Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (4): 297-313.DOI: 10.13745/j.esf.sf.2023.9.40
Previous Articles Next Articles
TONG Kui1,2,3(), LI Zhiwu1,*(
), LIU Shugen1,4, I.Tonguç UYSAL5, SHI Zejin1, LI Jinxi1, Andrew TODD3, WU Wenhui1, WANG Zijian6, LIU Shengwu1, LI Ke1, HUA Tian1
Received:
2023-04-17
Revised:
2023-08-30
Online:
2024-07-25
Published:
2024-07-10
CLC Number:
TONG Kui, LI Zhiwu, LIU Shugen, I.Tonguç UYSAL, SHI Zejin, LI Jinxi, Andrew TODD, WU Wenhui, WANG Zijian, LIU Shengwu, LI Ke, HUA Tian. Middle Eocene thrusting deformation along the Anninghe fault and its regional tectonic implication: Insight from K-Ar dating of authigenic illite-bearing fault gouge[J]. Earth Science Frontiers, 2024, 31(4): 297-313.
Fig.1 (a) Regional tectonic sketch of the Tibetan Plateau (modified after reference [37]). (b) Regional topography and tectonic map of the southeastern margin of the Tibetan Plateau, showing the distribution of the regional faults (adapted from reference [1]).
Fig.6 XRD patterns (black curves) and best matches (red curves) for random powder preparations of different grain-size fractions for the fault gouge MJ12-f of the Anninghe fault
样品 | 粒级/μm | 黏土矿物含量/% | KI(Δ2θ)/(°) | 极低级变质带 | 伊利石多型含量/% | |||
---|---|---|---|---|---|---|---|---|
I | Chl | Kao | 2M1 | 1M/1Md | ||||
MJ12-f | 1~>0.5 | 100 | 0 | 0 | 0.29 | E | 65 | 35 |
0.5~>0.2 | 100 | 0 | 0 | 0.41 | A | 45 | 55 | |
0.2~0.1 | 100 | 0 | 0 | 0.70 | D | 30 | 70 | |
<0.1 | 100 | 0 | 0 | 0.97 | D | 15 | 85 |
Table 1 Clay mineralogy of different grain-size fractions of the fault gouge MJ12-f of the Anninghe fault
样品 | 粒级/μm | 黏土矿物含量/% | KI(Δ2θ)/(°) | 极低级变质带 | 伊利石多型含量/% | |||
---|---|---|---|---|---|---|---|---|
I | Chl | Kao | 2M1 | 1M/1Md | ||||
MJ12-f | 1~>0.5 | 100 | 0 | 0 | 0.29 | E | 65 | 35 |
0.5~>0.2 | 100 | 0 | 0 | 0.41 | A | 45 | 55 | |
0.2~0.1 | 100 | 0 | 0 | 0.70 | D | 30 | 70 | |
<0.1 | 100 | 0 | 0 | 0.97 | D | 15 | 85 |
样品 | 粒级/ μm | K含 量/% | Rad.40Ar含量/ (mol·g-1) | Rad.40Ar 含量/% | K-Ar年龄 (±2σ)/Ma |
---|---|---|---|---|---|
MJ12-f | 1~>0.5 | 8.26 | 2.574×10-9 | 98.8 | 171.3±3.9 |
0.5~>0.2 | 7.72 | 2.951×10-9 | 99.1 | 208.0±4.8 | |
0.2~0.1 | 6.97 | 2.001×10-9 | 97.8 | 158.3±3.6 | |
<0.1 | 5.87 | 1.033×10-9 | 92.1 | 98.7±2.3 |
Table 2 K-Ar dating results for different grain-size fractions of the fault gouge MJ12-f from the Anninghe fault
样品 | 粒级/ μm | K含 量/% | Rad.40Ar含量/ (mol·g-1) | Rad.40Ar 含量/% | K-Ar年龄 (±2σ)/Ma |
---|---|---|---|---|---|
MJ12-f | 1~>0.5 | 8.26 | 2.574×10-9 | 98.8 | 171.3±3.9 |
0.5~>0.2 | 7.72 | 2.951×10-9 | 99.1 | 208.0±4.8 | |
0.2~0.1 | 6.97 | 2.001×10-9 | 97.8 | 158.3±3.6 | |
<0.1 | 5.87 | 1.033×10-9 | 92.1 | 98.7±2.3 |
[1] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
PMID |
[2] | 许志琴, 杨经绥, 李海兵, 等. 印度-亚洲碰撞大地构造[J]. 地质学报, 2011, 85(1): 1-33. |
[3] | LI Y L, WANG C S, DAI J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan Orogen: a review[J]. Earth-Science Reviews, 2015, 143: 36-61. |
[4] | 李廷栋. 青藏高原隆升的过程和机制[J]. 中国地质科学院院报, 1995(1): 1-9. |
[5] | WANG C S, DAI J G, ZHAO X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621: 1-43. |
[6] | 许志琴, 王勤, 李忠海, 等. 印度-亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 2016, 90(1): 1-23. |
[7] | DING L, KAPP P, CAI F L, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews: Earth and Environment, 2022, 3(10): 652-667. |
[8] | TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. |
[9] | ENGLAND P, HOUSEMANG. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664-3676. |
[10] | MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. |
[11] |
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5313): 788-790.
PMID |
[12] | MURPHY M A, YIN A, HARRISON T M, et al. Did the Indo-Asian collision alone create the Tibetan Plateau?[J]. Geology, 1997, 25(8): 719-722. |
[13] | KAPP P, YIN A, HARRISON T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7): 865-878. |
[14] | TONG K, LI Z W, ZHU L D, et al. Fold-and-thrust deformation of the hinterland of Qilian Shan, northeastern Tibetan Plateau since Mesozoic with implications for the plateau growth[J]. Journal of Asian Earth Sciences, 2020, 198: 104131. |
[15] | LAW R, ALLEN M B. Diachronous Tibetan Plateau landscape evolution derived from lava field geomorphology[J]. Geology, 2020, 48(3): 263-267. |
[16] | LAI W, HU X M, GARZANTI E, et al. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)[J]. GSA Bulletin, 2019, 131(11/12): 1823-1836. |
[17] | YIN A, DANG Y Q, ZHANG M, et al. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 2008, 120(7/8): 847-876. |
[18] | STUDNICKI-GIZBERT C, BURCHFIEL B C, LI Z, et al. Early Tertiary Gonjo Basin, eastern Tibet: sedimentary and structural record of the early history of India-Asia collision[J]. Geosphere, 2008, 4(4): 713-735. |
[19] | TIAN Y T, KOHN B P, GLEADOW A J W, et al. Constructing the Longmen Shan eastern Tibetan Plateau margin: insights from low-temperature thermochronology[J]. Tectonics, 2013, 32(3): 576-592. |
[20] | CAO K, LELOUP P H, WANG G C, et al. Thrusting, exhumation, and basin fill on the western margin of the South China Block during the India-Asia collision[J]. GSA Bulletin, 2021, 133(1/2): 74-90. |
[21] | LI C P, ZHENG D W, ZHOU R J, et al. Late Oligocene tectonic uplift of the East Kunlun Shan: expansion of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2021, 48(3): e91281. |
[22] | VAN DER PLUIJM B A, HALL C M, VROLIJK P J, et al. The dating of shallow faults in the Earth’s crust[J]. Nature, 2001, 412(6843): 172-175. |
[23] | RAHL J M, HAINES S H, VAN DER PLUIJM B A. Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees[J]. Earth and Planetary Science Letters, 2011, 307(1/2): 180-190. |
[24] | ZHENG Y, KONG P, FU B H. Time constraints on the emplacement of Klippen in the Longmen Shan thrust belt and tectonic implications[J]. Tectonophysics, 2014, 634: 44-54. |
[25] | 郑勇, 李海兵, 王世广, 等. 断层泥自生伊利石年龄分析及其在龙门山断裂带的应用[J]. 地球学报, 2019, 40(1): 173-185. |
[26] | UYSAL I T, DELLE PIANE C, TODD A J, et al. Precambrian faulting episodes and insights into the tectonothermal history of North Australia: microstructural evidence and K-Ar, 40Ar-39Ar, and Rb-Sr dating of syntectonic illite from the intracratonic Millungera Basin[J]. Solid Earth, 2020, 11(5): 1653-1679. |
[27] | RING U, UYSAL I T, TONG K, et al. K-Ar fault-gouge dating in the Lower Buller gorge constrains the formation of the Paparoa Trough, West Coast, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2021, 64(1): 49-61. |
[28] | RING U, FASSOULAS C, UYSAL I T, et al. Nappe imbrication within the phyllite-quartzite unit of West Crete: implications for sustained high-pressure metamorphism in the hellenide subduction orogen, Greece[J]. Tectonics, 2022, 41(11): e2022TC007430. |
[29] | HAINES S H, VAN DER PLUIJM B A. Clay quantification and Ar-Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico[J]. Journal of Structural Geology, 2008, 30(4): 525-538. |
[30] | DUVALL A R, CLARK M K, VAN DER PLUIJM B A, et al. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 520-526. |
[31] | STAISCH L M, NIEMI N A, CLARK M K, et al. The Cenozoic evolution of crustal shortening and left-lateral shear in the central East Kunlun Shan: implications for the uplift history of the Tibetan Plateau[J]. Tectonics, 2020, 39(9): e2020TC006065. |
[32] | STAISCH L M, NIEMI N A, CLARK M K, et al. Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau[J]. Tectonics, 2016, 35(4): 862-895. |
[33] | 叶春林. 西藏荣玛乡南新生代逆冲推覆构造变形特征及时代[D]. 北京: 中国地质大学(北京), 2020. |
[34] | WANG E, BURCHFIEL B C, ROYDEN L H, et al. Late Cenozoic Xianshuihe-Xiaojiang, Red river, and Dali fault systems of southwestern Sichuan and central Yunnan, China[J]. Geological Society of America Special Paper, 1998, 327: 1-108. |
[35] | 张岳桥, 杨农, 孟晖, 等. 四川攀西地区晚新生代构造变形历史与隆升过程初步研究[J]. 中国地质, 2004, 31(1): 23-33. |
[36] |
李海龙, 张岳桥, 张长厚, 等. 鲜水河断裂带渐新世至早中新世两期变形相关混合岩的锆石U-Pb年代学及其意义[J]. 地学前缘, 2016, 23(2): 222-237.
DOI |
[37] | 白明坤, CHEVALIER M L, 李海兵, 等. 鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究[J]. 地质学报, 2022, 96(7): 2312-2332. |
[38] | 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学D辑: 地球科学, 2003(B4): 12-20. |
[39] | GAN W J, ZHANG P Z, SHEN Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B8): B08416. |
[40] | LI Z W, KAMP P J J, LIU S G, et al. Late Cretaceous-Cenozoic thermal structure and exhumation of the Eastern Tibetan Plateau margin: a doubly-vergent orogenic wedge[J]. Earth-Science Reviews, 2023, 238: 104319. |
[41] | LIU Z J, ZHANG J Y, MCPHILLIPS D, et al. Multiple episodes of fast exhumation since Cretaceous in Southeast Tibet, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters, 2018, 490: 62-76. |
[42] | CAO K, TIAN Y T, VAN DER BEEK P, et al. Southwestward growth of plateau surfaces in eastern Tibet[J]. Earth-Science Reviews, 2022, 232: 104160. |
[43] | ZHANG H P, OSKIN M E, JING L Z, et al. Pulsed exhumation of interior eastern Tibet: implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters, 2016, 449: 176-185. |
[44] | ZHANG G H, TIAN Y T, LI R, et al. Progressive tectonic evolution from crustal shortening to mid-lower crustal expansion in the southeast Tibetan Plateau: a synthesis of structural and thermochronological insights[J]. Earth-Science Reviews, 2022, 226: 103951. |
[45] | 刘方斌. 青藏高原东南缘新生代剥露历史的热年代学约束: 以临沧花岗岩地区为例[D]. 兰州: 兰州大学, 2021. |
[46] | WANG E, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9): 640-645. |
[47] | TIAN Y T, KOHN B P, GLEADOW A J W, et al. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(1): 676-698. |
[48] | ZHU C Y, WANG G C, LELOUP P H, et al. Role of the Early Miocene Jinhe-Qinghe Thrust Belt in the building of the Southeastern Tibetan Plateau topography[J]. Tectonophysics, 2021, 811: 228871. |
[49] | WANG H, LI K J, TIAN Y T, et al. Oligocene-Early Miocene exhumation and shortening along the Anninghe fault in the southeastern Tibetan Plateau: insights from zircon and apatite (U-Th)/He thermochronology[J]. International Geology Review, 2022, 64(3): 390-404. |
[50] | CAO K, WANG G C, LELOUP P H, et al. Oligocene-early Miocene topographic relief generation of southeastern Tibet triggered by thrusting[J]. Tectonics, 2019, 38(1): 374-391. |
[51] | WANG Y, WANG Y J, SCHOENBOHM L M, et al. Cenozoic exhumation of the Ailaoshan-red River shear zone: new insights from low-temperature thermochronology[J]. Tectonics, 2020, 39(9): e2020TC006151. |
[52] | CLARK M K, HOUSE M A, ROYDEN L H, et al. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 2005, 33(6): 525-528. |
[53] | OUIMET W, WHIPPLE K, ROYDEN L, et al. Regional incision of the eastern margin of the Tibetan Plateau[J]. Lithosphere, 2010, 2(1): 50-63. |
[54] | ZHANG Y Z, REPLUMAZ A, WANG G C, et al. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet[J]. Tectonics, 2015, 34(6): 1219-1243. |
[55] | ZHANG Y Z, REPLUMAZ A, LELOUP P H, et al. Cooling history of the Gongga batholith: implications for the Xianshuihe Fault and Miocene kinematics of SE Tibet[J]. Earth and Planetary Science Letters, 2017, 465: 1-15. |
[56] | YANG R, SUHAIL H A, GOURBET L, et al. Early Pleistocene drainage pattern changes in Eastern Tibet: constraints from provenance analysis, thermochronometry, and numerical modeling[J]. Earth and Planetary Science Letters, 2020, 531: 115955. |
[57] | DENG B, LIU S G, ENKELMANN E, et al. Late Miocene accelerated exhumation of the Daliang Mountains, southeastern margin of the Tibetan Plateau[J]. International Journal of Earth Sciences, 2015, 104(4): 1061-1081. |
[58] | REPLUMAZ A, JOSÉ M S, MARGIRIER A, et al. Tectonic control on rapid late Miocene: quaternary incision of the Mekong River knickzone, southeast Tibetan Plateau[J]. Tectonics, 2020, 39: e2019TC005782. |
[59] | 刘宇平, 陈智梁, 唐文清, 等. 青藏高原东部及周边现时地壳运动[J]. 沉积与特提斯地质, 2003, 23(4): 1-8. |
[60] | ALLEN C R, LUO Z L, QIAN H, et al. Field study of a highly active fault zone: the Xianshuihe fault of southwestern China[J]. Geological Society of America Bulletin, 1991, 103(9): 1178-1199. |
[61] | 王振荣, 张燕, 周贞莲. 安宁河断裂带显微构造及动力学的研究[J]. 成都地质学院学报, 1992, 19(4): 48-54, 125. |
[62] | 冉勇康, 陈立春, 程建武, 等. 安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J]. 中国科学D辑: 地球科学, 2008, 38(5): 543-554. |
[63] | 何宏林, 池田安隆. 安宁河断裂带晚第四纪运动特征及模式的讨论[J]. 地震学报, 2007, 29(5): 537-548, 560. |
[64] | REN Z K. Late Quaternary deformation features along the Anninghe Fault on the eastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2014, 85: 53-65. |
[65] | DENG B, LIU S G, JIANG L, et al. Tectonic uplift of the Xichang Basin (SE Tibetan Plateau) revealed by structural geology and thermochronology data[J]. Basin Research, 2018, 30(1): 75-96. |
[66] |
邓宾, 雍自权, 刘树根, 等. 青藏高原东南缘大凉山新生代隆升建造过程: 多封闭系统低温热年代学与热模型限制[J]. 地球物理学报, 2016, 59(6): 2162-2175.
DOI |
[67] | WANG Y Z, LIU C R, ZHANG D W, et al. Multistage exhumation in the catchment of the Anninghe River in the SE Tibetan Plateau: insights from both detrital thermochronology and topographic analysis[J]. Geophysical Research Letters, 2021, 134: 98-136. |
[68] | 张岳桥, 杨农, 陈文, 等. 中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆升过程初步研究[J]. 地学前缘, 2003, 10(4): 599-612. |
[69] | 陈应涛, 余文鑫, 张欢, 等. 青藏高原东缘安宁河断裂带中—新生代构造变形及其磁组构特征[J]. 西安科技大学学报, 2021, 41(1): 94-103. |
[70] | 华天, 李金玺, 李智武, 等. 安宁河断裂带新生代构造变形与磁组构特征[J]. 地球学报, 2022, 43(2): 144-156. |
[71] |
PEVEAR D R. Illite and hydrocarbon exploration[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3440-3446.
PMID |
[72] | BOLES A, SCHLEICHER A M, SOLUM J, et al. Quantitative X-ray powder diffraction and the illite polytype analysis method for direct fault rock dating: a comparison of analytical techniques[J]. Clays and Clay Minerals, 2018, 66(3): 220-232. |
[73] | KÜBLER B, JABOYEDOFF M. Illite crystallinity[J]. Earth and Planetary Science Letters, 2000, 331: 75-89. |
[74] | KÜBLER B. Evaluation quantitative du métamorphisme par la cristallinité de l’illite[J]. Bulletin Centre Recherche Pau-SNPA, 1968, 2: 385-397. |
[75] | WARR L N, FERREIRO MÄHLMANN R. Recommendations for Kübler index standardization[J]. Clay Minerals, 2015, 50(3): 283-286. |
[76] | DALRYMPLE G B, LANPHERE M A. Potassium-argon dating[M]. San Francisco: W.H. Freeman, 1969. |
[77] | BONHOMME M G, THUIZAT R, PINAULT Y, et al. Méthode de Datation Potassium-Argon[M]. Strasbourg: Technique de l’Institut de Géologie de Strasbourg, 1975. |
[78] | STEIGER R H, JÄGER E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36(3): 359-362. |
[79] | CLAUER N, ZWINGMANN H, LIEWIG N, et al. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: a tentative explanation for age identities and differences[J]. Earth-Science Reviews, 2012, 115(1/2): 76-96. |
[80] | VIOLA G, ZWINGMANN H, MATTILA J, et al. K-Ar illite age constraints on the Proterozoic formation and reactivation history of a brittle fault in Fennoscandia[J]. Terra Nova, 2013, 25(3): 236-244. |
[81] | 张有瑜, 刘可禹, 罗修泉. 自生伊利石年代学研究: 理论、方法与实践[M]. 北京: 科学出版社, 2016. |
[82] | MCDOUGALL I, HARRISON T M. Geochronology and thermochronology by the 40Ar/39Ar method[M]. 2nd ed. New York: Oxford University Press, 1999. |
[83] | DAVIDS C, BENOWITZ J A, LAYER P W, et al. Direct 40Ar/39Ar K-feldspar dating of Late Permian: early Triassic brittle faulting in northern Norway[J]. Terra Nova, 2018, 30(4): 263-269. |
[84] | WANG Y, ZHOU L Y, ZWINGMANNH, et al. 40Ar/39Ar dating of cataclastic K-feldspar: a new approach for establishing the chronology of brittle deformation[J]. Journal of Structural Geology, 2020, 131: 103948. |
[85] | HU S B, HE L J, WANG J Y. Heat flow in the continental area of China: a new data set[J]. Earth and Planetary Science Letters, 2000, 179(2): 407-419. |
[86] | LI H L, ZHANG Y Q. Zircon U-Pb geochronology of the Konggar granitoid and migmatite: constraints on the Oligo-Miocene tectono-thermal evolution of the Xianshuihe fault zone, East Tibet[J]. Tectonophysics, 2013, 606: 127-139. |
[87] | CHEN Y T, ZHANG G W, LU R K, et al. Formation and evolution of Xianshuihe Fault Belt in the eastern margin of the Tibetan Plateau: constraints from structural deformation and geochronology[J]. Geological Journal, 2020, 55(12): 7953-7976. |
[88] | SPURLIN M S, YIN A, HORTON B K, et al. Structural evolution of the Yushu-Nangqian Region and its relationship to syncollisional igneous activity, east-central Tibet[J]. Geological Society of America Bulletin, 2005, 117(9/10): 1293. |
[89] | BURCHFIEL B C, CHEN Z L. Tectonics of the Southeastern Tibetan Plateau and its adjacent foreland[J]. Geological Society of America Memoirs, 2013, 210: 1-164. |
[90] | HORTON B K, YIN A, SPURLIN M S, et al. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet[J]. Geological Society of America Bulletin, 2002, 114(7): 771-786. |
[91] | ZHANG Y, HUANG W T, HUANG B C, et al. 53-43 Ma deformation of eastern Tibet revealed by three stages of tectonic rotation in the Gongjue Basin[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3320-3338. |
[92] | LI S H, VAN HINSBERGEN D J J, NAJMAN Y, et al. Does pulsed Tibetan deformation correlate with Indian plate motion changes?[J]. Earth and Planetary Science Letters, 2020, 536: 116144. |
[93] | LI S H, SU T, SPICER R A, et al. Oligocene deformation of the Chuandian Terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina[J]. Tectonics, 2020, 39(7): e2019TC005974. |
[94] | CLARK M K, FARLEY K A, ZHENG D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88. |
[95] | VAN HINSBERGEN D J J, KAPP P, DUPONT-NIVET G, et al. Restoration of Cenozoic deformation in Asia and the size of Greater India[J]. Tectonics, 2011, 30(5): TC5003. |
[96] | 廖忠礼, 邓永福, 廖光宇. 四川锦屏地区新生代冲断作用[J]. 大地构造与成矿学, 2003, 27(2): 152-159. |
[97] | TIAN Y T, LIU Y M, LI R, et al. Thermochronological constraints on Eocene deformation regime in the Longmen Shan: implications for the eastward growth of the Tibetan Plateau[J]. Global and Planetary Change, 2022, 217: 103930. |
[98] | TONG Y B, YANG Z Y, MAO C P, et al. Paleomagnetism of Eocene red-beds in the eastern part of the Qiangtang Terrane and its implications for uplift and southward crustal extrusion in the southeastern edge of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2017, 475: 1-14. |
[99] | ZHANG Z J, TONG Y B, JIN S C, et al. Paleomagnetic constraint on the formation of the Eastern Himalayan Syntaxis: a new late Eocene result from the Mangkang area of the eastern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2023, 603: 117974. |
[100] | LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1/2/3/4): 85-138. |
[101] | WANG Q, WYMAN D A, XU J, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 2008, 272: 158-171. |
[102] | ZHANG B, LIU J Q, CHEN W, et al. Late Eocene magmatism of the eastern Qiangtang Block (eastern Tibetan Plateau) and its geodynamic implications[J]. Journal of Asian Earth Sciences, 2020, 195: 104329. |
[103] | KONG X, YIN A, HARRISON T M. Evaluating the role of preexisting weaknesses and topographic distributions in the Indo-Asian collision by use of a thin-shell numerical model[J]. Geology, 1997, 25(6): 527-530. |
[104] | XIE R X, CHEN L, XIONG X, et al. The role of pre-existing crustal weaknesses in the uplift of the eastern Tibetan Plateau: 2D thermo-mechanical modeling[J]. Tectonics, 2021, 40(4): e2020TC006444. |
[1] | NEUPANE Bhupati, ZHAO Junmeng, LIU Chunru, PEI Shunping, MAHARJAN Bishal, DHAKAL Sanjev. Electron spin resonance dating for the Central Churia Thrust of the Nepal Himalaya [J]. Earth Science Frontiers, 2023, 30(4): 260-269. |
[2] | SHI He-Sheng SHU Dun-Zhang QIU Hua-Ning SHU Yu TUN Jian-Yao LONG Jie-Lie. Timing of hydrocarbon fluid emplacement in sandstone reservoirs in Neogene in Huizhou Sag, Southern China Sea, by authigenic illite 40Ar39Ar laser stepwise heating [J]. Earth Science Frontiers, 2009, 16(1): 290-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||