Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (5): 195-206.DOI: 10.13745/j.esf.sf.2020.5.53
Previous Articles Next Articles
REN Guiping1(), LU Anhuai2,*(
), LI Yan2, WANG Changqiu2, DING Hongrui2,*(
)
Received:
2020-04-25
Revised:
2020-05-20
Online:
2020-09-25
Published:
2020-09-25
Contact:
LU Anhuai,DING Hongrui
CLC Number:
REN Guiping, LU Anhuai, LI Yan, WANG Changqiu, DING Hongrui. The evolutionary process of microbial community structure influenced by photoelectron from semiconducting minerals occurring at the “mineral membrane” on the Earth surface[J]. Earth Science Frontiers, 2020, 27(5): 195-206.
Fig.2 (a) Field photo of the Xinjiang Gobi varnish. (b) Field photograph of karst from Southwest China (Insert: LBB color comparison of Mn(IV) in samples with or without “mineral membrane”). (c) Photographs of red soil in South China (Insert: stereo-picture of cutan in red soil). (d) SR-XRD pattern showing mineral composition in rock varnish. (e) μ-Raman spectra of hematite and birnessite in karst.
样品 | 暗电流/ (μA·cm-2) | 光电流/ (μA·cm-2) | 相对比例 |
---|---|---|---|
红壤矿物膜 | 1.5 | 4.5 | 300% |
岩石漆矿物膜 | 0.7 | 3.8 | 543% |
喀斯特矿物膜 | 1.2 | 6.1 | 508% |
岩石漆基岩 | 0.2 | 0.5 | 250% |
喀斯特基岩 | 0.3 | 0.6 | 200% |
Table 1 Average photocurrent and dark current from different “mineral membrane” and substrate samples with 100 s short-time cycles
样品 | 暗电流/ (μA·cm-2) | 光电流/ (μA·cm-2) | 相对比例 |
---|---|---|---|
红壤矿物膜 | 1.5 | 4.5 | 300% |
岩石漆矿物膜 | 0.7 | 3.8 | 543% |
喀斯特矿物膜 | 1.2 | 6.1 | 508% |
岩石漆基岩 | 0.2 | 0.5 | 250% |
喀斯特基岩 | 0.3 | 0.6 | 200% |
Fig.3 (a) Fifteen min long-term photocurrent response curves for the “mineral membrane” and other substrate mineral samples under simulated sunlight. (b) IPCE curves for “mineral membrane” under different wavelengths.
样品 | 暗电流/ (μA·cm-2) | 光电流/ (μA·cm-2) | 相对比例 |
---|---|---|---|
红壤矿物膜 | 0.5 | 3.4 | 680% |
岩石漆矿物膜 | 0.5 | 3.2 | 640% |
喀斯特矿物膜 | 0.6 | 5.4 | 900% |
石英 | 0.1 | 0.3 | 300% |
长石 | 0.1 | 0.2 | 200% |
Table 2 Long-term average photocurrent and dark current with different mineral electrodes in 15 min cycles
样品 | 暗电流/ (μA·cm-2) | 光电流/ (μA·cm-2) | 相对比例 |
---|---|---|---|
红壤矿物膜 | 0.5 | 3.4 | 680% |
岩石漆矿物膜 | 0.5 | 3.2 | 640% |
喀斯特矿物膜 | 0.6 | 5.4 | 900% |
石英 | 0.1 | 0.3 | 300% |
长石 | 0.1 | 0.2 | 200% |
Fig.5 (a) Changing pH curve for the simulated photoelectron influenced bacterial community system in the Haikou red soil. (b) In-situ CV curves for the red soil system.
样品 | 时间 | 不同实验条件下的样品命名 | ||
---|---|---|---|---|
-0.53 V | -0.29 V | 断路 | ||
溶液群落 | 10 d | HK101.1-HK101.4 | HK102.1-HK102.4 | HK103.1-HK103.4 |
20 d | HK201.1-HK201.4 | HK202.1-HK202.4 | HK203.1-HK203.4 | |
电极群落 | 10 d | HK301.1-HK301.4 | HK302.1-HK302.4 | HK303.1-HK303.4 |
20 d | HK401.1-HK401.4 | HK402.1-HK402.4 | HK403.1-HK403.4 |
Table 3 Name table for bacterial communities in simulated photoelectron influenced Haikou red soil system
样品 | 时间 | 不同实验条件下的样品命名 | ||
---|---|---|---|---|
-0.53 V | -0.29 V | 断路 | ||
溶液群落 | 10 d | HK101.1-HK101.4 | HK102.1-HK102.4 | HK103.1-HK103.4 |
20 d | HK201.1-HK201.4 | HK202.1-HK202.4 | HK203.1-HK203.4 | |
电极群落 | 10 d | HK301.1-HK301.4 | HK302.1-HK302.4 | HK303.1-HK303.4 |
20 d | HK401.1-HK401.4 | HK402.1-HK402.4 | HK403.1-HK403.4 |
[1] |
HAZEN R M, PAPINEAU D, BLEEKER W, et al. Mineral evolution[J]. American Mineralogist, 2008, 93(11/12):1693-1720.
DOI URL |
[2] |
KONHAUSER K O, KAPPLER A, RODEN E E. Iron in microbial metabolisms[J]. Elements, 2011, 7(2):89-93.
DOI URL |
[3] |
MYERS C R, NEALSON K H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J]. Science, 1988, 240:1319-1321.
DOI URL |
[4] | LOVLEY D R. Bug juice: harvesting electricity with microorganisms[J]. Nature Reviews Microbiology, 2006, 4(7):497-508. |
[5] |
SHI L, DONG H, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10):651.
DOI URL |
[6] | VARGAS M, KASHEFI K, BLUNT-HARRIS E L, et al. Microbiological evidence for Fe (III) reduction on early Earth[J]. Nature, 1998, 395(6697):65-67. |
[7] | MELTON E D, SWANNER E D, BEHRENS S, et al. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology, 2014, 12(12):797-808. |
[8] | 鲁安怀, 李艳, 丁竑瑞, 等. 地表“矿物膜”: 地球“新圈层”[J]. 岩石学报, 2019, 35(1):119-128. |
[9] |
LU A, LI Y, DING H, et al. Photoelectric conversion on Earth’s surface via widespread Fe-and Mn-mineral coatings[J]. Proceedings of the National Academy of Sciences, 2019, 116(20):9741-9746.
DOI URL |
[10] | LU A, LI Y, JIN S, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J]. Nature Communications, 2012, 3(4):768-775. |
[11] |
SAKIMOTO K K, WONG A B, YANG P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268):74-77.
DOI URL |
[12] | REN G, SUN Y, DING Y, et al. Enhancing extracellular electron transfer between Pseudomonas aeruginosa PAO1 and light driven semiconducting birnessite[J]. Bioelectrochemistry, 2018, 123:233-240. |
[13] |
NAKAMURA R, KAI F, OKAMOTO A, et al. Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides[J]. Journal of Materials Chemistry A, 2013, 1(16):5148-5157.
DOI URL |
[14] | 鲁安怀, 李艳, 王鑫, 等. 关键带中天然半导体矿物光电子的产生与作用[J]. 地学前缘, 2014, 21(3):256-264. |
[15] |
REN G, YAN Y, NIE Y, et al. Natural extracellular electron transfer between semiconducting minerals and electroactive bacterial communities occurred on the Rock Varnish[J]. Frontiers in Microbiology, 2019, 10(293):1-11.
DOI URL |
[16] | REN G, YAN Y, SUN M, et al. Considerable bacterial community structure coupling with extracellular electron transfer at Karst area stone in Yunnan, China[J]. Geomicrobiology Journal, 2018, 35(5):424-431. |
[17] | SUN M, REN G, LI Y, et al. Extracellular electron transfer between birnessite and electrochemically active bacteria community from red soil in Hainan, China[J]. Geomicrobiology Journal, 2019, 36(2):169-178. |
[18] | YANG T, WEN W, YIN G, et al. Introduction of the X-ray diffraction beamline of SSRF[J]. Journal of Nuclear Science and Technology, 2015, 26(2):1-5. |
[19] |
KRUMBEIN W E, ALTMANN H J. A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms[J]. Helgoländer Wissenschaftliche Meeresuntersuchungen, 1973, 25(2):347.
DOI URL |
[20] | 黄丽, 刘凡, 谭文峰, 等. 土壤胶膜的研究进展[J]. 土壤通报, 2003, 34(2):143-147. |
[21] | 李岩, 李艳, 鲁安怀, 等. 武汉黄棕壤铁锰氧化物胶膜的矿物学特征研究[J]. 岩石矿物学杂志, 2016, 35(2):355-362. |
[22] |
PERRY R S, ADAMS J B. Desert varnish: evidence for cyclic deposition of manganese[J]. Nature, 1978, 276(5687):489.
DOI URL |
[23] |
DORN R I, KRINSLEY D H, LIU T, et al. Manganese-rich rock varnish does occur in Antarctica[J]. Chemical Geology, 1992, 99(4):289-298.
DOI URL |
[24] |
THIAGARAJAN N, LEE C T A. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition[J]. Earth and Planetary Science Letters, 2004, 224(1/2):131-141.
DOI URL |
[25] |
GOLDSMITH Y, ENZEL Y, STEIN M. Systematic Mn fluctuations in laminated rock varnish developed on coeval early Holocene flint artifacts along a climatic transect, Negev desert, Israel[J]. Quaternary Research, 2012, 78(3):474-485.
DOI URL |
[26] |
JULIEN C, MASSOT M, BADDOUR-HADJEAN R, et al. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics, 2003, 159(3/4):345-356.
DOI URL |
[27] |
POST J E. Manganese oxide minerals: crystal structures and economic and environmental significance[J]. Proceedings of the National Academy of Sciences, 1999, 96(7):3447-3454.
DOI URL |
[28] |
DE FARIA D L A, VENÂNCIO SILVA S, DE OLIVEIRA M T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. Journal of Raman Spectroscopy, 1997, 28(11):873-878.
DOI URL |
[29] |
HSU Y K, CHEN Y C, LIN Y G, et al. Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light[J]. Journal of Materials Chemistry, 2012, 22(6):2733-2739.
DOI URL |
[30] |
XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist, 2000, 85(3/4):543-556.
DOI URL |
[31] |
PINAUD B A, CHEN Z, ABRAM D N, et al. Thin films of sodium birnessite-type MnO2: optical properties, electronic band structure, and solar photoelectrochemistry[J]. The Journal of Physical Chemistry C, 2011, 115(23):11830-11838.
DOI URL |
[32] |
MILLER E L, PALUSELLI D, MARSEN B, et al. Low-temperature reactively sputtered iron oxide for thin film devices[J]. Thin Solid Films, 2004, 466(1/2):307-313.
DOI URL |
[33] | KOCH C, HARNISCH F. Is there a specific ecological niche for electroactive microorganisms?[J]. ChemElectroChem, 2016, 3(9):1282-1295. |
[34] |
ERABLE B, VANDECANDELAERE I, FAIMALI M, et al. Marine aerobic biofilm as biocathode catalyst[J]. Bioelectrochemistry, 2010, 78(1):51-56.
DOI URL |
[35] |
FREGUIA S, MASUDA M, TSUJIMURA S, et al. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone[J]. Bioelectrochemistry, 2009, 76(1/2):14-18.
DOI URL |
[36] | HE J, ZHANG L, JIN S, et al. Bacterial communities inside and surrounding soil iron-manganese nodules[J]. Geomicrobiology Journal, 2008, 25(1):14-24. |
[37] |
PARCHERT K J, SPILDE M N, PORRAS-ALFARO A, et al. Fungal communities associated with rock varnish in Black Canyon, New Mexico: casual inhabitants or essential partners?[J]. Geomicrobiology Journal, 2012, 29(8):752-766.
DOI URL |
[38] |
FRIEDMANN E I. Endolithic microorganisms in the Antarctic cold desert[J]. Science, 1982, 215(4536):1045-1053.
DOI URL |
[39] |
HUGHES K A, LAWLEY B. A novel Antarctic microbial endolithic community within gypsum crusts[J]. Environmental Microbiology, 2003, 5(7):555-565.
DOI URL |
[40] | KLÜPFEL L, PIEPENBROCK A, KAPPLER A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments[J]. Nature Geoscience, 2014, 7(3):195-200. |
[1] | LU Anhuai, LI Yan, DING Hongrui, WANG Changqiu, XU Xiaoming, LIU Feifei, LIU Yuw. Natural mineral photoelectric effect: mineral non-classical photosynthesis [J]. Earth Science Frontiers, 2020, 27(5): 300-. |
[2] | LU Anhuai, LI Yan, DING Hongrui, WANG Changqiu, XU Xiaoming, LIU Feifei, LIU Yuwei, ZHU Ying, LI Yanzhang. Natural mineral photoelectric effect: non-classical mineral photosynthesis [J]. Earth Science Frontiers, 2020, 27(5): 179-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||