering algorithm[J]. Minerals, 2019, 9(9): 516.
|
[7] |
李明超, 刘承照, 张野, 等. 耦合颜色和纹理特征的矿物图像数据深度学习模型与智能识别方法[J]. 大地构造与成矿学, 2020, 44(2): 203-211.
|
[8] |
杨彪, 马亦骥, 倪瑞璞, 等. 基于多尺度密集连接网络的矿物图像智能识别[J]. 云南大学学报(自然科学版), 2022, 44(6): 1118-1126.
|
[9] |
杨彪, 倪瑞璞, 高皓, 等. 基于多分辨率图像的矿物特征自动提取与矿物智能识别模型[J]. 有色金属工程, 2022, 12(5): 84-93.
|
[10] |
ZHOU W Y, WANG H, WAN Z B. Oreimage classification based on improved CNN[J]. Computers and Electrical Engineering, 2022, 99: 107819.
|
[11] |
李雷, 卢才武, 江松, 等. 基于改进ConvNeXt网络的矿物图像智能识别[J/OL]. 地质通报: 1-11[2023-08-16]. http://kns.cnki.net/kcms/detail/11.4648.P.20230331.1254.002.html.
|
[12] |
ZENG X, XIAO Y C, JI X H, et al. Mineral identification based on deep learning that combines image and mohs hardness[J]. Minerals, 2021, 11(5): 506.
|
[13] |
WU B K, JI X H, HE M Y, et al. Mineral identification based on multi-label image classification[J]. Minerals, 2022, 12(11): 1338.
|
[14] |
ANTONIOU A, STORKEY A, EDWARDS H. Data augmentation generative adversarial networks[EB/OL]. (2018-03-21)[2023-07-29]. https://arxiv.org/abs/1711.04340v2.
|
[15] |
CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
|
[16] |
BUSHRA S N, SHOBANA G. A survey on deep convolutional generative adversarial neural network (dcgan) for detection of Covid-19 using chest X-ray/CT-Scan[C]// Proceedings of the 3rd international conference on intelligent sustainable systems (ICISS), Thoothukudi. New York: IEEE, 2020: 702-708.
|
[17] |
姜霞, 邱波, 王林倩, 等. 基于半监督模式的恒星光谱自动分类方法[J]. 光谱学与光谱分析, 2023, 43(6): 1875-1880.
|
[18] |
甘岚, 沈鸿飞, 王瑶, 等. 基于改进DCGAN的数据增强方法[J]. 计算机应用, 2021, 41(5): 1305-1313.
DOI
|
[19] |
DONG X B, YU Z W, CAO W M, et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020, 14(2): 241-258.
DOI
|
[20] |
SAQLAIN M, JARGALSAIKHAN B, LEE J Y. A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 171-182.
|
[21] |
崔阳阳, 邓念东, 曹晓凡, 等. 基于集成学习的地质灾害危险性评价[J]. 水力发电, 2020, 46(10): 36-41.
|
[22] |
李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673-688.
|
[23] |
LI J, JIA J J, XU D L. Unsupervised representation learning of image-based plant disease with deep convolutional generative adversarial networks[C]// Proceedings of the 37th Chinese control conference (CCC). New York: IEEE, 2018: 9159-9163.
|
[24] |
蔡晓龙. 基于DCGAN算法的图像生成技术研究[D]. 青岛: 青岛理工大学, 2018.
|
[25] |
ROKACH L. Ensemble learning: a survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(5): e1249.
|
[26] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE, 2016: 770-778.
|
[27] |
RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New York: IEEE, 2020: 10428-10436.
|
[28] |
TAN M X, LE Q V. Efficientnet: rethinking model scaling for convolutional neural networks[EB/OL]. (2020-09-11)[2023-07-02]. https://arxiv.org/abs/1905.11946.
|
[29] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. (2021-06-03)[2023-07-16]. https://arxiv.org/abs/2010.11929.
|