Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 497-509.DOI: 10.13745/j.esf.sf.2024.11.77
Previous Articles Next Articles
WANG Shuai1,2(), DONG Tao1, LI Yanan1,2, XU Xiaotao3, GAO Lianfeng1,2, ZHANG Zhenguo1,2
Received:
2024-08-04
Revised:
2024-11-29
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
WANG Shuai, DONG Tao, LI Yanan, XU Xiaotao, GAO Lianfeng, ZHANG Zhenguo. Early Cretaceous wildfire events in NE China and implications on deep-time ecosystems[J]. Earth Science Frontiers, 2025, 32(4): 497-509.
时期 | 盆地 | 层位 | 惰质组(mmf)含量/% | 数据来源 | ||
---|---|---|---|---|---|---|
阿尔必期 | 阜新盆地 | 阜新组和沙海组四段 | 8.70~42.50 | 据文献[ | ||
(38/22.49) | ||||||
二连盆地 | 赛汉塔拉组 | 0.20~85.00 | 据文献[ | |||
(19/33.48) | 0.20~85.00 | |||||
海拉尔盆地 | 伊敏组 | 2.60~59.80 | (129/24.17) | 据文献[ | ||
(65/22.06) | ||||||
松辽盆地 | 沙河子组上部 | 21.69~39.42 | 据文献[ | |||
(7/27.59) | ||||||
阿普特期 | 阜新盆地 | 沙海组一段至三段 | 8.30~20.30 | 据文献[ | ||
(16/12.26) | ||||||
三江盆地群 | 城子河组 | 2.70~24.30 | 据文献[ | |||
(5/9.76) | 2.70~38.71 | |||||
松辽盆地 | 沙河子组中下部 | 23.65~38.71 | (41/18.68) | 据文献[ | ||
(8/30.13) | ||||||
海拉尔盆地 | 大磨拐河组 | 8.37~35.73 | 据文献[ | |||
(12/23.34) |
Table 1 The Early Cretaceous inertinite contents in NE China
时期 | 盆地 | 层位 | 惰质组(mmf)含量/% | 数据来源 | ||
---|---|---|---|---|---|---|
阿尔必期 | 阜新盆地 | 阜新组和沙海组四段 | 8.70~42.50 | 据文献[ | ||
(38/22.49) | ||||||
二连盆地 | 赛汉塔拉组 | 0.20~85.00 | 据文献[ | |||
(19/33.48) | 0.20~85.00 | |||||
海拉尔盆地 | 伊敏组 | 2.60~59.80 | (129/24.17) | 据文献[ | ||
(65/22.06) | ||||||
松辽盆地 | 沙河子组上部 | 21.69~39.42 | 据文献[ | |||
(7/27.59) | ||||||
阿普特期 | 阜新盆地 | 沙海组一段至三段 | 8.30~20.30 | 据文献[ | ||
(16/12.26) | ||||||
三江盆地群 | 城子河组 | 2.70~24.30 | 据文献[ | |||
(5/9.76) | 2.70~38.71 | |||||
松辽盆地 | 沙河子组中下部 | 23.65~38.71 | (41/18.68) | 据文献[ | ||
(8/30.13) | ||||||
海拉尔盆地 | 大磨拐河组 | 8.37~35.73 | 据文献[ | |||
(12/23.34) |
时期 | 盆地 | 层位 | 惰质组反射率Ro/% | 数据来源 | ||
---|---|---|---|---|---|---|
阿尔必期 | 阜新盆地 | 阜新组和沙海组四段 | 1.30~2.30 | 据文献[ | ||
(38/1.69) | ||||||
二连盆地 | 赛汉塔拉组 | 0.59~1.24 | 据文献[ | |||
(19/0.90) | 0.58~2.51 | |||||
海拉尔盆地 | 伊敏组 | 0.58~1.66 | (96/1.30) | 据文献[ | ||
(32/1.01) | ||||||
松辽盆地 | 沙河子组上部 | 1.21~2.51 | 据文献[ | |||
(7/1.64) | ||||||
阿普特期 | 阜新盆地 | 沙海组一段至三段 | 1.60~2.80 | 据文献[ | ||
(16/2.29) | ||||||
三江盆地群 | 城子河组 | 0.94~1.24 | 据文献[ | |||
(5/1.05) | 0.94~2.80 | |||||
松辽盆地 | 沙河子组中下部 | 1.22~2.73 | (41/1.77) | 据文献[ | ||
(8/1.73) | ||||||
海拉尔盆地 | 大磨拐河组 | 1.33~1.52 | 据文献[ | |||
(12/1.42) |
Table 2 Inertinite reflectance of Early Cretaceous coals and mudstones from NE China
时期 | 盆地 | 层位 | 惰质组反射率Ro/% | 数据来源 | ||
---|---|---|---|---|---|---|
阿尔必期 | 阜新盆地 | 阜新组和沙海组四段 | 1.30~2.30 | 据文献[ | ||
(38/1.69) | ||||||
二连盆地 | 赛汉塔拉组 | 0.59~1.24 | 据文献[ | |||
(19/0.90) | 0.58~2.51 | |||||
海拉尔盆地 | 伊敏组 | 0.58~1.66 | (96/1.30) | 据文献[ | ||
(32/1.01) | ||||||
松辽盆地 | 沙河子组上部 | 1.21~2.51 | 据文献[ | |||
(7/1.64) | ||||||
阿普特期 | 阜新盆地 | 沙海组一段至三段 | 1.60~2.80 | 据文献[ | ||
(16/2.29) | ||||||
三江盆地群 | 城子河组 | 0.94~1.24 | 据文献[ | |||
(5/1.05) | 0.94~2.80 | |||||
松辽盆地 | 沙河子组中下部 | 1.22~2.73 | (41/1.77) | 据文献[ | ||
(8/1.73) | ||||||
海拉尔盆地 | 大磨拐河组 | 1.33~1.52 | 据文献[ | |||
(12/1.42) |
Fig.7 Inertinite content and wildfire types in the Early Cretaceous in NE China and their correlation with global CO2, O2 concentrations and plant evolution
[1] | 邵龙义, 王学天, 鲁静, 等. 再论中国含煤岩系沉积学研究进展及发展趋势[J]. 沉积学报, 2017, 35(5): 1016-1031. |
[2] | DAI S F, BECHTEL A, EBLE C F, et al. Recognition of peat depositional environments in coal: a review[J]. International Journal of Coal Geology, 2020, 219: 103383. |
[3] | WANG S, SHAO L Y, WANG D D, et al. Controls on accumulation of anomalously thick coals: implications for sequence stratigraphic analysis[J]. Sedimentology, 2020, 67(2): 991-1013. |
[4] | 李勇, 潘松圻, 宁树正, 等. 煤系成矿学内涵与发展: 兼论煤系成矿系统及其资源环境效应[J]. 中国科学: 地球科学, 2022, 52(10): 1948-1965. |
[5] | GLASSPOOL I J, SCOTT A C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal[J]. Nature Geoscience, 2010, 3(9): 627-630. |
[6] | SCOTT A C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(1/2): 11-39. |
[7] | HUDSPITH V, SCOTT A C, COLLINSON M E, et al. Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: an example from the Late Permian, Kuznetsk Basin, Russia[J]. International Journal of Coal Geology, 2012, 89: 13-25. |
[8] | SUN Y Z, ZHAO C L, PÜTTMANN W, et al. Evidence of widespread wildfires in a coal seam from the Middle Permian of the North China Basin[J]. Lithosphere, 2017, 9(4): 595-608. |
[9] | WANG D D, YIN L S, SHAO L Y, et al. Characteristics and evolution of inertinite abundance and atmospheric pO2 during China’s coal-forming periods[J]. Journal of Palaeogeography, 2021, 10(2): 259-283. |
[10] | GLASSPOOL I J, GASTALDO R A. Silurian wildfire proxies and atmospheric oxygen[J]. Geology, 2022, 50(9): 1048-1052. |
[11] | SUN Y Z. Review and update on the applications of inertinite macerals in coal geology, paleoclimatology, and paleoecology[J]. Palaeoworld, 2024, 33(6): 1449-1463. |
[12] | XU H Y, GEORGE S C, HOU D J. Algal-derived polycyclic aromatic hydrocarbons in Paleogene lacustrine sediments from the Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 402-425. |
[13] | SONG Y, TIAN Y, YU J X, et al. Wildfire response to rapid climate change during the Permian-Triassic biotic crisis[J]. Global and Planetary Change, 2022, 215: 103872. |
[14] | JIAO S L, ZHANG H, CAI Y F, et al. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2023, 614: 118193. |
[15] |
BOWMAN D M J S, BALCH J K, ARTAXO P, et al. Fire in the Earth system[J]. Science, 2009, 324(5926): 481-484.
DOI PMID |
[16] |
GLASSPOOL I J, SCOTT A C, WALTHAM D, et al. The impact of fire on the Late Paleozoic Earth system[J]. Frontiers in Plant Science, 2015, 6: 756.
DOI PMID |
[17] | HUA F H, SHAO L Y, WANG X T, et al. The impact of frequent wildfires during the Permian-Triassic transition: floral change and terrestrial crisis in southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 641: 112129. |
[18] | SHEN W J, SUN Y G, LIN Y T, et al. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events[J]. Geochimica et Cosmochimica Acta, 2011, 75(7): 1992-2006. |
[19] | BROWN S A E, SCOTT A C, GLASSPOOL I J, et al. Cretaceous wildfires and their impact on the Earth system[J]. Cretaceous Research, 2012, 36: 162-190. |
[20] | ROBSON B E, COLLINSON M E, RIEGEL W, et al. Early Paleogene wildfires in peat-forming environments at Schöningen, Germany[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 437: 53-62. |
[21] | XU X T, SHAO L Y, ERIKSSON K A, et al. Terrestrial records of the early albian ocean anoxic event: evidence from the Fuxin lacustrine basin, NE China[J]. Geoscience Frontiers, 2022, 13(1): 101275. |
[22] | ZHANG P X, YANG M F, JIANG Z F, et al. Significant floral changes across the Permian-Triassic and Triassic-Jurassic transitions induced by widespread wildfires[J]. Frontiers in Ecology and Evolution, 2023, 11: 1284482. |
[23] | ZHANG P X, YANG M F, LU J, et al. Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition[J]. Frontiers in Ecology and Evolution, 2024, 12: 1329533. |
[24] | HU X M, WAGREICH M, YILMAZ I O. Marine rapid environmental/climatic change in the Cretaceous greenhouse world[J]. Cretaceous Research, 2012, 38: 1-6. |
[25] | WANG Y D, HUANG C M, SUN B N, et al. Paleo-CO2 variation trends and the Cretaceous greenhouse climate[J]. Earth-Science Reviews, 2014, 129: 136-147. |
[26] |
万晓樵, 吴怀春, 席党鹏, 等. 中国东北地区白垩纪温室时期陆相生物群与气候环境演化[J]. 地学前缘, 2017, 24(1): 18-31.
DOI |
[27] | 胡修棉, 李娟, 韩中, 等. 中新生代两类极热事件的环境变化、生态效应与驱动机制[J]. 中国科学: 地球科学, 2020, 50(8): 1023-1043. |
[28] | 刘昕羽, 胡修棉, 李娟. 白垩纪大洋缺氧事件与富氧事件[J]. 自然杂志, 2020, 42(4): 347-354. |
[29] | PERCIVAL L M E, MATSUMOTO H, CALLEGARO S, et al. Cretaceous large igneous provinces: from volcanic formation to environmental catastrophes and biological crises[J/OL]. Geological Society, London, Special Publications, 2025, 544[2024-05-10]. https://doi.org/10.1144/SP544-2023-88. |
[30] | 王成善, 高远, 王璞珺, 等. 松辽盆地国际大陆科学钻探: 白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430, 511-534. |
[31] |
BOND W J, SCOTT A C. Fire and the spread of flowering plants in the Cretaceous[J]. New Phytologist, 2010, 188(4): 1137-1150.
DOI PMID |
[32] | DIESSEL C F K. The stratigraphic distribution of inertinite[J]. International Journal of Coal Geology, 2010, 81(4): 251-268. |
[33] | LÜ D W, DU W X, ZHANG Z H, et al. A synthesis of the Cretaceous wildfire record related to atmospheric oxygen levels?[J]. Journal of Palaeogeography, 2024, 13(1): 149-164. |
[34] | WANG S, SHAO L Y, YAN Z M, et al. Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China[J]. Journal of Palaeogeography, 2019, 8(1): 17. |
[35] | WANG S, SHAO L Y, LI J X, et al. Coal petrology of the Yimin Formation (Albian) in the Hailar Basin, NE China: paleoenvironments and wildfires during peat formation[J]. Cretaceous Research, 2021, 124: 104815. |
[36] | HE T H, LAMONT B B. Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth’s flora[J]. National Science Review, 2018, 5(2): 237-254. |
[37] | ZHANG M Z, DAI S, DU B X, et al. Mid-cretaceous hothouse climate and the expansion of early angiosperms[J]. Acta Geologica Sinica (English Edition), 2018, 92(5): 2004-2025. |
[38] | XU X T, SHAO L Y, ERIKSSON K A, et al. Widespread wildfires linked to early albian ocean anoxic event 1b: evidence from the Fuxin lacustrine basin, NE China[J]. Global and Planetary Change, 2022, 215: 103858. |
[39] | ZHANG Z H, LÜ D W, WANG T T, et al. Intensive peatland wildfires during the Aptian-Albian oceanic anoxic event 1b: Evidence from borehole SK-2 in the Songliao Basin, NE China[J]. Journal of Palaeogeography, 2022, 11(3): 448-467. |
[40] | WU F Y, SUN D Y, GE W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. |
[41] | WAN X Q, CHEN P J, WEI M J. The Cretaceous system in China[J]. Acta Geologica Sinica (English Edition), 2007, 81(6): 957-983. |
[42] | 邵凯, 邵龙义, 曲延林, 等. 东北地区早白垩世含煤岩系层序地层研究[J]. 煤炭学报, 2013, 38(增刊2): 423-433. |
[43] | SHA J G. Cretaceous stratigraphy of Northeast China: non-marine and marine correlation[J]. Cretaceous Research, 2007, 28(2): 146-170. |
[44] | LIN C S, KENNETH E, LI S T, et al. Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, Northeast China[J]. AAPG Bulletin, 2001, 85(11): 2017-2043. |
[45] | 祝玉衡, 张文朝, 王洪生, 等. 二连盆地下白垩统沉积相及含油性[M]. 北京: 科学出版社, 2000. |
[46] | GAO Y Q, LIU L, HU W X. Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer Basin, northeastern China[J]. Applied Geochemistry, 2009, 24(9): 1724-1738. |
[47] | 贾立城, 李真真, 黄笑, 等. 松辽盆地中-新生代构造-沉积演化及其对铀成矿地控制作用[J]. 铀矿地质, 2024, 40(1): 90-104. |
[48] | 刘建英, 王世云, 尹继宏. 阜新盆地石油地质特征[J]. 石油与天然气地质, 1992, 13(4): 450-457. |
[49] | 王伟锋, 陆诗阔, 孙月平. 辽西地区构造演化与盆地成因类型研究[J]. 地质力学学报, 1997, 3(3): 81-89. |
[50] | 贾建亮, 吴彦佳, 杨帝, 等. 阜新盆地早白垩世火山成因古潜山油气藏的发现及成藏机制[J]. 地质学报, 2022, 96(11): 3977-3993. |
[51] |
朱志敏, 闫剑飞, 沈冰, 等. 从“构造热事件” 分析阜新盆地多能源矿产共存成藏[J]. 地球科学进展, 2007, 22(5): 468-479.
DOI |
[52] | 张文浩, 刘卫彬, 王丹丹, 等. 黑龙江三江盆地早中生界大架山组硅质泥岩成烃潜力评价[J]. 中国地质, 2020, 47(1): 121-132. |
[53] | JI Z, WAN C B, MENG Q A, et al. Chronostratigraphic framework of late Mesozoic terrestrial strata in the Hailar-Tamtsag Basin, Northeast China, and its geodynamic implication[J]. Geological Journal, 2020, 55(7): 5197-5215. |
[54] | LI Y L, ZHENG D R, SHA J G, et al. Lower Cretaceous Hailar amber: the oldest-known amber from China[J]. Cretaceous Research, 2023, 145: 105472. |
[55] | WANG L Y, WAN C B, SUN Y W. A spore-pollen assemblage from the damoguaihe formation in the Tamutsag Basin, Mongolia and its geological implication[J]. Acta Geologica Sinica (English Edition), 2014, 88(1): 46-61. |
[56] | SU N, ZHU G, WU X D, et al. Back-arc tectonic tempos: records from Jurassic-Cretaceous basins in the eastern North China Craton[J]. Gondwana Research, 2021, 90: 241-257. |
[57] | WANG T T, WANG C S, RAMEZANI J, et al. High-precision geochronology of the Early Cretaceous Yingcheng Formation and its stratigraphic implications for Songliao Basin, China[J]. Geoscience Frontiers, 2022, 13(4): 101386. |
[58] | CHEN D X, ZHANG F Q, TIAN Y T, et al. Timing of the late Jehol biota: new geochronometric constraints from the Jixi Basin, NE China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 492: 41-49. |
[59] | 席党鹏, 孙立新, 覃祚焕, 等. 中国白垩纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 375-401. |
[60] | 王帅. 中国东北地区早白垩世层序格架内聚煤模式研究[D]. 北京: 中国矿业大学(北京), 2018. |
[61] | 李思田. 断陷盆地分析与煤聚积规律: 中国东北部晚中生代断陷盆地沉积, 构造演化和能源预测研究的方法与成果[M]. 北京: 地质出版社, 1988. |
[62] | 徐小涛. 阜新盆地早白垩世湖相沉积及其对大洋缺氧事件的响应[D]. 北京: 中国矿业大学(北京), 2022. |
[63] | GUO B, SHAO L Y, HILTON J, et al. Sequence stratigraphic interpretation of peatland evolution in thick coal seams: examples from Yimin Formation (Early Cretaceous), Hailaer Basin, China[J]. International Journal of Coal Geology, 2018, 196: 211-231. |
[64] | WANG Z W, XU Y, ZHAO Q J, et al. Peatland wildfires in the Lower Cretaceous Damoguaihe Formation, Hailar Basin, Northeast China[J]. Cretaceous Research, 2023, 150: 105578. |
[65] | 邵龙义, 周家民, JONES T P, 等. 煤中惰质组及其古环境意义: 来自AI和大数据分析的启示[J]. 中国科学: 地球科学, 2024, 54(6): 1806-1829. |
[66] | ZHOU J M, SHAO L Y, JONES T P, et al. Mechanisms of inertinite enrichment in Jurassic coals: insights from a big data-driven review[J]. Earth-Science Reviews, 2024, 257: 104889. |
[67] | JONES T P. Fusain in late Jurassic sediments from the Witch Ground Graben, North Sea, UK[J]. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 1997, 58: 93-103. |
[68] | SCOTT A C. The pre-quaternary history of fire[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/2/3/4): 281-329. |
[69] | SCOTT A C, JONES T P. The nature and influence of fire in Carboniferous ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 106(1/2/3/4): 91-112. |
[70] | 续颜. 内蒙古东部霍林河煤田早白垩世古火灾研究[D]. 长春: 吉林大学, 2011. |
[71] | 邵凯. 中国东北地区早白垩世层序地层与聚煤规律研究[D]. 北京: 中国矿业大学(北京), 2013. |
[72] | WHEELER A, SHEN J, MOORE T A, et al. Palaeoecology and palaeoclimate of an Early Cretaceous peat mire in east Laurasia (Hailar Basin, Inner Mongolia, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 599: 111050. |
[73] | DENG S H. Ecology of the Early Cretaceous ferns of Northeast China[J]. Review of Palaeobotany and Palynology, 2002, 119(1/2): 93-112. |
[74] | ZHONG Y T, HUYSKENS M H, YIN Q Z, et al. High-precision geochronological constraints on the duration of ‘Dinosaur Pompeii’ and the Yixian Formation[J]. National Science Review, 2021, 8(6): nwab063. |
[75] | 徐其虎. 华北克拉通早白垩世火山活动及其对热河生物群的影响[D]. 杭州: 浙江大学, 2022. |
[76] | FOSTER G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8(1): 14845. |
[77] | BELCHER C M, YEARSLEY J M, HADDEN R M, et al. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52): 22448-22453. |
[78] | JONES T P, CHALONER W G. Fossil charcoal, its recognition and palaeoatmospheric significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 97(1/2): 39-50. |
[79] | BELCHER C M, MCELWAIN J C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic[J]. Science, 2008, 321(5893): 1197-1200. |
[80] | MILLS BENJAMIN J W, KRAUSE ALEXANDER J, IAN J, et al. Evolution of atmospheric O2 through the Phanerozoic, revisited[J]. Annual Review of Earth and Planetary Sciences, 2023, 51: 253-276. |
[81] | 陶明华, 崔周旗, 陈国强. 中国东北部中生代孢粉组合序列及古气候演变[J]. 微体古生物学报, 2013, 30(3): 275-287. |
[82] |
BRODRIBB T J, FEILD T S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecology Letters, 2010, 13(2): 175-183.
DOI PMID |
[83] | HAWORTH M, HESSELBO S P, MCELWAIN J C, et al. Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae)[J]. Geology, 2005, 33(9): 749-752. |
[84] | FEILD T S, ARENS N C, DOYLE J A, et al. Dark and disturbed: a new image of early angiosperm ecology[J]. Paleobiology, 2004, 30(1): 82-107. |
[85] | BOER H J, EPPINGA M B, WASSEN M J, et al. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution[J]. Nature Communications, 2012, 3(1): 1221. |
[86] | BENTON M J, WILF P, SAUQUET H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity[J]. New Phytologist, 2022, 233(5): 2017-2035. |
[87] | SUN G, DILCHER D L. Early angiosperms from thelower Cretaceous of Jixi, eastern Heilongjiang, China[J]. Review of Palaeobotany and Palynology, 2002, 121(2): 91-112. |
[88] | SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events: causes and consequences[J]. Geologie en Mijnbouw, 1976, 55(3/4): 179-184. |
[89] | JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004. |
[90] | BAKER S J, BELCHER C M, BARCLAY R S, et al. CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2[J]. GSA Bulletin, 2020, 132(1/2): 321-333. |
[91] | BOUDINOT F G, SEPÚLVEDA J. Marine organic carbon burial increased forest fire frequency during Oceanic Anoxic Event 2[J]. Nature Geoscience, 2020, 13(10): 693-698. |
[92] | SHAKESBY R A, DOERR S H. Wildfire as a hydrological and geomorphological agent[J]. Earth-Science Reviews, 2006, 74(3/4): 269-307. |
[93] | SHAKESBY R A. Post-wildfire soil erosion in the Mediterranean: review and future research directions[J]. Earth-Science Reviews, 2011, 105(3/4): 71-100. |
[94] | KUMP L R. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus[J]. Nature, 1988, 335(6186): 152-154. |
[95] | LENTON T M, WATSON A J. Redfield revisited: 2. What regulates the oxygen content of the atmosphere?[J]. Global Biogeochemical Cycles, 2000, 14(1): 249-268. |
[96] | YAN Z M, SHAO L Y, GLASSPOOL I J, et al. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event[J]. International Journal of Coal Geology, 2019, 207: 75-83. |
[97] | JIMÉNEZ BERROCOSO Á, MACLEOD K G, MARTIN E E, et al. Nutrient trap for Late Cretaceous organic-rich black shales in the tropical North Atlantic[J]. Geology, 2010, 38(12): 1111-1114. |
[98] | KRAAL P, SLOMP C P, FORSTER A, et al. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295(1/2): 42-54. |
[1] | WU Ke, YAN Xiangyu, YANG Donghong. Petrogenesis of the Early Cretaceous Jiguanshan granite porphyry in the Liaodong Peninsula: Constraints from geochemistry and single mineral U-Pb-Hf-Nd isotopes [J]. Earth Science Frontiers, 2025, 32(4): 388-404. |
[2] | LI Lei, XU Peng, ZENG Zhao, ZHAO Dandan, MA Shaojun, Liu Cong-Qiang. Socio-ecological systems science and sustainable development in the Anthropocene [J]. Earth Science Frontiers, 2025, 32(3): 105-117. |
[3] | XU Sheng, YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang. Advances in tectonics-geomorphology-climate-ecosystem dynamics [J]. Earth Science Frontiers, 2025, 32(3): 23-34. |
[4] | LI Wanzhu, WANG Baoli, Liu Cong-Qiang. The mechanism of phytoplankton-driven silicon and carbon stoichiometric convergence in water [J]. Earth Science Frontiers, 2025, 32(3): 311-319. |
[5] | SANG Liyuan, GUO Wei, ZHANG Jingwen, LIU Yixuan, ZHANG Tongkun, ZHANG Zhuqing, YUE Zhanpeng, LI Danyang, ZHANG Run, ZHANG Xu, TANG Weiping, LIU Zhanhang, DING Hu, LANG Yunchao, Liu Cong-Qiang. Current status, challenges, and future directions of research on hydrological processes, water environment, and water resources in the urban Earth’s critical zone [J]. Earth Science Frontiers, 2025, 32(3): 445-461. |
[6] | WANG Tiejun, AN Zhifeng, SONG Zhaoliang, ZHOU Haoran, SUN Xinchao, CHEN Wei, LI Pan, LIU Cong-Qiang. Ecosystem science research from the perspective of surface Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 78-91. |
[7] | JIAO Shoutao, LIU Dongna, ZHANG Qi, JIN Zhibin, ZHANG Yusheng, YUAN Jie, ZHOU Ligang, LIU Tieyi, XIE Tuanjie, FAN Zongsheng, YAN Tongtong, ZHOU Xinpeng, ZHANG Shuangkui, WEI Qianqian, YAN Tao, ZHANG Kun, YIN Bihan. Geological map of the lower crust in the Early Cretaceous of Shanxi Province: Based on vitrinite reflectance evidence [J]. Earth Science Frontiers, 2025, 32(1): 418-431. |
[8] | WANG Yan, QIN Yan, LI Hua, WANG Denghong, SUN He, WANG Chenghui, HUANG Fan. Metallogenic regularity and prospecting direction of gold deposits in Northeast China [J]. Earth Science Frontiers, 2024, 31(3): 235-244. |
[9] | XING Zhifeng, ZHANG Xiangyun, LI Wanying, QI Yong’an, ZHENG Wei, WU Panpan, ZHANG Lijun. Paleoenvironmental characteristics in the late stage of biosphere recovery in the southern margin of the North China Plate after PTME—evidence from the Middle Triassic Ermaying Formation [J]. Earth Science Frontiers, 2023, 30(5): 491-509. |
[10] | MAO Long, WANG Shenglan, QIU Xiaoyi, TAO Zhuolin, FENG Yongzhong, HUANG Yinzhou. Evaluation of ecological resilience in terrestrial ecosystems in Gansu, China-an empirical study [J]. Earth Science Frontiers, 2023, 30(4): 504-513. |
[11] | WANG Lulin, LIU Xiaohong, ZHANG Zhiguang. Discovery of volcanic rocks in the Pingchau Formation in Tungpingchau, Hong Kong UNESCO Global Geopark: Zircon U-Pb geochronology, geochemistry and geological implications [J]. Earth Science Frontiers, 2023, 30(2): 239-258. |
[12] | XIE Lijun, BAI Zhongke, YANG Boyu, CHEN Meijing, FU Shuai, MAO Yanchao. Carbon sequestration assessment methods at home and abroad for terrestrial ecosystems: Research progress in achieving carbon neutrality [J]. Earth Science Frontiers, 2023, 30(2): 447-462. |
[13] | HUANG Haiyong, XU Yang, YIN Xuwei, YANG Kunguang, LIU Yu. Geochronology, petrogenesis and tectonic implications of the Qiaodian granite porphyry from the western Dabie Orogenic Belt, Central China [J]. Earth Science Frontiers, 2021, 28(5): 380-412. |
[14] | ZHOU Yan, CHEN Yan, YING Lingxiao, YANG Chongyao. A technical framework for ecosystem conservation and restoration [J]. Earth Science Frontiers, 2021, 28(4): 14-24. |
[15] | YANG Chongyao, ZHOU Yan, CHEN Yan, WANG Liwei. Ecosystem conservation and restoration through Nature-based Solutions [J]. Earth Science Frontiers, 2021, 28(4): 25-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||