Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 23-34.DOI: 10.13745/j.esf.sf.2025.3.12
Previous Articles Next Articles
XU Sheng(), YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang*(
)
Received:
2025-01-09
Revised:
2025-02-12
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
XU Sheng, YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang. Advances in tectonics-geomorphology-climate-ecosystem dynamics[J]. Earth Science Frontiers, 2025, 32(3): 23-34.
[1] | WILLETT S D, HOVIUS N, BRANDON M T, et al. Tectonics, climate, and landscape evolution[M]. Boulder, Colorado: Geological Society of America, 2006. |
[2] | 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63: 3070-3088. |
[3] | AN Z, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. |
[4] | ANDERS A M, ROE G H, HALLET B, et al. Spatial patterns of precipitation and topography in the Himalaya[M]. Boulder, Colorado: Geological Society of America, 2006. |
[5] | ADAMS B A, WHIPPLE K X, FORTE A M, et al. Climate controls on erosion in tectonically active landscapes[J]. Science Advances, 2020, 6(42): eaaz3166. |
[6] | ZHANG X, XU S, CUI L, et al. Erosions on the southern Tibetan Plateau: evidence from in-situ cosmogenic nuclides 10Be and 26Al in fluvial sediments[J]. Journal of Geographical Sciences, 2022, 32(2): 333-357. |
[7] | HUANG R, FAN X. The landslide story[J]. Nature Geoscience, 2013, 6(5): 325-326. |
[8] | KIRKPATRICK H M, MOON S, YIN A, et al. Impact of fault damage on eastern Tibet topography[J]. Geology, 2021, 49(1): 30-34. |
[9] | WEST A J, HETZEL R, LI G, et al. Dilution of 10Be in detrital quartz by earthquake-induced landslides: implications for determining denudation rates and potential to provide insights into landslide sediment dynamics[J]. Earth and Planetary Science Letters, 2014, 396: 143-153. |
[10] | LIU Z J, TAPPONNIER P, GAUDEMER Y, et al. Quantifying landscape differences across the Tibetan Plateau: implications for topographic relief evolution[J]. Journal of Geophysical Research, 2008, 113(F4): F04018. |
[11] | YANG Y, CUI L F, XU S, et al. Topographic relief response to fluvial incision in the central Tibetan Plateau: evidence from cosmogenic 10Be[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(10): e2021JF006111. |
[12] | ZHANG M, XU S, SANO Y. Deep carbon recycling viewed from global plate tectonics[J]. National Science Review, 2024, 11(6): nwae089. |
[13] | FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global Carbon Budget 2023[J]. Earth System Science Data, 2023, 15(12): 5301-5369. |
[14] | BERNER R A. The Phanerozoic carbon cycle: CO2 and O2[M]. Oxford: Oxford University Press, 2004. |
[15] | WALKER J C G, HAYS P B, KASTING J F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9776-9782. |
[16] | BLACK B A, NEELY R R, LAMARQUE J F, et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing[J]. Nature Geoscience, 2018, 11(12): 949-954. |
[17] | FERRIER K L, HUPPERT K L, PERRON J T. Climatic control of bedrock river incision[J]. Nature, 2013, 496(7444): 206-209. |
[18] | HERMAN F, DE DONCKER F, DELANEY I, et al. The impact of glaciers on mountain erosion[J]. Nature Reviews Earth & Environment, 2021, 2(6): 422-435. |
[19] | NIE J, RUETENIK G, GALLAGHER K, et al. Rapid incision of the Mekong River in the Middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 2018, 11(12): 944-948. |
[20] | MOLNAR P. Isostasy can’t be ignored[J]. Nature Geoscience, 2012, 5: 83. |
[21] | MEY J, SCHERLER D, WICKERT A D, et al. Glacial isostatic uplift of the European Alps[J]. Nature Communications, 2016, 7(1): 13382. |
[22] | HAN X, DAI J G, SMITH A G G, et al. Recent uplift of Chomolungma enhanced by river drainage piracy[J]. Nature Geoscience, 2024, 17(10): 1031-1037. |
[23] | UREY H C. The planets: their origin and development[M]. New Haven, CT: Yale University, 1952. |
[24] | BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283: 641-683. |
[25] | RAYMO M E, RUDDIMAN W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122. |
[26] | RAYMO M E, RUDDIMAN W F, FROELICH P N. Influence of Late Cenozoic mountain building on ocean geochemical cycles[J]. Geology, 1988, 16(7): 649-653. |
[27] | BURTON K W. Global weathering variations inferred from marine radiogenic isotope records[J]. Journal of Geochemical Exploration, 2006, 88(1): 262-265. |
[28] |
MISRA S, FROELICH P N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070): 818-823.
DOI PMID |
[29] | FRANCE-LANORD C, DERRY L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion[J]. Nature, 1997, 390(6655): 65-67. |
[30] | BERNER R A, CALDEIRA K. The need for mass balance and feedback in the geochemical carbon cycle[J]. Geology, 1997, 25(10): 955-956. |
[31] | GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30. |
[32] | MOON S, CHAMBERLAIN C P, HILLEY G E. New estimates of silicate weathering rates and their uncertainties in global rivers[J]. Geochimica et Cosmochimica Acta, 2014, 134: 257-274. |
[33] | DESSERT C, DUPRÉ B, GAILLARDET J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J]. Chemical Geology, 2003, 202(3): 257-273. |
[34] | LI G, ELDERFIELD H. Evolution of carbon cycle over the past 100 million years[J]. Geochimica et Cosmochimica Acta, 2013, 103: 11-25. |
[35] | LI G, HARTMANN J, DERRY L A, et al. Temperature dependence of basalt weathering[J]. Earth and Planetary Science Letters, 2016, 443: 59-69. |
[36] |
DUNLEA A G, MURRAY R W, SANTIAGO RAMOS D P, et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering[J]. Nature Communications, 2017, 8(1): 844.
DOI PMID |
[37] | BUFE A, HOVIUS N, EMBERSON R, et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion[J]. Nature Geoscience, 2021, 14(4): 211-216. |
[38] | BUFE A, RUGENSTEIN J K C, HOVIUS N. CO2 drawdown from weathering is maximized at moderate erosion rates[J]. Science, 2024, 383(6687): 1075-1080. |
[39] | ZONDERVAN J R, HILTON R G, DELLINGER M, et al. Rock organic carbon oxidation CO2 release offsets silicate weathering sink[J]. Nature, 2023, 623: 329-333. |
[40] | WILLENBRING J K, VON BLANCKENBURG F. Long-term stability of global erosion rates and weathering during Late-Cenozoic cooling[J]. Nature, 2010, 465: 211-214. |
[41] | CAVES RUGENSTEIN J K, IBARRA D E, VON BLANCKENBURG F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes[J]. Nature, 2019, 571(7763): 99-102. |
[42] | POGGE VON STRANDMANN P A E, HENDERSON G M. The Li isotope response to mountain uplift[J]. Geology, 2015, 43(1): 67-70. |
[43] |
ZHANG F, DELLINGER M, HILTON R G, et al. Hydrological control of river and seawater lithium isotopes[J]. Nature Communications, 2022, 13(1): 3359.
DOI PMID |
[44] | WEST A, GALY A, BICKLE M. Tectonic and climatic controls on silicate weathering[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 211-228. |
[45] | WEST A J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks[J]. Geology, 2012, 40(9): 811-814. |
[46] | DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences[M]. Cambridge: Cambridge University Press, 2010. |
[47] | 杨业, BINNIE S A, 徐胜, 等. 亚洲高山流域千年尺度地表剥蚀的制约因素[J]. 中国科学: 地球科学, 2025, 55 (1): 75-94. |
[48] | VON BLANCKENBURG F, BOUCHEZ J, WITTMANN H. Earth surface erosion and weathering from the 10Be(meteoric)/9Be ratio[J]. Earth and Planetary Science Letters, 2012, 351-352: 295-305. |
[49] | YUAN X, LI Y, BRUNE S, et al. Coordination between deformation, precipitation, and erosion during orogenic growth[J]. Nature Communications, 2024, 15(1): 10362. |
[50] | TURNER M G, GARDNER R H. Landscape Ecology in theory and practice: pattern and process[M]. New York: Springer, 2001. |
[51] | IPCC. Climate change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York: Cambridge University Press, 2021. |
[52] | BENZ S A, IRVINE D J, RAU G C, et al. Global groundwater warming due to climate change[J]. Nature Geoscience, 2024, 17(6): 545-551. |
[53] | UNITED NATIONS GENERAL ASSEMBLY. United Nations decade on ecosystem restoration (2021-2030): resolution adopted by the general assembly[R]. New York: the United Nations General Assembly, 2019. |
[54] | 王白雪, 程维明, 宋珂钰, 等. 生态地貌学研究动态: 地貌学和生态系统生态学的交叉融合[J]. 生态学报, 2022, 42: 4334-4348. |
[55] | KÖRNER C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology & Evolution, 2007, 22(11): 569-574. |
[56] | XU F, ZHANG G, WOOLWAY R I, et al. Widespread societal and ecological impacts from projected Tibetan Plateau lake expansion[J]. Nature Geoscience, 2024, 17(6): 516-523. |
[57] | LI S L, LIU C Q, CHEN J A, et al. Karst ecosystem and environment: characteristics, evolution processes, and sustainable development[J]. Agriculture, Ecosystems & Environment, 2021, 306: 107173. |
[58] | 刘宇, 宋进喜, 邢璐通, 等. 黄土高原植被变化对土壤侵蚀的影响[J]. 西北大学学报(自然科学版), 2024, 54: 398-412. |
[59] | GOU Y, TAO Y, KOU P, et al. Elucidate the complex drivers of significant greening on the Loess Plateau from 2000 to 2020[J]. Environmental Development, 2024, 50: 100991. |
[60] | HUGHES T P, KERRY J T, BAIRD A H, et al. Global warming transforms coral reef assemblages[J]. Nature, 2018, 556(7702): 492-496. |
[61] | TRENBERTH K E, FASULLO J T, SHEPHERD T G. Attribution of climate extreme events[J]. Nature Climate Change, 2015, 5(8): 725-730. |
[62] | PIAO S, WANG X, PARK T, et al. drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[63] | QIN Y, ADAMOWSKI J F, DEO R C, et al. Controlling factors of plant community composition with respect to the slope aspect gradient in the Qilian Mountains[J]. Ecosphere, 2019, 10(9): e02851. |
[64] | PAN Y, REN L, XIANG X, et al. Effect of slope aspect on plant above- and belowground functional traits of alpine meadow on the Qinghai-Tibet Plateau, China[J]. Journal of Geophysical Research: Biogeosciences, 2023, 128(2): e2022JG007268. |
[65] | ZHANG Q P, FANG R Y, DENG C Y, et al. Slope aspect effects on plant community characteristics and soil properties of alpine meadows on Eastern Qinghai-Tibetan Plateau[J]. Ecological Indicators, 2022, 143: 109400. |
[66] | KÖRNER C. Alpine treelines: functional ecology of the global high elevation tree limits[M]. Basel: Springer, 2012. |
[67] |
BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882): 1444-1449.
DOI PMID |
[68] | 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64: 2842-2855. |
[69] |
LIU X, YU C, SHI P, et al. Debris flow and landslide hazard mapping and risk analysis in China[J]. Frontiers of Earth Science, 2012, 6(3): 306-313.
DOI |
[70] | CUI P. The landslide/debris flow and control technology in China[M]. Singapore: Springer Nature Singapore, 2022. |
[71] | YAO T, THOMPSON L G, MOSBRUGGER V, et al. Third pole environment (TPE)[J]. Environmental Development, 2012, 3: 52-64. |
[72] | EARLE A, JÄGERSKOG A, ÖJENDAL J. Transboundary water management: principles and practice[M]. London: Routledge, 2013. |
[73] |
ANDERSON R, BAYER P E, EDWARDS D. Climate change and the need for agricultural adaptation[J]. Current Opinion in Plant Biology, 2020, 56: 197-202.
DOI PMID |
[74] |
IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
DOI PMID |
[75] | HARRIS R B. Rangeland degradation on the Qinghai-Tibetan Plateau: a review of the evidence of its magnitude and causes[J]. Journal of Arid Environments, 2010, 74(1): 1-12. |
[76] |
XU J, GRUMBINE R E, SHRESTHA A, et al. The melting himalayas: cascading effects of climate change on water, biodiversity, and livelihoods[J]. Conservation Biology, 2009, 23(3): 520-530.
DOI PMID |
[77] | BRUNE S, WILLIAMS S E, MÜLLER R D. Potential links between continental rifting, CO2 degassing and climate change through time[J]. Nature Geoscience, 2017, 10(12): 941-946. |
[78] | BALDWIN S L, BEHR W M, BECK S, et al. Challenges and opportunities for research in tectonics: understanding deformation and the processes that link Earth systems, from geologic time to human time. A community vision document submitted to the U.S. National Science Foundation[M]. Washington: University of Washington, 2017. |
[79] | 刘静, 刘丛强, 陈喜, 等. 圈层相互作用: 深部过程如何影响表层地球系统?[J]. 地球科学, 2022, 47: 3781-3782. |
[80] | NASEM. A vision for NSF Earth sciences 2020-2030: Earth in time[M]. Washington: National Academies Press, 2020. |
[81] |
ZHANG M, GUO Z, XU S, et al. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau[J]. Nature Communications, 2021, 12(1): 4157.
DOI PMID |
[82] | DING L, KAPP P, CAI F, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10): 652-667. |
[83] | YAO T, BOLCH T, CHEN D, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632. |
[84] | DONG Y, SHI X, SUN S, et al. Co-evolution of the Cenozoic tectonics, geomorphology, environment and ecosystem in the Qinling Mountains and adjacent areas, Central China[J]. Geosystems and Geoenvironment, 2022, 1(2): 100032. |
[85] |
ANTONELLI A, KISSLING W D, FLANTUA S G A, et al. Geological and climatic influences on mountain biodiversity[J]. Nature Geoscience, 2018, 11(10): 718-725.
DOI |
[86] | 董云鹏, 任建国, 张志飞, 等. 地质学科未来5-10年发展战略: 趋势与对策[J]. 科学通报, 2022, 67: 2708-2718. |
[87] |
汪品先. 地球深部与表层的相互作用[J]. 地球科学进展, 2009, 24(12): 1331-1338.
DOI |
[88] | 郑永飞, 郭正堂, 焦念志, 等. 地球系统科学研究态势[J]. 中国科学: 地球科学, 2024, 54: 3065-3090. |
[89] | GLOBAL RISKS REPORT. The global risks report 2024[R]. Cologny/Geneva: the World Economic Forum, 2024. |
[1] | Liu Cong-Qiang. Global change, inter-sphere interaction and Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 1-6. |
[2] | LI Lei, XU Peng, ZENG Zhao, ZHAO Dandan, MA Shaojun, Liu Cong-Qiang. Socio-ecological systems science and sustainable development in the Anthropocene [J]. Earth Science Frontiers, 2025, 32(3): 105-117. |
[3] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
[4] | LI Wanzhu, WANG Baoli, Liu Cong-Qiang. The mechanism of phytoplankton-driven silicon and carbon stoichiometric convergence in water [J]. Earth Science Frontiers, 2025, 32(3): 311-319. |
[5] | TENG Hui, YU Guanghui, CHEN Chunmei, HAO Liping, ZHANG Jianchao, ZHU Xiangyu, SUN Fusheng, WANG Yuebo, Liu Cong-Qiang. Investigation into the interface processes of the surface-earth system and the evolution of the pedosphere [J]. Earth Science Frontiers, 2025, 32(3): 35-51. |
[6] | SANG Liyuan, GUO Wei, ZHANG Jingwen, LIU Yixuan, ZHANG Tongkun, ZHANG Zhuqing, YUE Zhanpeng, LI Danyang, ZHANG Run, ZHANG Xu, TANG Weiping, LIU Zhanhang, DING Hu, LANG Yunchao, Liu Cong-Qiang. Current status, challenges, and future directions of research on hydrological processes, water environment, and water resources in the urban Earth’s critical zone [J]. Earth Science Frontiers, 2025, 32(3): 445-461. |
[7] | CHEN Xi, DONG Jianzhi, WANG Lichun, ZHANG Yonggen, WANG Xuejing, DI Chongli, GAO Man, Liu Cong-Qiang. Development and prospect of ecohydrology under global change [J]. Earth Science Frontiers, 2025, 32(3): 52-61. |
[8] | WANG Tiejun, AN Zhifeng, SONG Zhaoliang, ZHOU Haoran, SUN Xinchao, CHEN Wei, LI Pan, LIU Cong-Qiang. Ecosystem science research from the perspective of surface Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 78-91. |
[9] | YU Tao, HAN Pengfei, WANG Xusheng, JIANG Xiaowei, ZHANG Zhiyuan, WAN Li. Response to climate change of runoff at different time scales in the Baiyangdian Lake Basin based on the Budyko model [J]. Earth Science Frontiers, 2025, 32(1): 449-458. |
[10] | LIANG Wenxiang, LUO Zhen, CHEN Fulong, WANG Tongxia, AN Jie, LONG Aihua, HE Chaofei. Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble [J]. Earth Science Frontiers, 2024, 31(6): 450-461. |
[11] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[12] | LIU Congqiang, LI Siliang, LIU Xueyan, WANG Baoli, LANG Yunchao, DING Hu, HAO Liping, ZHANG Qiongyu. Biogeochemical cycles in the Anthropocene and its significance [J]. Earth Science Frontiers, 2024, 31(1): 455-466. |
[13] | XING Zhifeng, ZHANG Xiangyun, LI Wanying, QI Yong’an, ZHENG Wei, WU Panpan, ZHANG Lijun. Paleoenvironmental characteristics in the late stage of biosphere recovery in the southern margin of the North China Plate after PTME—evidence from the Middle Triassic Ermaying Formation [J]. Earth Science Frontiers, 2023, 30(5): 491-509. |
[14] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[15] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||