Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 510-522.DOI: 10.13745/j.esf.sf.2024.6.37
Previous Articles Next Articles
HUANG Shiwen1(), XIA Qiwen1, HE Jiangtao1,*(
), HE Baonan1, CHEN Cuibai1, SUN Jichao2
Received:
2024-01-31
Revised:
2024-03-26
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
HUANG Shiwen, XIA Qiwen, HE Jiangtao, HE Baonan, CHEN Cuibai, SUN Jichao. Study on zoning characteristics and genesis of iodine in shallow groundwater in North China Plain[J]. Earth Science Frontiers, 2025, 32(4): 510-522.
Fig.4 Groundwater system division in North China Plain (adapted from [20]) (a), transgression range (adapted from [29]) (b), four regional divisions of the research area (c)
区域 | I- 浓度/(μg·L-1) | pH | TDS/(mg·L-1) | Eh/mV | 水化学类型 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 | 中位数 | 均值 | 中位数 | 均值 | 中位数 | 均值 | 中位数 | |||||
总流域 | 116.4 | 60 | 7.51 | 7.5 | 1 935 | 980.94 | 74.18 | 63 | HCO3-Ca | |||
(A) | 50.19 | 14 | 7.5 | 7.5 | 1 088 | 649.9 | 131.47 | 147.5 | HCO3-Ca | |||
(B) | 128.27 | 60 | 7.47 | 7.4 | 3 081 | 2 296.4 | 54.43 | 2.11 | Cl-Na | |||
(C) | 176.66 | 120 | 7.55 | 7.52 | 1 504 | 1 107.24 | 7.18 | -4.35 | HCO3-Na | |||
(D) | 179.2 | 100 | 7.39 | 7.3 | 7 570 | 3 278.59 | 87 | 42.7 | Cl-Na |
Table 1 Statistical summary of main parameters of hydrochemical characteristics of shallow groundwater in North China Plain
区域 | I- 浓度/(μg·L-1) | pH | TDS/(mg·L-1) | Eh/mV | 水化学类型 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 | 中位数 | 均值 | 中位数 | 均值 | 中位数 | 均值 | 中位数 | |||||
总流域 | 116.4 | 60 | 7.51 | 7.5 | 1 935 | 980.94 | 74.18 | 63 | HCO3-Ca | |||
(A) | 50.19 | 14 | 7.5 | 7.5 | 1 088 | 649.9 | 131.47 | 147.5 | HCO3-Ca | |||
(B) | 128.27 | 60 | 7.47 | 7.4 | 3 081 | 2 296.4 | 54.43 | 2.11 | Cl-Na | |||
(C) | 176.66 | 120 | 7.55 | 7.52 | 1 504 | 1 107.24 | 7.18 | -4.35 | HCO3-Na | |||
(D) | 179.2 | 100 | 7.39 | 7.3 | 7 570 | 3 278.59 | 87 | 42.7 | Cl-Na |
潜在影响因素 | 缩写 | 单位 | 对地下水碘离子浓度的影响 |
---|---|---|---|
溶解性总固体 | TDS | mg/L | 指示海侵事件形成的海相沉积物或蒸发浓缩作用[ |
地下水钠离子浓度 | Na+ | mg/L | 指示海侵事件形成的海相沉积物或蒸发浓缩作用[ |
地下水氯离子浓度 | Cl- | mg/L | 指示海侵事件形成的海相沉积物或蒸发浓缩作用[ |
地下水锰离子浓度 | Mn | mg/L | 指示地下水的氧化还原环境[ |
地下水铁浓度 | Fe | mg/L | 还原环境条件下沉积物中的铁氧化物溶解促进了碘的释放[ |
地下水硝氮浓度 | mg/L | 指示水环境氧化还原条件的特征指标[ | |
地下水镁离子浓度 | Mg2+ | mg/L | 指示水-岩相互作用中岩石矿物的风化溶解[ |
地下水钙离子浓度 | Ca2+ | mg/L | 指示阳离子交换吸附作用等水化学作用[ |
地下水硫酸根浓度 | mg/L | 指示氧化还原反应[ | |
地下水重碳酸根浓度 | mg/L | 有机质生物降解过程伴随着 | |
地下水pH值 | WpH | — | 指示地下水环境的酸碱性[ |
氧化还原电位 | Eh | mV | 指示地下水的氧化还原环境[ |
采样点到渤海的距离 | DisB | m | 指示受海侵的影响[ |
年平均蒸发量 | EVP | mm | 指示蒸发浓缩作用[ |
年平均降雨量 | PRE | mm | 指示淋滤作用[ |
Table 2 15 potential influencing factors and their impact on high iodine groundwater
潜在影响因素 | 缩写 | 单位 | 对地下水碘离子浓度的影响 |
---|---|---|---|
溶解性总固体 | TDS | mg/L | 指示海侵事件形成的海相沉积物或蒸发浓缩作用[ |
地下水钠离子浓度 | Na+ | mg/L | 指示海侵事件形成的海相沉积物或蒸发浓缩作用[ |
地下水氯离子浓度 | Cl- | mg/L | 指示海侵事件形成的海相沉积物或蒸发浓缩作用[ |
地下水锰离子浓度 | Mn | mg/L | 指示地下水的氧化还原环境[ |
地下水铁浓度 | Fe | mg/L | 还原环境条件下沉积物中的铁氧化物溶解促进了碘的释放[ |
地下水硝氮浓度 | mg/L | 指示水环境氧化还原条件的特征指标[ | |
地下水镁离子浓度 | Mg2+ | mg/L | 指示水-岩相互作用中岩石矿物的风化溶解[ |
地下水钙离子浓度 | Ca2+ | mg/L | 指示阳离子交换吸附作用等水化学作用[ |
地下水硫酸根浓度 | mg/L | 指示氧化还原反应[ | |
地下水重碳酸根浓度 | mg/L | 有机质生物降解过程伴随着 | |
地下水pH值 | WpH | — | 指示地下水环境的酸碱性[ |
氧化还原电位 | Eh | mV | 指示地下水的氧化还原环境[ |
采样点到渤海的距离 | DisB | m | 指示受海侵的影响[ |
年平均蒸发量 | EVP | mm | 指示蒸发浓缩作用[ |
年平均降雨量 | PRE | mm | 指示淋滤作用[ |
[1] |
何宝南, 何江涛, 孙继朝, 等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘, 2022, 29(3): 51-63.
DOI |
[2] | 韩云波, 唐当柱. 我国全民补碘的现况[J]. 职业与健康, 2020, 36(8): 1142-1145, 1149. |
[3] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水源性高碘地区和高碘病区的划定: GB/T 19380—2016[S]. 北京: 中国标准出版社, 2016. |
[4] | TOGO Y S, TAKAHASHI Y, AMANO Y, et al. Age and speciation of iodine in groundwater and mudstones of theHoronobe area, Hokkaido, Japan: implications for the origin and migration of iodine during basin evolution[J]. Geochimica et Cosmochimica Acta, 2016, 191: 165-186. |
[5] | FERNANDA Á, REICH M, PÉREZ-FODICH A, et al. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin[J]. Geochimica et Cosmochimica Acta, 2015, 161: 50-70. |
[6] | VOUTCHKOVA D D, ERNSTSEN V, KRISTIANSEN S M, et al. Iodine in major Danish aquifers[J]. Environmental Earth Sciences, 2017, 76(13): 447. |
[7] | 薛肖斌, 李俊霞, 钱坤, 等. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄—衡水—沧州剖面为例[J]. 地球科学, 2018, 43(3): 910-921. |
[8] | 吴飞, 王曾祺, 童秀娟, 等. 我国典型地区浅层高碘地下水分布特征及其赋存环境[J]. 水资源与水工程学报, 2017, 28(2): 99-104. |
[9] | 王妍妍, 马腾, 董一慧, 等. 内陆盆地区高碘地下水的成因分析: 以内蒙古河套平原杭锦后旗为例[J]. 地学前缘, 2014, 21(4): 66-73. |
[10] | 吕晓立, 刘景涛, 韩占涛, 等. 快速城镇化三角洲地区高碘地下水赋存特征及驱动因素: 以珠江三角洲为例[J]. 环境科学, 2022, 43(1): 339-348. |
[11] | TANG Q F, XU Q, ZHANG F C, et al. Geochemistry of iodine-rich groundwater in the Taiyuan basin of central Shanxi Province, North China[J]. Journal of Geochemical Exploration, 2013, 135: 117-123. |
[12] | CENDÓN D I, HUGHES C E, HARRISON J J, et al. Identification of sources and processes in a low-level radioactive waste site adjacent to landfills: groundwater hydrogeochemistry and isotopes[J]. Australian Journal of Earth Sciences, 2015, 62(1): 123-141. |
[13] |
王焰新, 李俊霞, 谢先军. 高碘地下水成因与分布规律研究[J]. 地学前缘, 2022, 29(3): 1-10.
DOI |
[14] | ZHANG E Y, WANG YY, QIAN Y, et al. Iodine in groundwater of the North China Plain: spatial patterns and hydrogeochemical processes of enrichment[J]. Journal of Geochemical Exploration, 2013, 135: 40-53. |
[15] | 张二勇, 张福存, 钱永, 等. 中国典型地区高碘地下水分布特征及启示[J]. 中国地质, 2010, 37(3): 797-802. |
[16] | ZHANG Y J, CHEN L N, CAO S W, et al. Iodine enrichment and the underlying mechanism in deep groundwater in the Cangzhou Region, North China[J]. Environmental Science and Pollution Research, 2021, 28(9): 10552-10563. |
[17] | 薛肖斌. 海侵和过量抽水影响下滨海平原高碘地下水形成与演化[D]. 武汉: 中国地质大学(武汉), 2021. |
[18] |
CHEN Z Y, NIE Z L, ZHANG Z J, et al. Isotopes and sustainability of ground water resources, North China Plain[J]. Groundwater, 2005, 43(4): 485-493.
PMID |
[19] | WANG S Q, TANG C Y, SONG X F, et al. Factors contributing to nitrate contamination in a groundwater recharge area of the North China Plain[J]. Hydrological Processes, 2016, 30(13): 2271-2285. |
[20] | 张兆吉, 费宇红, 陈宗宇, 等. 华北平原地下水可持续利用调查评价[M]. 北京: 地质出版社, 2009. |
[21] | 曹国亮. 华北平原地下水系统变化规律研究[D]. 北京: 中国地质大学(北京), 2013. |
[22] | 孟素花. 华北平原地下水脆弱性及污染防治区划研究[D]. 北京: 中国地质科学院, 2011. |
[23] | HAN D M, CURRELL M J, GUO H M. Controls on distributions of sulphate, fluoride, and salinity in aquitard porewater from the North China Plain: long-term implications for groundwater quality[J]. Journal of Hydrology, 2021, 603: 126828. |
[24] | 邢丽娜. 华北平原典型剖面上地下水化学特征和水文地球化学过程[D]. 北京: 中国地质大学(北京), 2012. |
[25] | 中国地质调查局. 地下水污染地质调查评价规范: DD 2008—01[S]. 北京: 中国地质调查局, 2008. |
[26] | JEVŠENAK J, SKUDNIK M. A random forest model for basal area increment predictionsfrom national forest inventory data[J]. Forest Ecology and Management, 2021, 479: 118601. |
[27] | KOCH J, BERGER H, HENRIKSEN H J, et al. Modelling of the shallow water table at high spatial resolution using random forests[J]. Hydrology and Earth System Sciences, 2019, 23(11): 4603-4619. |
[28] | WANG Z R, TIAN X, WU X. Hydrochemical characteristics and quality assessment of shallow groundwater and CBM co-produced water in the Shizhuangnan block, Qinshui Basin, China[J]. Environmental Earth Sciences, 2018, 77(3): 57. |
[29] | LIN J X, DAI L P. Quaternary marine transgressions in Eastern China[J]. Journal of Palaeogeography, 2012, 1(2): 105-125. |
[30] | MA R, SHI J S, LIU J C, et al. Combined use of multivariate statistical analysis and hydrochemical analysis for groundwater quality evolution: a case study in north chain plain[J]. Journal of Earth Science, 2014, 25(3): 587-597. |
[31] | 吴世汉, 邢光熹. 我国主要土壤类型中溴和碘的分布特性[J]. 土壤, 1996, 28(1): 21-23. |
[32] | XIA Q W, HE J T, HE B N, et al. Effect and genesis of soil nitrogen loading and hydrogeological conditions on the distribution of shallow groundwater nitrogen pollution in the North China Plain[J]. Water Research, 2023, 243: 120346. |
[33] | ZOU H, HE J T, CHU Y J, et al. Revealing discrepancies and drivers in the impact of lomefloxacin on groundwater denitrification throughout microbial community growth and succession[J]. Journal of Hazardous Materials, 2024, 465: 133139. |
[34] | FENG F, JIA Y F, YANG Y, et al. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China[J]. Environmental Science and Pollution Research, 2020, 27(28): 34840-34861. |
[35] | DUAN L, WANG W K, SUN Y B, et al. Iodine in groundwater of the Guanzhong basin, China: sources and hydrogeochemical controls on its distribution[J]. Environmental Earth Sciences, 2016, 75(11): 970. |
[36] | LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468: 738-745. |
[37] | 徐清, 刘晓端, 汤奇峰, 等. 山西晋中地区地下水高碘的地球化学特征研究[J]. 中国地质, 2010, 37(3): 809-815. |
[38] | 雷米, 周金龙, 范薇, 等. 新疆阿克苏平原区地下水水化学演化特征[J]. 地球与环境, 2020, 48(5): 602-611. |
[39] | 周海玲, 苏春利, 李俊霞. 地表灌溉对沉积含水层中碘迁移释放过程的影响[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1810-1820. |
[40] | 罗义鹏, 邓娅敏, 杜尧, 等. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学, 2022, 47(2): 662-673. |
[41] | 钱会, 马致远. 水文地球化学[M]. 北京: 地质出版社, 2005. |
[42] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI PMID |
[43] | 张旭平, 田洪梅. 黄河下游河道变迁的历史考察[J]. 中学历史教学参考, 2003(6): 24-26. |
[44] | 董龙凯. 近代山东黄河水患与人口迁移的时空变化[J]. 学术研究, 2016(6): 126-134, 178. |
[45] | 赵振宏, 田文法. 沧州市浅层高碘地下水成因及分布规律的初步探讨[J]. 水文地质工程地质, 1988, 15(6): 44-47. |
[46] | 李彤. 天津查氏园林文人雅集及其环境研究[D]. 天津: 天津大学, 2021. |
[47] | 李广凤. 静海区休闲渔业发展现状及对策[J]. 现代农村科技, 2022(8): 107-108. |
[1] | HUANG Yi, DONG Xuan, MA Zhiyuan, TIAN Xizhao, ZHU Shuai, ZHU Yun. Rapid detection and risk assessment of endocrine disrupting chemicals in typical urban waters in northern cities of China [J]. Earth Science Frontiers, 2025, 32(4): 353-362. |
[2] | XU Donghui, LI Tao, LIN Yanzhu, CHEN Tianfei. Source apportionment of nitrate in groundwater based on correlation monitoring indicators in Liaodong Bay [J]. Earth Science Frontiers, 2025, 32(4): 376-387. |
[3] | QIN Yang, LIU Chiyang, PENG Guangrong, HUANG Lei, LI Hongbo, LIANG Chao, WU Zhe, YANG Lihua. Formation and evolution of the Yunkai low uplift in the Pearl River Mouth Basin and its structural partition effects [J]. Earth Science Frontiers, 2025, 32(4): 422-443. |
[4] | ZHANG Xuehang, HE Baonan, HE Jiangtao, MA Shuo, LIU Fei, YANG Shanshan, SHI Yuanyuan, HE Wei, YANG Baiju. Study on groundwater pollution risk evolution in Yongding River recharge area [J]. Earth Science Frontiers, 2025, 32(4): 523-536. |
[5] | CHEN Hongwei, ZHU Zhichao, LI Zhengzui, YU Weihou, ZHOU Hui, YU Shasha, PENG Xiangxun. Interaction between the river and groundwater in the Dongting Lake during extreme climate: Taking the Zijiang River segment in the Dongting Lake as an example [J]. Earth Science Frontiers, 2025, 32(2): 445-455. |
[6] | CHU Yanjia, HE Baonan, CHEN Zhen, HE Jiangtao. Research on identifying the outliers of the TDS in shallow groundwater based on the random forest model [J]. Earth Science Frontiers, 2025, 32(2): 456-468. |
[7] | WANG Wei, CHENG Xing, GAO Xubo, TIAN Zhenhuan, LIU Chunhua, WU Zhanhui, LI Chengcheng, KONG Shuqiong. The genesis of groundwater chemistry in Yellow River Delta: A case study of Gudao Town, Dongying City, Shandong Province [J]. Earth Science Frontiers, 2025, 32(2): 469-483. |
[8] | OUYANG Kaigao, JIANG Xiaowei, DU Yanan, ZHANG Zhiyuan, HAN Pengfei, WU Yenan, WANG Xusheng. Mechanism of groundwater recharge at different depths during the “23·7” heavy rainfall event in North China: A case study of Xiong’an New Area [J]. Earth Science Frontiers, 2025, 32(1): 432-439. |
[9] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[10] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[11] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[12] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[13] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[14] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[15] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||