Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 467-485.DOI: 10.13745/j.esf.sf.2024.1.19
Previous Articles Next Articles
DONG Hailiang1,2(), ZENG Qiang1,2, LIU Deng3, SHENG Yizhi1, LIU Xiaolei1,4, LIU Yuan1,2, HU Jinglong1,2, LI Yang1,2, XIA Qingyin5, LI Runjie1,6, HU Dafu1,2, ZHANG Donglei1,6, ZHANG Wenhui1,6, GUO Dongyi1,2, ZHANG Xiaowen1,2
Received:
2023-12-05
Revised:
2024-01-14
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
DONG Hailiang, ZENG Qiang, LIU Deng, SHENG Yizhi, LIU Xiaolei, LIU Yuan, HU Jinglong, LI Yang, XIA Qingyin, LI Runjie, HU Dafu, ZHANG Donglei, ZHANG Wenhui, GUO Dongyi, ZHANG Xiaowen. Interactions between clay minerals and microbes: Mechanisms and applications in environmental remediation[J]. Earth Science Frontiers, 2024, 31(1): 467-485.
Fig.2 Electron transfer directions during microbial reduction of structural iron in clay minerals with (B) or without (A) electron shuttle. T, tetrahedron; O, octahedron.
[1] |
CUADROS J. Clay minerals interaction with microorganisms: a review[J]. Clay Minerals, 2017, 52: 235-261.
DOI URL |
[2] |
DONG H, HUANG L, ZHAO L, et al. A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications[J]. National Science Review, 2022, 9(10): nwac128.
DOI URL |
[3] | 王茂桢, 柳少波, 任拥军, 等. 页岩气储层黏土矿物孔隙特征及其甲烷吸附作用[J]. 地质论评, 2015, 61(1): 207-216. |
[4] |
UROZ S, KELLY L C, TURPAULT M P, et al. The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities[J]. Trends in Microbiology, 2015, 23: 751-762.
DOI PMID |
[5] |
BELNAP J. The world at your feet: desert biological soil crusts[J]. Frontiers in Ecology and the Environment, 2003, 1(5): 181-189.
DOI URL |
[6] |
郭东毅, 夏庆银, 董海良, 等. 杀菌黏土矿物的研究进展与前景展望[J]. 地学前缘, 2022, 29(1): 470-485.
DOI |
[7] | 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2019. |
[8] |
XU S, XING Y, LIU S, et al. Co-effect of minerals and Cd(ii) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(ii)[J]. Environmental Pollution, 2020, 258: 113774.
DOI URL |
[9] |
FREEBAIRN D, LINTON D, HARKINJONES E, et al. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces[J]. Expert Review of Medical Devices, 2013, 10(1): 85-103.
DOI URL |
[10] | FOMINA M, BURFORD E P, GADD G M. Toxic metals and fungal communities[M]. Boca Raton: CRC Press, 2005. |
[11] |
JOHNSTON C T. Probing the nanoscale architecture of clay minerals[J]. Clay Minerals, 2010, 45(3): 245-279.
DOI URL |
[12] |
ALIMOVA A, KATZ A, STEINER N, et al. Bacteria-clay interaction: structural changes in smectite induced during biofilm formation[J]. Clays and Clay Minerals, 2009, 57: 205-212.
DOI URL |
[13] |
ZHANG D, LIU X, GUO D, et al. Cr(VI) reduction by siderophore alone and in combination with reduced clay minerals[J]. Environmental Science & Technology, 2022, 56(17): 12315-12324.
DOI URL |
[14] |
XIA Q, JIN Q, CHEN Y, et al. Combined effects of Fe(III)-bearing nontronite and organic ligands on biogenic U(IV) oxidation[J]. Environmental science & Technology, 2022, 56(3): 1983-1993.
DOI URL |
[15] |
DA FONSECA M G, DE OLIVERIA M M, ARAKAKI L N H, et al. Natural vermiculite as an exchanger support for heavy cations in aqueous solution[J]. Journal of Colloid and Interface Science, 2005, 285: 50-55.
PMID |
[16] |
BISHOP M E, GLASSER P, DONG H, et al. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 133: 186-203.
DOI URL |
[17] |
HUANG L, LIU Z, DONG H, et al. Coupling quinoline degradation with Fe redox in clay minerals: a strategy integrating biological and physicochemical processes[J]. Applied Clay Science, 2020, 188: 105504.
DOI URL |
[18] |
DONG H. Clay-microbe interactions and implications for environmental mitigation[J]. Elements, 2012, 8: 113-118.
DOI URL |
[19] |
OLSON J M, PIERSON B K. Photosynthesis 3.5 thousand million years ago[J]. Photosynthesis Research, 1986, 9(1): 251-259.
DOI URL |
[20] |
KUGLER A, DONG H. Phyllosilicates as protective habitats of filamentous cyanobacteria leptolyngbya against ultraviolet radiation[J]. Plos One, 2019, 14: e0219616.
DOI URL |
[21] | HAZELTON P, MURPHY B. Interpreting soil test results: what do all the numbers mean?[M]. Clayton South VIC 3169:CSIRO Publishing, 2016. |
[22] |
STOTZKY G, REM L T. Influence of clay minerals on microorganisms: I. Montmorillonite and kaolinite on bacteria[J]. Canadian Journal of Microbiology, 1966, 12(3): 547-563.
DOI URL |
[23] |
BROWN JR G E, FOSTER A L, OSTERGREN J D. Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective[J]. Proceedings of the National Academy of Sciences, 1999, 96: 3388-3395.
DOI URL |
[24] | DONG H, ZENG Q, SHENG Y, et al. Coupled iron cycling and organic matter transformation across redox interfaces[J]. Nature Reviews Earth & Environment, 2023, 4: 659-673. |
[25] |
GADD G M. Metals, minerals and microbes: geomicrobiology and bioremediation[J]. Microbiology, 2010, 156: 609-643.
DOI URL |
[26] |
ROGERS J R, BENNETT P C. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates[J]. Chemical Geology, 2004, 203(1/2): 91-108.
DOI URL |
[27] |
SHI L, DONG H L, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662.
DOI PMID |
[28] |
MOORE E K, JELEN B I, GIOVANNELLI D, et al. Metal availability and the expanding network of microbial metabolisms in the archaean eon[J]. Nature Geoscience, 2017, 10(9): 629-636.
DOI URL |
[29] |
HU D, ZENG Q, LIU X, et al. Ligand enhanced bio-oxidation of structural Fe(II) in illite coupled with nitrate reduction[J]. Geochimica et Cosmochimica Acta, 2023, 357: 50-63.
DOI URL |
[30] |
MURRAY H H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview[J]. Applied Clay Science, 2000, 17(5/6): 207-221.
DOI URL |
[31] |
ZHANG D, ZHOU C H, LIN C X, et al. Synthesis of clay minerals[J]. Applied Clay Science, 2020, 50: 1-11.
DOI URL |
[32] |
FOMINA M, GADD G M. Influence of clay minerals on the morphology of fungal pellets[J]. Mycological Research, 2002, 106: 107-117.
DOI URL |
[33] |
DONG H, JAISI D P, KIM J, et al. Microbe-clay mineral interactions[J]. American Mineralogist, 2009, 94(11/12): 1505-1519.
DOI URL |
[34] |
FOMINA M, SKOROCHOD I. Microbial interaction with clay minerals and its environmental and biotechnological implications[J]. Minerals, 2020, 10(10): 861.
DOI URL |
[35] |
RANSOM B, BENNETT R H, BAERWALD R, et al. In situ conditions and interactions between microbes and minerals in fine-grained marine sediments: a TEM microfabric perspective[J]. American Mineralogist, 1999, 84(1/2): 183-192.
DOI URL |
[36] |
JAISI D P, KUKKADAPU R K, EBERL D D, et al. Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite[J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5429-5440.
DOI URL |
[37] |
DONG H, LU A. Mineral-microbe interactions and implications for remediation[J]. Elements, 2012, 8(2): 95-100.
DOI URL |
[38] |
VORHIES J S, GAINES R R. Microbial dissolution of clay minerals as a source of iron and silica in marine sediments[J]. Nature Geoscience, 2009, 2(3): 221-225.
DOI |
[39] |
LIU D, DONG H, BISHOP M E, et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1057-1071.
DOI URL |
[40] |
WEI J, HAO X, VAN LOOSDRECHT M C, et al. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 16-26.
DOI URL |
[41] | XIAO B, LIAN B, SUN L, et al. Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus[J]. Chemical Geology, 2012, 306: 1-9. |
[42] |
MÜLLER B. Experimental interactions between clay minerals and bacteria: a review[J]. Pedosphere, 2015, 25(6): 799-810.
DOI URL |
[43] |
MÜLLER B. Impact of the bacterium pseudomonas fluorescens and its genetic derivatives on vermiculite: effects on trace metals contents and clay mineralogical properties[J]. Geoderma, 2009, 153(1/2): 94-103.
DOI URL |
[44] |
STUCKI J W. A review of the effects of iron redox cycles on smectite properties[J]. Comptes Rendus Geoscience, 2011, 343(2): 199-209.
DOI URL |
[45] |
FAVRE F, STUCKI J W, BOIVIN P. Redox properties of structural Fe in ferruginous smectite. A discussion of the standard potential and its environmental implications[J]. Clays and Clay Minerals, 2006, 54(4): 466-472.
DOI URL |
[46] |
KAPPLER A, BRYCE C, MANSOR M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374.
DOI PMID |
[47] |
LIU D, DONG H, ZHAO L, et al. Smectite reduction by Shewanella species as facilitated by cystine and cysteine[J]. Geomicrobiology Journal, 2014, 31(1): 53-63.
DOI URL |
[48] |
YANG S, LIU D, ZHENG W, et al. Microbial reduction and alteration of Fe(III)-containing smectites in the presence of biochar-derived dissolved organic matter[J]. Applied Geochemistry, 2023, 152: 105661.
DOI URL |
[49] |
ZHAO H, BHATTACHARJEE S, CHOW R, et al. Probing surface charge potentials of clay basal planes and edges by direct force measurements[J]. Langmuir, 2008, 24(22): 12899-12910.
DOI PMID |
[50] |
RIBEIRO F R, FABRIS J D, KOSTKA J E, et al. Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite[J]. Pure and Applied Chemistry, 2009, 81(8): 1499-1509.
DOI URL |
[51] |
LUAN F, GORSKI C A, BURGOS W D. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium[J]. Environmental Science & Technology, 2014, 48(5): 2750-2758.
DOI URL |
[52] |
ZUO H, HUANG L, CHU R K, et al. Reduction of structural Fe(III) in nontronite by humic substances in the absence and presence of Shewanella putrefaciens and accompanying secondary mineralization[J]. American Mineralogist, 2021, 106(12): 1957-1970.
DOI URL |
[53] |
LIU Y, SHI S, ZENG Q, et al. Coupled reduction of structural Fe(III) in nontronite and oxidation of petroleum hydrocarbons[J]. Geochimica et Cosmochimica Acta, 2023, 344: 103-121.
DOI URL |
[54] |
LI Y, VALI H, SEARS S K, et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium[J]. Geochimica et Cosmochimica Acta, 2004, 68(15): 3251-3260.
DOI URL |
[55] |
LIU D, DONG H, BISHOP M E, et al. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium[J]. Geobiology, 2012, 10(2): 150-162.
DOI PMID |
[56] |
ZHANG J, DONG H, LIU D, et al. Microbial reduction of Fe(III) in illite-smectite minerals by methanogen Methanosarcina mazei[J]. Chemical Geology, 2012, 292/293: 35-44.
DOI URL |
[57] |
ZHANG J, DONG H, LIU D, et al. Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus[J]. Geochimica et Cosmochimica Acta, 2013, 106: 203-215.
DOI URL |
[58] |
LIU D, DONG H, WANG H, et al. Low-temperature feldspar and illite formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic bacterium[J]. Chemical Geology, 2015, 406: 25-33.
DOI URL |
[59] |
ZHAO L, DONG H, KUKKADAPU R, et al. Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002[J]. Geochimica et Cosmochimica Acta, 2013, 119: 231-247.
DOI URL |
[60] |
ZHAO L, DONG H, KUKKADAPU R K, et al. Biological redox cycling of iron in nontronite and its potential application in nitrate removal[J]. Environmental Science & Technology, 2015, 49(9): 5493-5501.
DOI URL |
[61] |
ZHAO L, DONG H, EDELMANN R E, et al. Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation[J]. Geochimica et Cosmochimica Acta, 2017, 200: 353-366.
DOI URL |
[62] |
BRYCE C, BLACKWELL N, SCHMIDT C, et al. Microbial anaerobic Fe(II) oxidation-ecology, mechanisms and environmental implications[J]. Environmental Microbiology, 2018, 20(10): 3462-3483.
DOI URL |
[63] |
BYRNE J M, KLUEGLEIN N, PEARCE C, et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria[J]. Science, 2015, 347(6229): 1473-1476.
DOI PMID |
[64] |
DONG H, KOSTKA J E, KIM J. Microscopic evidence for microbial dissolution of smectite[J]. Clays and Clay Minerals, 2003, 51(5): 502-512.
DOI URL |
[65] |
ZHANG G, KIM J, DONG H, et al. Microbial effects in promoting the smectite to illite reaction: role of organic matter intercalated in the interlayer[J]. American Mineralogist, 2007, 92(8/9): 1401-1410.
DOI URL |
[66] |
DONG H, PEACOR D R, FREED R L. Phase relations among smectite, R1 illite-smectite, and illite[J]. American Mineralogist, 1997, 82(3/4): 379-391.
DOI URL |
[67] |
PEVEAR D R. Illite and hydrocarbon exploration[J]. Proceedings of the National Academy of Sciences, 1999, 96(7): 3440-3446.
DOI URL |
[68] |
KIM J, DONG H, SEABAUGH J, et al. Role of microbes in the smectite-to-illite reaction[J]. Science, 2004, 303(5659): 830-832.
PMID |
[69] |
ZHANG G, DONG H, KIM J, et al. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction[J]. American Mineralogist, 2007, 92(8/9): 1411-1419.
DOI URL |
[70] |
KIM J, DONG H, YANG K, et al. Naturally occurring, microbially induced smectite-to-illite reaction[J]. Geology, 2019, 47(6): 535-539.
DOI |
[71] |
LIU D, ZHANG Q, WU L, et al. Humic acid-enhanced illite and talc formation associated with microbial reduction of Fe(III) in nontronite[J]. Chemical Geology, 2016, 447: 199-207.
DOI URL |
[72] |
KASTNER M, SIEVER R. Low temperature feldspars in sedimentary rocks[J]. American Journal of Science, 1979, 279: 435-479.
DOI URL |
[73] |
RAIS P, LOUIS-SCHMID B, BERNASCONI S M, et al. Distribution of authigenic albites in a limestone succession of the Helvetic Domain, eastern Switzerland[J]. Swiss Journal of Geosciences, 2008, 101(1): 99-106.
DOI URL |
[74] |
YANG X, LI Y, LI Y, et al. Microbially induced clay weathering: smectite-to-kaolinite transformation[J]. American Mineralogist, 2023, 108(10): 1940-1947.
DOI URL |
[75] |
KEIL R G, TSAMAKIS E, FUH C B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using splitt-fractionation[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 879-893.
DOI URL |
[76] |
KEIL R G, MONTLUÇON D B, PRAHL F G, et al. Sorptive preservation of labile organic matter in marine sediments[J]. Nature, 1994, 370(6490): 549-552.
DOI |
[77] | KEIL R G, MAYER L M. 12.12 - mineral matrices and organic matter[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. 2nd ed. Oxford: Elsevier, 2014: 337-359. |
[78] | KLEBER M, EUSTERHUES K, KEILUWEIT M, et al. Mineral-organic associations: formation, properties, and relevance in soil environments[J]. Advances in Agronomy, 2015, 130: 1-140. |
[79] |
ZENG Q, DONG H, ZHAO L, et al. Preservation of organic matter in nontronite against iron redox cycling[J]. American Mineralogist, 2016, 101(1): 120-133.
DOI URL |
[80] |
KENNEDY M J, PEVEAR D R, HILL R J. Mineral surface control of organic carbon in black shale[J]. Science, 2002, 295(5555): 657-660.
PMID |
[81] |
KENNEDY M, DROSER M, MAYER L M, et al. Late Precambrian oxygenation: inception of the clay mineral factory[J]. Science, 2006, 311(5766): 1446-1449.
DOI URL |
[82] |
CAI C, CAI J, LIU H, et al. Occurrence of organic matter in argillaceous sediments and rocks and its geological significance: a review[J]. Chemical Geology, 2023, 639: 121737.
DOI URL |
[83] |
DUBINSKY E A, SILVER W L, FIRESTONE M K. Tropical forest soil microbial communities couple iron and carbon biogeochemistry[J]. Ecology, 2010, 91(9): 2604-2612.
PMID |
[84] | TAN J, LUO M, TAN F, et al. Iron reduction controls carbon mineralization in aquaculture shrimp pond sediments in subtropical estuaries[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(12): e2022JG007081. |
[85] |
YUAN Y, DING C, WU H, et al. Dissimilatory iron reduction contributes to anaerobic mineralization of sediment in a shallow transboundary lake[J]. Fundamental Research, 2022, 3(6): 844-851.
DOI URL |
[86] |
WARDMAN P. Reduction potentials of one-electron couples involving free radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1989, 18(4): 1637-1755.
DOI URL |
[87] |
VAN BODEGOM P M, BROEKMAN R, VAN DIJK J, et al. Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands[J]. Biogeochemistry, 2005, 76(1): 69-83.
DOI URL |
[88] |
NAUGHTON H R, TOLAR B B, DEWEY C, et al. Reactive iron, not fungal community, drives organic carbon oxidation potential in floodplain soils[J]. Soil Biology and Biochemistry, 2023, 178: 108962.
DOI URL |
[89] |
VAN ERK M R, BOURCEAU O M, MONCADA C, et al. Reactive oxygen species affect the potential for mineralization processes in permeable intertidal flats[J]. Nature Communications, 2023, 14(1): 938.
DOI PMID |
[90] |
CHEN N, FU Q, WU T, et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil[J]. Environmental Science & Technology, 2021, 55(20): 14281-14293.
DOI URL |
[91] |
HALL S J, SILVER W L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils[J]. Global Change Biology, 2013, 19(9): 2804-2813.
DOI PMID |
[92] |
JONES M E, LACROIX R E, ZEIGLER J, et al. Enzymes, manganese, or iron? Drivers of oxidative organic matter decomposition in soils[J]. Environmental Science & Technology, 2020, 54(21): 14114-14123.
DOI URL |
[93] |
ZENG Q, WANG X, LIU X, et al. Mutual interactions between reduced Fe-bearing clay minerals and humic acids under dark, oxygenated conditions: hydroxyl radical generation and humic acid transformation[J]. Environmental Science & Technology, 2020, 54(23): 15013-15023.
DOI URL |
[94] |
HU D, ZENG Q, ZHU J, et al. Promotion of humic acid transformation by abiotic and biotic Fe redox cycling in nontronite[J]. Environmental Science & Technology, 2023, 57(48): 19760-19771.
DOI URL |
[95] | ZIMMERMAN A R, AHN M Y. Organo-mineral-enzyme interaction and soil enzyme activity[M]. Soil Enzymology: Springer, 2010: 271-292. |
[96] |
ALLISON S D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[J]. Ecology Letters, 2005, 8(6): 626-635.
DOI URL |
[97] |
SINSABAUGH R L. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology and Biochemistry, 2010, 42(3): 391-404.
DOI URL |
[98] |
BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology & Biochemistry, 2013, 58: 216-234.
DOI URL |
[99] |
LUO L, MENG H, GU J D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of Environmental Management, 2017, 197: 539-549.
DOI PMID |
[100] |
LAMMIRATO C, MILTNER A, WICK L Y, et al. Hydrolysis of cellobiose by beta-glucosidase in the presence of soil minerals - interactions at solid-liquid interfaces and effects on enzyme activity levels[J]. Soil Biology & Biochemistry, 2010, 42(12): 2203-2210.
DOI URL |
[101] | KLEBER M, BOURG I C, COWARD E K, et al. Dynamic interactions at the mineral-organic matter interface[J]. Nature Reviews Earth & Environment, 2021, 2(6): 402-421. |
[102] |
SCHIMEL J, BECERRA C A, BLANKINSHIP J. Estimating decay dynamics for enzyme activities in soils from different ecosystems[J]. Soil Biology Biochemistry, 2017, 114: 5-11.
DOI URL |
[103] | SHENG Y, DONG H, COFFIN E, et al. The important role of enzyme adsorbing capacity of soil minerals in regulating β-glucosidase activity[J]. Geophysical Research Letters, 2022, 49(6): e2021GL097556. |
[104] | FREEMAN C, OSTLE N, KANG H. An enzymic ‘latch’ on a global carbon store[J]. Nature, 2001, 409(6817): 149-149. |
[105] |
WANG Y, WANG H, HE J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland[J]. Nature Communications, 2017, 8(1): 15972.
DOI URL |
[106] |
MERINO C, MATUS F, KUZYAKOV Y, et al. Contribution of the fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions[J]. Science of The Total Environment, 2021, 760: 143397.
DOI URL |
[107] |
ZHAO Y, XIANG W, HUANG C, et al. Production of hydroxyl radicals following water-level drawdown in peatlands: a new induction mechanism for enhancing laccase activity in carbon cycling[J]. Soil Biology and Biochemistry, 2021, 156: 108241.
DOI URL |
[108] |
SHENG Y, HU J, KUKKADAPU R, et al. Inhibition of extracellular enzyme activity by reactive oxygen species upon oxygenation of reduced iron-bearing minerals[J]. Environmental Science & Technology, 2023, 57(8): 3425-3433.
DOI URL |
[109] |
WANG C, BLAGODATSKAYA E, DIPPOLD M A, et al. Keep oxygen in check: contrasting effects of short-term aeration on hydrolytic versus oxidative enzymes in paddy soils[J]. Soil Biology and Biochemistry, 2022, 169: 108690.
DOI URL |
[110] |
EGLI C M, STRAVS M A, JANSSEN E M L. Inactivation and site-specific oxidation of aquatic extracellular bacterial leucine aminopeptidase by singlet oxygen[J]. Environmental Science & Technology, 2020, 54(22): 14403-14412.
DOI URL |
[111] |
GARWOOD G, MORTLAND M, PINNAVAIA T. Immobilization of glucose oxidase on montmorillonite clay: hydrophobic and ionic modes of binding[J]. Journal of Molecular Catalysis, 1983, 22(2): 153-163.
DOI URL |
[112] |
SEREFOGLOU E, LITINA K, GOURNIS D, et al. Smectite clays as solid supports for immobilization of beta-glucosidase: synthesis, characterization, and biochemical properties[J]. Chemistry of Materials, 2008, 20(12): 4106-4115.
DOI URL |
[113] |
GOPINATH S, SUGUNAN S. Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity[J]. Applied Clay Science, 2007, 35(1/2): 67-75.
DOI URL |
[114] |
YANG Z M, LIAO Y J, FU X, et al. Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by beta-glucosidase[J]. Science of The Total Environment, 2019, 686: 1194-1201.
DOI URL |
[115] |
TEN HAVE R, TEUNISSEN P J. Oxidative mechanisms involved in lignin degradation by white-rot fungi[J]. Chemical Reviews, 2001, 101(11): 3397-3414.
DOI PMID |
[116] |
GUILLÉN F, GÓMEZ-TORIBIO V, JESÚS MARTI NEZ M, et al. Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase[J]. Archives of Biochemistry and Biophysics, 2000, 383(1): 142-147.
PMID |
[117] | PERNA V, MEYER A S, HOLCK J, et al. Laccase-catalyzed oxidation of lignin induces production of H2O2[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(2): 831-841. |
[118] |
DASHTBAN M, SCHRAFT H, SYED T A, et al. Fungal biodegradation and enzymatic modification of lignin[J]. International Journal of Biochemistry and Molecular Biology, 2010, 1(1): 36.
PMID |
[119] |
WEI D, HOUTMAN C J, KAPICH A N, et al. Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta[J]. Applied and Environmental Microbiology, 2010, 76(7): 2091-2097.
DOI PMID |
[120] |
ZHAO S, JIN Q, SHENG Y, et al. Promotion of microbial oxidation of structural Fe(II) in nontronite by oxalate and NTA[J]. Environmental Science & Technology, 2020, 54(20): 13026-13035.
DOI URL |
[121] |
SHELOBOLINA E S, VANPRAAGH C G, LOVLEY D R. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri[J]. Geomicrobiology Journal, 2003, 20(2): 143-156.
DOI URL |
[122] |
SHELOBOLINA E, KONISHI H, XU H, et al. Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil[J]. Frontiers in Microbiology, 2012, 3: 134.
DOI PMID |
[123] |
YANG J, KUKKADAPU R K, DONG H, et al. Effects of redox cycling of iron in nontronite on reduction of technetium[J]. Chemical Geology, 2012, 291: 206-216.
DOI URL |
[124] |
SAWAYAMA S. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 70-72.
PMID |
[125] |
CLÉMENT J C, SHRESTHA J, EHRENFELD J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328.
DOI URL |
[126] |
LI X, HOU L, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49(19): 11560-11568.
DOI URL |
[127] |
DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647.
DOI URL |
[128] |
ZHOU G W, YANG X R, LI H, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron (III) reduction[J]. Environmental Science & Technology, 2016, 50(17): 9298-9307.
DOI URL |
[129] | KIRIAZIS N A. Evidence for iron-dependent anaerobic ammonium oxidation to nitrate (feammox) in deep-sea sediments[D]. Atlanta: Georgia Institute of Technology, 2015. |
[130] | 罗珺月, 冯杰, 罗阳, 等. 微生物厌氧氨氧化耦合铁还原的研究进展及展望[J]. 微生物学报, 2023, 63(6): 2031-2046. |
[131] |
YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541.
DOI |
[132] |
GILSON E R, HUANG S, JAFFÉ P R. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions[J]. Biodegradation, 2015, 26: 475-482.
DOI URL |
[133] | RUIZ-URIGÜEN M, JAFFE P R. Microbial anaerobic ammonium oxidation under iron reducing conditions, alternative electron acceptors[C]// Proceedings of the AGU Fall Meeting Abstracts. Washington: American Geophysical Union, 2015: BBC-0639. |
[134] | 马晓田, 常保璇, 黄柳琴, 等. Shewanella putrefaciens CN32 对黏土附着态铵氮释放的影响[J]. 微生物学报, 2020, 60(6): 1192-1205. |
[135] | FAN T, WANG M, WANG X, et al. Experimental study of the adsorption of nitrogen and phosphorus by natural clay minerals[J]. Adsorption Science & Technology, 2021, Volume 2021: 1-14. article ID 4158151. |
[136] |
HANWAY J J, SCOTT A, STANFORD G. Replaceability of ammonium fixed in clay minerals as influenced by ammonium or potassium in the extracting solution[J]. Soil Science Society of America Journal, 1957, 21(1): 29-34.
DOI URL |
[137] |
SCHERER H, FEILS E, BEUTERS P. Ammonium fixation and release by clay minerals as influenced by potassium[J]. Plant, Soil and Environment, 2014, 60(7): 325-331.
DOI URL |
[138] |
YIN H, YUN Y, ZHANG Y, et al. Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite[J]. Journal of Hazardous Materials, 2011, 198: 362-369.
DOI PMID |
[139] |
FANG H, CUI Z, HE G, et al. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology[J]. Science of The Total Environment, 2017, 605/606: 357-367.
DOI URL |
[140] |
PERASSI I, BORGNINO L. Adsorption and surface precipitation of phosphate onto CaCO3-montmorillonite: effect of pH, ionic strength and competition with humic acid[J]. Geoderma, 2014, 232/234: 600-608.
DOI URL |
[141] |
GEELHOED J S, VAN RIEMSDIJK W H, FINDENEGG G R. Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite[J]. European Journal of Soil Science, 1999, 50(3): 379-390.
DOI URL |
[142] |
HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant and Soil, 2001, 237(2): 173-195.
DOI URL |
[143] |
BINNER I, DULTZ S, SCHENK M K A. Phosphorus buffering capacity of substrate clays and its significance for plant cultivation[J]. Journal of Plant Nutrition and Soil Science, 2015, 178: 155-164.
DOI URL |
[144] |
ZHANG L, HU Y, HAN F, et al. Influences of multiple clay minerals on the phosphorus transport driven by Aspergillus niger[J]. Applied Clay Science, 2019, 177: 12-18.
DOI URL |
[145] |
TAZAKI K. Microbial formation of a halloysite-like mineral[J]. Clays and Clay Minerals, 2005, 53(3): 224-233.
DOI URL |
[146] |
YANG X, LI Y, LU A, et al. Effect of bacillus Mucilaginosus D4B1 on the structure and soil-conservation-related properties of montmorillonite[J]. Applied Clay Science, 2016, 119: 141-145.
DOI URL |
[147] |
POORNI S, NATARAJAN K A. Microbially induced selective flocculation of hematite from kaolinite[J]. International Journal of Mineral Processing, 2013, 125: 92-100.
DOI URL |
[148] |
SONG X, QIU G, WANG H, et al. Bio-desilication of rutile concentrate and analysis of community structure in bio-desilication reactor[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2398-2406.
DOI URL |
[149] |
HUANG J, JONES A, WAITE T D, et al. Fe(II) redox chemistry in the environment[J]. Chemical Reviews, 2021, 121(13): 8161-8233.
DOI URL |
[150] |
QU C, CHEN W, HU X, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995.
DOI URL |
[151] | 刘洵, 赖潘民旺, 张敏, 等. 微生物-矿物相互作用: 机制与重金属固定效应[J]. 环境化学, 2024, 43(2): 1-16. |
[152] |
FANG L, CAI P, LI P, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 1031-1038.
DOI URL |
[153] |
LIU X, DONG H, YANG X, et al. Effects of citrate on hexavalent chromium reduction by structural Fe(II) in nontronite[J]. Journal of Hazardous Materials, 2018, 343: 245-254.
DOI PMID |
[154] |
LIU X, DONG H, ZENG Q, et al. Synergistic effects of reduced nontronite and organic ligands on Cr(VI) reduction[J]. Environmental Science & Technology, 2019, 53(23): 13732-13741.
DOI URL |
[155] |
DENG L, LIU F, DING Z, et al. Effect of natural organic matter on Cr(VI) reduction by reduced nontronite[J]. Chemical Geology, 2023, 615: 121198.
DOI URL |
[156] |
ZHANG L, CHEN Y, XIA Q, et al. Combined effects of Fe(III)-bearing clay minerals and organic ligands on U(VI) bioreduction and U(IV) speciation[J]. Environmental Science & Technology, 2021, 55(9): 5929-5938.
DOI URL |
[157] |
CERVINI-SILVA J, LARSON R A, WU J, et al. Transformation of chlorinated aliphatic compounds by ferruginous smectite[J]. Environmental Science & Technology, 2001, 35(4): 805-809.
DOI URL |
[158] |
CERVINI-SILVA J, LARSON R A, WU J, et al. Dechlorination of pentachloroethane by commercial Fe and ferruginous smectite[J]. Chemosphere, 2002, 47(9): 971-976.
DOI URL |
[159] |
LEE W, BATCHELOR B. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates[J]. Chemosphere, 2004, 56(10): 999-1009.
PMID |
[160] |
ENTWISTLE J, LATTA D E, SCHERER M M, et al. Abiotic degradation of chlorinated solvents by clay minerals and Fe(II): evidence for reactive mineral intermediates[J]. Environmental Science & Technology, 2019, 53(24): 14308-14318.
DOI URL |
[161] |
HOFSTETTER T B, NEUMANN A, SCHWARZENBACH R P. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites[J]. Environmental Science & Technology, 2006, 40(1): 235-242.
DOI URL |
[162] |
LUAN F, GORSKI C A, BURGOS W D. Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds[J]. Environmental Science & Technology, 2015, 49(6): 3557-3565.
DOI URL |
[163] |
HOFSTETTER T B, SCHWARZENBACH R P, HADERLEIN S B. Reactivity of Fe(II) species associated with clay minerals[J]. Environmental Science & Technology, 2003, 37(3): 519-528.
DOI URL |
[164] |
ROTHWELL K A, PENTRAK M P, PENTRAK L A, et al. Reduction pathway-dependent formation of reactive Fe(II) sites in clay minerals[J]. Environmental Science & Technology, 2023, 57(28): 10231-10241.
DOI URL |
[165] |
TONG M, YUAN S, MA S, et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology, 2016, 50(1): 214-221.
DOI URL |
[166] |
LIU X, YUAN S, TONG M, et al. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite[J]. Water Research, 2017, 113: 72-79.
DOI PMID |
[167] |
ZENG Q, DONG H, WANG X, et al. Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals[J]. Journal of Hazardous Materials, 2017, 331: 88-98.
DOI PMID |
[168] |
ZHOU Z, ZENG Q, LI G, et al. Oxidative degradation of commingled trichloroethylene and 1, 4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral[J]. Chemosphere, 2022, 290: 133265.
DOI URL |
[169] |
ZHOU Z, YU T, DONG H, et al. Chemical oxygen demand (COD) removal from bio-treated coking wastewater by hydroxyl radicals produced from a reduced clay mineral[J]. Applied Clay Science, 2019, 180: 105199.
DOI URL |
[170] |
SEKAR R, DICHRISTINA T J. Microbially driven fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane[J]. Environmental Science & Technology, 2014, 48(21): 12858-12867.
DOI URL |
[171] |
HAN R, LV J, HUANG Z, et al. Pathway for the production of hydroxyl radicals during the microbially mediated redox transformation of iron (oxyhydr)oxides[J]. Environmental Science & Technology, 2020, 54(2): 902-910.
DOI URL |
[172] |
ZENG Q, DONG H, WANG X. Effect of ligands on the production of oxidants from oxygenation of reduced Fe-bearing clay mineral nontronite[J]. Geochimica et Cosmochimica Acta, 2019, 251: 136-156.
DOI URL |
[173] | CARRETERO M, GOMES C, TATEO F. Clays and human health[J]. Developments in Clay Science, 2006, 1: 717-741. |
[174] |
AWAD M E, LÓPEZ-GALINDO A, SETTI M, et al. Kaolinite in pharmaceutics and biomedicine[J]. International Journal of Pharmaceutics, 2017, 533(1): 34-48.
DOI PMID |
[175] |
FINKELMAN R B. The influence of clays on human health: a medical geology perspective[J]. Clays and Clay Minerals, 2019, 67(1): 1-6.
DOI |
[176] |
VISERAS C, CARAZO E, BORREGO-SÁNCHEZ A, et al. Clay minerals in skin drug delivery[J]. Clays and Clay Minerals, 2019, 67(1): 59-71.
DOI |
[177] |
HAYDEL S E, REMENIH C M, WILLIAMS L B. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens[J]. Journal of Antimicrobial Chemotherapy, 2008, 61(2): 353.
DOI URL |
[178] |
OTTO C C, KOEHL J L, SOLANKY D, et al. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity[J]. PLoS One, 2014, 9(12): e115172.
DOI URL |
[179] |
MORRISON K D, MISRA R, WILLIAMS L B. Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance[J]. Scientific Reports, 2016, 6: 19043.
DOI PMID |
[180] |
LONDONO S C, HARTNETT H E, WILLIAMS L B. The antibacterial activity of aluminum in clay from the colombian amazon[J]. Environmental Science & Technology, 2017, 51(4): 2401-2408.
DOI URL |
[181] |
CAFLISCH K M, SCHMIDT-MALAN S M, MANDREKAR J N, et al. Antibacterial activity of reduced iron clay against pathogenic bacteria associated with wound infections[J]. International Journal of Antimicrobial Agents, 2018, 52(5): 692-696.
DOI PMID |
[182] |
KONHAUSER K O, URRUTIA M M. Bacterial clay authigenesis: a common biogeochemical process[J]. Chemical Geology, 1999, 161(4): 399-413.
DOI URL |
[183] | LONDONO S C, WILLIAMS L B. Unraveling the antibacterial mode of action of a clay from the colombian amazon[J]. Environmental Geochemistry & Health, 2015, 38(2): 363-379. |
[184] |
XIA Q, WANG X, ZENG Q, et al. Mechanisms of enhanced antibacterial activity by reduced chitosan-intercalated nontronite[J]. Environmental Science & Technology, 2020, 54(8): 5207-5217.
DOI URL |
[185] |
WANG X, DONG H, ZENG Q, et al. Reduced iron-containing clay minerals as antibacterial agents[J]. Environmental Science & Technology, 2017, 51(13): 7639-7647.
DOI URL |
[186] |
GUO D, XIA Q, ZENG Q, et al. Antibacterial mechanisms of reduced iron-containing smectite-illite clay minerals[J]. Environmental Science & Technology, 2021, 55(22): 15256-15265.
DOI URL |
[187] |
XIA Q, CHEN J, DONG H. Effects of organic ligands on the antibacterial activity of reduced iron-containing clay minerals: higher extracellular hydroxyl radical production yet lower bactericidal activity[J]. Environmental Science & Technology, 2023, 57(17): 6888-6897.
DOI URL |
[188] |
YUAN S, LIU X, LIAO W, et al. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 2018, 223: 422-436.
DOI URL |
[189] |
WILLIAMS L B. Natural antibacterial clay: historical uses and modern advances[J]. Clays and Clay Minerals, 2019, 67(1): 7-24.
DOI |
[190] |
ZATTA P, KISS T, SUWALSKY M, et al. Aluminium (III) as a promoter of cellular oxidation[J]. Coordination Chemistry Reviews, 2002, 228(2): 271-284.
DOI URL |
[191] | OTEIZA P I, VERSTRAETEN S V. Interactions of Al and related metals with membrane phospholipids: consequences on membrane physical properties[J]. Advances in Planar Lipid Bilayers and Liposomes, 2006, 4: 79-106. |
[192] | 夏庆银. 还原态壳聚糖插层改性绿脱石的高效抗菌机理研究[D]. 北京: 中国地质大学(北京), 2020. |
[1] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[2] | ZHANG Yanbin, ZHAI Mingguo, ZHOU Yanyan, ZHOU Ligang. The continental lower crust [J]. Earth Science Frontiers, 2024, 31(1): 28-45. |
[3] | JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook [J]. Earth Science Frontiers, 2024, 31(1): 284-296. |
[4] | SUN Huanquan, MAO Xiang, WU Chenbingjie, GUO Dianbin, WANG Haitao, SUN Shaochuan, ZHANG Ying, LUO Lu. Geothermal resources exploration and development technology: Current status and development directions [J]. Earth Science Frontiers, 2024, 31(1): 400-411. |
[5] | LAN Chunyuan, ZHANG Lifei, TAO Renbiao, HU Han, ZHANG Lijuan, WANG Chao. Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review [J]. Earth Science Frontiers, 2024, 31(1): 64-76. |
[6] | CHEN Jianfa, XU Jin, WANG Jie, LIU Peng, CHEN Feiran, LI Maowen. Paleo-environmental variation and its control on organic enrichment in the black rock series, Cambrian Yuertusi Formation in northwestern Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 150-161. |
[7] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[8] | WU Chenjun, LIU Xinshe, WEN Zhigang, TUO Jincai. Mechanism of organic matter enrichment and organic pore development in the Lower Cambrian Niutitang shales in northern Guizhou [J]. Earth Science Frontiers, 2023, 30(3): 101-109. |
[9] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[10] | GUO Xiaoyu, LUO Xucong, GAO Rui, XU Xiao, LU Zhanwu, HUANG Xingfu, LI Wenhui, LI Chunsen. Crustal-scale plate interactions beneath the dominant domain in the India-Eurasia collision zone—a tectonogeophysical study [J]. Earth Science Frontiers, 2023, 30(2): 1-17. |
[11] | MA Li, XIE Yihao, WU Geng, JIANG Hongchen. Research progress in microbial-mediated sulfur cycles in geothermal habitats: Insights into biological processes on the early Earth [J]. Earth Science Frontiers, 2023, 30(2): 479-494. |
[12] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[13] | LU Shuangfang, WANG Jun, LI Wenbiao, CAO Yixin, CHEN Fangwen, LI Jijun, XUE Haitao, WANG Min. In-situ upgrading and transformation of low-maturity shale: Economic feasibility and efficiency enhancement approaches from the perspective of energy consumption ratio [J]. Earth Science Frontiers, 2023, 30(1): 187-198. |
[14] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[15] | LI Desheng, LI Bohua. Towards a new era of diversified energy development: Innovation in theoretical petroleum geology to meet “dual carbon target” [J]. Earth Science Frontiers, 2022, 29(6): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||