[1] |
何宝南, 何江涛, 孙继朝, 等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘, 2022, 29(3): 51-63.
DOI
|
[2] |
ZHANG D S, ZHANG Y X, LIU L C, et al. Numerical simulation of multi-water-source artificial recharge of aquifer: a case study of the Mi-Huai-Shun groundwater reservoir[J]. Water Resources, 2020, 47(3): 399-408.
|
[3] |
ALI S, ISLAM A. Evaluation of Hantush’s S function estimation methods for predicting rise in water table[J]. Water Resources Management, 2019, 33(7): 2239-2260.
|
[4] |
QI C T, ZHAN H B, LIANG X Y, et al. Influence of time-dependent ground surface flux on aquifer recharge with a vadose zone injection well[J]. Journal of Hydrology, 2020, 584: 124739.
|
[5] |
田枭, 林敦灵, 刘洋, 等. 永定河流域地表沉降监测及生态补水影响分析[J]. 测绘科学, 2022, 47(9): 95-101, 137.
|
[6] |
ZANG Y G, HOU X S, LI Z P, et al. Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system[J]. Water Research, 2022, 226: 119213.
|
[7] |
刘鑫, 左锐, 王金生, 等. 地下水位波动带三氮迁移转化过程研究进展[J]. 水文地质工程地质, 2021, 48(2): 27-36.
|
[8] |
WANG J L, ZHANG C, XIONG L, et al. Changes of antibiotic occurrence and hydrochemistry in groundwater under the influence of the South-to-North Water Diversion (the Hutuo River, China)[J]. Science of the Total Environment, 2022, 832: 154779.
|
[9] |
王秋生, 白璇, 赵元元, 等. 官厅水库氟化物分析[J]. 北京水务, 2024(增刊1): 45-49.
|
[10] |
陈吉吉, 吴悦, 陶蕾, 等. 生态补水对永定河沿岸地下水水位、水质的影响[J]. 地球与环境, 2023, 51(3): 266-273.
|
[11] |
XU G G, SU X S, YUAN Z J, et al. Nitrogen behavior during artificial groundwater recharge through ponds: a case study in Xiong’an New Area[J]. Environmental Geochemistry and Health, 2022, 44(8): 2545-2561.
|
[12] |
FAKHREDDINE S, DITTMAR J, PHIPPS D, et al. Geochemical triggers of arsenic mobilization during managed aquifer recharge[J]. Environmental Science & Technology, 2015, 49(13): 7802-7809.
|
[13] |
JIN J, ZIMMERMAN A R, NORTON S B, et al. Arsenic release from Floridan aquifer rock during incubations simulating aquifer storage and recovery operations[J]. Science of the Total Environment, 2016, 551: 238-245.
|
[14] |
NOBRE R C M, ROTUNNO FILHO O C, MANSUR W J, et al. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool[J]. Journal of Contaminant Hydrology, 2007, 94(3/4): 277-292.
|
[15] |
陈奂良, 王金晓, 林广奇, 等. 岩溶地下水污染预警: 以山东省刘征水源地为例[J]. 安全与环境工程, 2021, 28(3): 130-136.
|
[16] |
XIONG Y N, LIU J C, YUAN W C, et al. Groundwater contamination risk assessment based on groundwater vulnerability and pollution loading: a case study of typical karst areas in China[J]. Sustainability, 2022, 14(16): 9898.
|
[17] |
DUDA R, KLEBERT I, ZDECHLIK R. Groundwaterpollution risk assessment based on vulnerability to pollution and potential impactof land use forms[J]. Polish Journal of Environmental Studies, 2020, 29(1): 87-99.
|
[18] |
赵鹏, 何江涛, 王曼丽, 等. 地下水污染风险评价中污染源荷载量化方法的对比分析[J]. 环境科学, 2017, 38(7): 2754-2762.
|
[19] |
HUANG L, ZENG G M, LIANG J, et al. Combined impacts of land use and climate change in the modeling of future groundwater vulnerability[J]. Journal of Hydrologic Engineering, 2017, 22(7): 1-11.
|
[20] |
PERSAUD E, LEVISON J. Impacts of changing watershed conditions in the assessment of future groundwater contamination risk[J]. Journal of Hydrology, 2021, 603:127142.
|
[21] |
闫志雲, 曾妍妍, 周金龙, 等. 叶尔羌河流域平原区地下水污染风险评价[J]. 环境科学, 2023, 44(6): 3237-3246.
|
[22] |
何江涛, 马文洁, 张昕. 基于过程单元模型参数替代防污性能评价方法研究:以北京市平原区为例[M]. 北京: 地质出版社, 2012.
|
[23] |
王曼丽, 何江涛, 崔亚丰, 等. 基于折减系数的地下水污染风险评价方法探究[J]. 环境科学学报, 2016, 36(12): 4510-4519.
|
[24] |
陈青. 经济增长、产业结构与环境污染关系研究: 以北京市为例[J]. 经济界, 2021(3): 55-61.
|
[25] |
生态环境部. 地下水污染防治重点区划定技术指南(试行)[S]. 北京: 生态环境部, 2023.
|
[26] |
王洁, 姚震, 王敏燕, 等. 北京市工业园区VOCs污染特征及健康风险评估案例: 高新技术产业的环境影响[J]. 环境科学学报, 2024, 45(4): 2019-2027.
|
[27] |
北京市统计局,国家统计局北京调查总队. 2023北京统计年鉴[M]. 北京: 中国统计出版社, 2023.
|
[28] |
胡立堂, 郭建丽, 张寿全, 等. 永定河生态补水的地下水位动态响应[J]. 水文地质工程地质, 2020, 47(5): 5-11.
|