Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 311-319.DOI: 10.13745/j.esf.sf.2025.3.22
Previous Articles Next Articles
LI Wanzhu1(), WANG Baoli1,2,*(
), Liu Cong-Qiang1,2
Received:
2025-02-10
Revised:
2025-02-22
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
LI Wanzhu, WANG Baoli, Liu Cong-Qiang. The mechanism of phytoplankton-driven silicon and carbon stoichiometric convergence in water[J]. Earth Science Frontiers, 2025, 32(3): 311-319.
Fig.4 Random forest analyses of environmental parameters for silicon and carbon stoichiometric ratios (a-c) and their Pearson correlation analyses (d)
Fig.5 Metabolic pathways in metatranscriptomic analysis (a), phytoplankton community composition (b), and their Pearson correlation analyses (c) in the Tianjin’s reservoirs
[1] | 郑永飞, 郭正堂, 焦念志, 等. 地球系统科学研究态势[J]. 中国科学: 地球科学, 2024, 54(10): 3065-3090. |
[2] | CRUTZEN P J, STOERMER E F. The ‘Anthropocene’[J]. Global Change Newsletter, 2000, 41: 17-18. |
[3] |
刘丛强, 李思亮, 刘学炎, 等. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466.
DOI |
[4] | GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30. |
[5] | KUMP L R, BRANTLEY S L, ARTHUR M A. Chemical weathering, atmospheric CO2, and climate[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 611-667. |
[6] | REDFIELD A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46: 205-221. |
[7] | REDFIELD A C. On the proportions of organic derivatives in sea water and their relation to the composition of plankton[M]// James Johnstone memorial volume. Liverpool: University Press of Liverpool, 1934: 176-192. |
[8] | BRZEZINSKI M A. The Si∶C∶N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables[J]. Journal of Phycology, 1985, 21(3): 347-357. |
[9] | MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9): 701-710. |
[10] | LI W, YANG M, WANG B, et al. Regulation strategy for nutrient-dependent carbon and nitrogen stoichiometric homeostasis in freshwater phytoplankton[J]. Science of the Total Environment, 2022, 823: 153797. |
[11] | MAAVARA T, AKBARZADEH Z, VAN CAPPELLEN P. Global dam-driven changes to riverine N∶P∶Si ratios delivered to the coastal ocean[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088288. |
[12] | 刘乾, 米铁柱, 甄毓, 等. 硅藻C4固碳途径的研究进展[J]. 海洋科学, 2018, 42(7): 10. |
[13] | HAIMOVICH-DAYAN M, GARFINKEL N, EWE D, et al. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum[J]. New Phytologist, 2013, 197(1): 177-185. |
[14] | WANG B, LIU C Q, MABERLY S C, et al. Coupling of carbon and silicon geochemical cycles in rivers and lakes[J]. Scientific Reports, 2016, 6(1): 35832. |
[15] | LI W, WANG B, LIU N, et al. Microbial regulation on refractory dissolved organic matter in inland waters[J]. Water Research, 2024, 262: 122100. |
[16] | YANG M, LIU N, WANG B, et al. Stepwise degradation of organic matters driven by microbial interactions in China’s coastal wetlands: evidence from carbon isotope analysis[J]. Water Research, 2024, 250: 121062. |
[17] | MABERLY S C. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake[J]. Freshwater Biology, 1996, 35(3): 579-598. |
[18] | STUMM W, MORGAN J J. Aquatic chemistry, an introduction emphasizing chemical equilibria in natural waters[J]. Ecological Modelling, 1983, 19(3): 227-230. |
[19] | HILLEBRAND H, DÜRSELEN C D, KIRSCHTEL D, et al. Biovolume calculation for pelagic and benthic microalgae[J]. Journal of Phycology, 1999, 35(2): 403-424. |
[20] | LI W, WANG B, XIAO J, et al. Phytoplankton cell size control can be affected by photosynthetic light energy utilization[J]. Frontiers in Microbiology, 2022, 13: 1008606. |
[21] |
MABERLY S C, GONTERO B. Ecological imperatives for aquatic CO2-concentrating mechanisms[J]. Journal of Experimental Botany, 2017, 68(14): 3797-3814.
DOI PMID |
[22] | GIORDANO M, BEARDALL J, RAVEN J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56: 99-131. |
[23] | CONLEY D J, KILHAM S S, THERIOT E. Differences in silica content between marine and freshwater diatoms[J]. Limnology and Oceanography, 1989, 34(1): 205-212. |
[24] | MENDEN-DEUER S, LESSARD E J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton[J]. Limnology and Oceanography, 2000, 45(3): 569-579. |
[25] | WENTZKY V C, TITTEL J, JÄGER C G, et al. Seasonal succession of functional traits in phytoplankton communities and their interaction with trophic state[J]. Journal of Ecology, 2020, 108(4): 1649-1663. |
[26] | PAINTER S C, HARTMAN S E, KIVIMÄE C, et al. The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export[J]. Progress in Oceanography, 2017, 159: 154-177. |
[27] |
XIAO W, LIU X, IRWIN A J, et al. Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2018, 128: 206-216.
DOI PMID |
[28] |
REINFELDER J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton[J]. Annual Review of Marine Science, 2011, 3: 291-315.
PMID |
[29] | MOON S, HUH Y, QIN J, et al. Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1411-1430. |
[30] | BI R, CAO Z, ISMAR-REBITZ S M H, et al. Responses of marine diatom-dinoflagellate competition to multiple environmental drivers: abundance, elemental, and biochemical aspects[J]. Frontiers in Microbiology, 2021, 12: 731786. |
[31] | ZHANG X, YU K, LI M, et al. Diatom-dinoflagellate succession in the Bohai Sea: the role of N/P ratios and dissolved organic nitrogen components[J]. Water Research, 2024, 251: 121150. |
[32] | GARCIA N S, SEXTON J, RIGGINS T, et al. High variability in cellular stoichiometry of carbon, nitrogen, and phosphorus within classes of marine eukaryotic phytoplankton under sufficient nutrient conditions[J]. Frontiers in Microbiology, 2018, 9: 00543. |
[33] | 王宝茹, 王旭, 王伟波, 等. Cu-NiR与Cd1-NiR两类反硝化亚硝酸还原酶研究进展[J]. 植物科学学报, 2021, 39(3): 324-334. |
[34] | BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 288(7): 641-683. |
[35] | RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359. |
[1] | ZHANG Yanli, RAN Haofan, ZENG Jianqiang, LU Yuting, PANG Weihua, GUO Hao, WANG Xinming. Advances and perspectives of biogenic reactive trace volatile organic compounds in the context of global change [J]. Earth Science Frontiers, 2025, 32(3): 288-310. |
[2] | LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system [J]. Earth Science Frontiers, 2025, 32(3): 62-77. |
[3] | YANG Yiqing, TAO Shizhen, CHEN Yue. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States [J]. Earth Science Frontiers, 2024, 31(1): 327-339. |
[4] | WU Yiping, WANG Qing, TAO Shizhen, WANG Jianjun, LI Qian, ZHANG Ningning, WU Xiaozhi, LI Haowu, WANG Xiaobo. Crustal helium: Accumulation controlling factors and resource evaluation methods [J]. Earth Science Frontiers, 2024, 31(1): 340-350. |
[5] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[6] | DONG Hailiang, ZENG Qiang, LIU Deng, SHENG Yizhi, LIU Xiaolei, LIU Yuan, HU Jinglong, LI Yang, XIA Qingyin, LI Runjie, HU Dafu, ZHANG Donglei, ZHANG Wenhui, GUO Dongyi, ZHANG Xiaowen. Interactions between clay minerals and microbes: Mechanisms and applications in environmental remediation [J]. Earth Science Frontiers, 2024, 31(1): 467-485. |
[7] | PANG Hong, PANG Xiongqi, WU Song, CHEN Junqing, HU Tao, JIANG Fujie, CHEN Dongxia. Hydrocarbon generation, residual hydrocarbon and petroleum expulsion characteristics of Ordovician carbonate source rocks in northern Tarim and its surrounding areas [J]. Earth Science Frontiers, 2023, 30(6): 213-231. |
[8] | MENG Kang, SHAO Deyong, ZHANG Liuliu, LI Liwu, ZHANG Yu, LUO Huan, SONG Hui, ZHANG Tongwei. Geochemical characteristics of residual gas released from crushed shale from the Shuijingtuo Formation in Yichang, western Hubei—indication for gas-bearing capacity of shale [J]. Earth Science Frontiers, 2023, 30(3): 14-27. |
[9] | WANG Xinchu, LIU Congqiang, LI Siliang, XU Sheng, DING Hu, PANG Zhiyong, SHUAI Yanhua. Methane clumped isotopes: Research progress and application in carbon cycling in Earth surface systems [J]. Earth Science Frontiers, 2023, 30(2): 463-478. |
[10] | ZHU Dongdong, Jill N.SUTTON, Aude LEYNAERT, Paul J.TREGUER, LIU Sumei. The global marine silicon cycle and its major challenges [J]. Earth Science Frontiers, 2022, 29(5): 47-58. |
[11] | YANG Ziyang, REN Denglong, HE Zhipeng, LI Xuegang, SONG Jinming, YUAN Huamao, DUAN Liqin, LI Ning, ZHANG Qian. Exploring biomineralization in the tropical western Pacific sediments based on phospholipid fatty acid analysis [J]. Earth Science Frontiers, 2022, 29(4): 93-102. |
[12] | ZHANG Yuting, DUAN Liqin, SONG Jinming, ZHANG Naixing, YIN Meiling, LI Xuegang, YUAN Huamao. Arsenic migration and transformation mechanism and microbial regulation at the sediment-water interface of the Changjiang estuary [J]. Earth Science Frontiers, 2022, 29(4): 144-155. |
[13] | ZHANG Shengyu, ZHANG Menghuan, WANG Ligang, WAN Yuyu. Degradation of naphthalene by microorganisms in groundwater: Characteristics and kinetics [J]. Earth Science Frontiers, 2021, 28(5): 146-158. |
[14] | REN Guiping, LU Anhuai, LI Yan, WANG Changqiu, DING Hongrui. The evolutionary process of microbial community structure influenced by photoelectron from semiconducting minerals occurring at the “mineral membrane” on the Earth surface [J]. Earth Science Frontiers, 2020, 27(5): 195-206. |
[15] | XU Yongqiang,LI Zijing,GUO Jilong,CHEN Jiawei. Experimental study on the shale reservoir-supercritical CO2-simulated fracturing fluid interaction and its environmental significance. [J]. Earth Science Frontiers, 2018, 25(4): 245-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||