Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 288-310.DOI: 10.13745/j.esf.sf.2025.3.26
Previous Articles Next Articles
ZHANG Yanli1,2(), RAN Haofan1,2, ZENG Jianqiang1,2, LU Yuting1,2, PANG Weihua1,2, GUO Hao1,2, WANG Xinming1,2,*(
)
Received:
2025-02-07
Revised:
2025-02-20
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
ZHANG Yanli, RAN Haofan, ZENG Jianqiang, LU Yuting, PANG Weihua, GUO Hao, WANG Xinming. Advances and perspectives of biogenic reactive trace volatile organic compounds in the context of global change[J]. Earth Science Frontiers, 2025, 32(3): 288-310.
Fig.1 BVOC emission measurement techniques at different scales (a cited from [51]; b cited from [52]; c cited from [18]; d cited from [53]; e cited from [54]; f cited from [55]; g cited from [56]; h cited from [57]; i cited form [58])
方法 | 适用尺度 | 优势 | 局限性 |
---|---|---|---|
静态法[ | 叶片、枝条、小植株 | 装置简易便携,适用于未知植物排放谱的检测,测量地形受限性较低 | 测装置内-外内外环境条件差异大,生理扰动严重,低挥发性MT/SQT等损失严重,且无法直接测量冠层排放,不适合排放速率的准确测量 |
动态叶室法[ | 叶片 | 能够控制环境变量,开展单一变量的控制实验,测量地形受限性较低 | 低排放树种测量难度较大,低挥发性BVOCs特别是SQT损失严重,且无法直接测量冠层排放 |
动态箱法[ | 叶片、枝条、小植株 | 开展短-长期真实排放测量,在活性MT/SQT测量方面具有优势 | 设备架设难度较高,测量地形受限性较高,无法直接测量冠层排放 |
塔基驰豫涡旋 积累法[ | 冠层 | 能够反映几百至几千米范围下垫面的综合排放特征;结合离线吸附管采样手段,能够区分到单个BVOCs化合物 | 测量地形受限性较高,只能借助生态通量塔开展研究,离线采样较麻烦,操作难度大,高活性MT/SQT测量不确定性大 |
塔基涡度协 方差法[ | 冠层 | 能够反映几百至几千米范围下垫面的综合排放特征;结合高频在线分析手段,能够进行长期排放测量 | 受测量地形影响大,需高频分析仪器(>10 Hz),目前常用的PTR-ToF-MS不能区分同分异构体;高活性MT/SQT测量不确定性大 |
机载涡度协 方差法[ | 区域 | 能够反映区域尺度下垫面的综合排放特征;测量不受地形限制 | 测量设备较昂贵;常用的PTR-ToF-MS不能区分同分异构体;活性MT/SQT测量不确定性大 |
无人机[ | 冠层/区域 | 能够反映冠层/区域尺度下垫面的综合排放特征;测量不受地形限制;结合离线吸附管采样能够区分到单个BVOCs化合物 | 测量过程中局部湍流扰动较大,无法长时间测量,无法高精度检测高反应活性的MT/SQT |
Table 1 Comparison of different measurement methods of BVOCs emissions
方法 | 适用尺度 | 优势 | 局限性 |
---|---|---|---|
静态法[ | 叶片、枝条、小植株 | 装置简易便携,适用于未知植物排放谱的检测,测量地形受限性较低 | 测装置内-外内外环境条件差异大,生理扰动严重,低挥发性MT/SQT等损失严重,且无法直接测量冠层排放,不适合排放速率的准确测量 |
动态叶室法[ | 叶片 | 能够控制环境变量,开展单一变量的控制实验,测量地形受限性较低 | 低排放树种测量难度较大,低挥发性BVOCs特别是SQT损失严重,且无法直接测量冠层排放 |
动态箱法[ | 叶片、枝条、小植株 | 开展短-长期真实排放测量,在活性MT/SQT测量方面具有优势 | 设备架设难度较高,测量地形受限性较高,无法直接测量冠层排放 |
塔基驰豫涡旋 积累法[ | 冠层 | 能够反映几百至几千米范围下垫面的综合排放特征;结合离线吸附管采样手段,能够区分到单个BVOCs化合物 | 测量地形受限性较高,只能借助生态通量塔开展研究,离线采样较麻烦,操作难度大,高活性MT/SQT测量不确定性大 |
塔基涡度协 方差法[ | 冠层 | 能够反映几百至几千米范围下垫面的综合排放特征;结合高频在线分析手段,能够进行长期排放测量 | 受测量地形影响大,需高频分析仪器(>10 Hz),目前常用的PTR-ToF-MS不能区分同分异构体;高活性MT/SQT测量不确定性大 |
机载涡度协 方差法[ | 区域 | 能够反映区域尺度下垫面的综合排放特征;测量不受地形限制 | 测量设备较昂贵;常用的PTR-ToF-MS不能区分同分异构体;活性MT/SQT测量不确定性大 |
无人机[ | 冠层/区域 | 能够反映冠层/区域尺度下垫面的综合排放特征;测量不受地形限制;结合离线吸附管采样能够区分到单个BVOCs化合物 | 测量过程中局部湍流扰动较大,无法长时间测量,无法高精度检测高反应活性的MT/SQT |
中文名 | 拉丁名 | 异戊 二烯 | MT | SQT | 参考 文献 |
---|---|---|---|---|---|
冬青栎 | Quercus ilex | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
石南花 | Calluna vulgaris | + | [ | ||
芦苇 | Phragmites sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
构树 | Broussonetia papyrifera | - | [ | ||
枫香 | Liquidambar styraciflua | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
黑金合欢 | Acacia nigrescens | - | [ | ||
芦竹 | Arundo donax | - | [ | ||
冬青栎 | Quercus ilex | - | [ | ||
毛栎 | Quercu pubescens | - | [ | ||
百里香 | Thymus vulgaris | - | - | [ | |
美洲蓝桉 | Eucalyptus globulus | - | [ | ||
枫香 | Liquidambar styraciflua | + | [ | ||
美洲黑杨 | Populus deltoides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
日本落叶松 | Larix kaempferi | - | [ | ||
杂交杨树 | Populus sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
帚石南 | Calluna vulgaris | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
高山柳 | Salix sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
美洲黑杨 | Populus deltoides | [ | |||
北美红栎 | Quercus rubra | [ |
Table 2 Summary of BVOC-CO2 response research
中文名 | 拉丁名 | 异戊 二烯 | MT | SQT | 参考 文献 |
---|---|---|---|---|---|
冬青栎 | Quercus ilex | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
石南花 | Calluna vulgaris | + | [ | ||
芦苇 | Phragmites sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
构树 | Broussonetia papyrifera | - | [ | ||
枫香 | Liquidambar styraciflua | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
黑金合欢 | Acacia nigrescens | - | [ | ||
芦竹 | Arundo donax | - | [ | ||
冬青栎 | Quercus ilex | - | [ | ||
毛栎 | Quercu pubescens | - | [ | ||
百里香 | Thymus vulgaris | - | - | [ | |
美洲蓝桉 | Eucalyptus globulus | - | [ | ||
枫香 | Liquidambar styraciflua | + | [ | ||
美洲黑杨 | Populus deltoides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
日本落叶松 | Larix kaempferi | - | [ | ||
杂交杨树 | Populus sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
帚石南 | Calluna vulgaris | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
高山柳 | Salix sp. | - | [ | ||
白杨 | Populus tremuloides | - | [ | ||
美洲黑杨 | Populus deltoides | [ | |||
北美红栎 | Quercus rubra | [ |
实验方法 | OTC | FACE系统 | 便携式光合仪 |
---|---|---|---|
测量尺度 | 树种尺度 | 区域尺度 | 叶片尺度 |
CO2控制 | 不能持续控制,波动范围大 | 波动范围大,固定浓度控制 | 精准控制,误差很小 |
叶室和供气 | 底部或中部供气,顶部有开口 | 完全开放式,由自带的扩散系统供气 | 叶室完全密闭,CO2气瓶供气 |
流速 | 一般10 L·min-1以上 | 流速等于空气流速 | 0~2 L·min-1 |
BVOC采集 | 动态箱、静态箱 | 动态箱、静态箱 | 动态箱 |
适用情况 | 固定浓度长期熏蒸,并且 保持较稳定的环境状态 | 固定浓度长期熏蒸,只控制CO2浓度 | 快速CO2响应测量 |
局限性 | 受外界条件影响很大 | 无法控制除了CO2之外的环境参数 | 体积太小,一般情况下只能测量异戊二烯 |
Table 3 Methods for BVOCs-CO2 response study
实验方法 | OTC | FACE系统 | 便携式光合仪 |
---|---|---|---|
测量尺度 | 树种尺度 | 区域尺度 | 叶片尺度 |
CO2控制 | 不能持续控制,波动范围大 | 波动范围大,固定浓度控制 | 精准控制,误差很小 |
叶室和供气 | 底部或中部供气,顶部有开口 | 完全开放式,由自带的扩散系统供气 | 叶室完全密闭,CO2气瓶供气 |
流速 | 一般10 L·min-1以上 | 流速等于空气流速 | 0~2 L·min-1 |
BVOC采集 | 动态箱、静态箱 | 动态箱、静态箱 | 动态箱 |
适用情况 | 固定浓度长期熏蒸,并且 保持较稳定的环境状态 | 固定浓度长期熏蒸,只控制CO2浓度 | 快速CO2响应测量 |
局限性 | 受外界条件影响很大 | 无法控制除了CO2之外的环境参数 | 体积太小,一般情况下只能测量异戊二烯 |
[1] | DANABASOGLU G, LAMARQUE J F, BACMEISTER J, et al. The community earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020; 12(2): e2019MS001916. |
[2] | ZHAO T, WANG S, OUYANG C, et al. Artificial intelligence for geoscience: progress, challenges, and perspectives[J]. The Innovation, 2024, 5(5): 100691. |
[3] |
PARK J H, GOLDSTEIN A H, TIMKOVSKY J, et al. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds[J]. Science, 2013, 341(6146): 643-647.
DOI PMID |
[4] | GUENTHER A B, HEWITT C N, ERICKSON D, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D5): 8873-8892. |
[5] | ARNETH A, HARRISON S P, ZAEHLE S, et al. Terrestrial biogeochemical feedbacks in the climate system[J]. Nature Geoscience, 2010, 3(8): 525-532. |
[6] | PEÑUELAS J, MARINO G, LLUSIA J, et al. Photochemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level[J]. Nature Communications, 2013, 4(1): 2604. |
[7] | RAP A, SCOTT C E, REDDINGTON C L, et al. Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization[J]. Nature Geoscience, 2018, 11(9): 640-644. |
[8] | BONAN GB, DONEY SC. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models[J]. Science, 2018, 359(6375): eaam8328. |
[9] |
JOKINEN T, BERNDT T, MAKKONEN R, et al. Production of extremely low volatile organic compounds from biogenic emissions: measured yields and atmospheric implications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23): 7123-7128.
DOI PMID |
[10] | GUENTHER A B, ZIMMERMAN P R, HARLEY P C, et al. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D7): 12609-12617. |
[11] | ZANNONI N, LEPPLA D, LEMBO SILVEIRA DE ASSIS P I, et al. Surprising chiral composition changes over the Amazon rainforest with height, time and season[J]. Communications Earth & Environment, 2020, 1(1): 4. |
[12] | HEALD C L, WILKINSON M J, MONSON R K, et al. Response of isoprene emission to ambient CO2 changes and implications for global budgets[J]. Global Change Biology, 2009, 15(5): 1127-1140. |
[13] | SANAEI A, HERRMANN H, ALSHAABI L, et al. Changes in biodiversity impact atmospheric chemistry and climate through plant volatiles and particles[J]. Communications Earth & Environment, 2023, 4(1): 445. |
[14] | BAMBERGER I, RUEHR N K, SCHMITT M, et al. Isoprene emission and photosynthesis during heatwaves and drought in black locust[J]. Biogeosciences, 2017, 14(15): 3649-3667. |
[15] | EDWARDS P M, AIKIN K C, DUBE W P, et al. Transition from high- to low-NOx control of night-time oxidation in the southeastern US[J]. Nature Geoscience, 2017, 10(7): 490-495. |
[16] |
SHRIVASTAVA M, ANDREAE M O, ARTAXO P, et al. Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest[J]. Nature Communications, 2019, 10(1): 1046.
DOI PMID |
[17] | WANG P, ZHANG Y, GONG H, et al. Updating biogenic volatile organic compound (BVOC) emissions with locally measured emission factors in South China and the effect on modeled ozone and secondary organic aerosol production[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(24): e2023JD039928. |
[18] | ZENG J, ZHANG Y, PANG W, et al. Optimizing in-situ measurement of representative BVOC emission factors considering intraspecific variability[J]. Geophysical Research Letters, 2024, 51(11): e2024GL108870. |
[19] | WU J, LONG J, LIU H, et al. Biogenic volatile organic compounds from 14 landscape woody species: tree species selection in the construction of urban greenspace with forest healthcare effects[J]. Journal of Environmental Management, 2021, 300: 113761. |
[20] | SHARKEY T D, MONSON R K. Isoprene research-60 years later, the biology is still enigmatic[J]. Plant, Cell & Environment, 2017, 40(9): 1671-1678. |
[21] | GUENTHER A B, MONSON R K, FALL R. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D6): 10799-10808. |
[22] | BRILLI F, HÖRTNAGL L, BAMBERGER I, et al. Qualitative and quantitative characterization of volatile organic compound emissions from cut grass[J]. Environmental Science & Technology, 2012, 46(7): 3859-3865. |
[23] | HARLEY P, ELLER A, GUENTHER A, et al. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance[J]. Oecologia, 2014, 176: 35-55. |
[24] |
LUN X, LIN Y, CHAI F, et al. Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia[J]. Journal of Environmental Sciences, 2020, 95: 266-277.
DOI PMID |
[25] | SUN Z, SHEN Y, NIINEMETS Ü. Responses of isoprene emission and photochemical efficiency to severe drought combined with prolonged hot weather in hybrid Populus[J]. Journal of Experimental Botany, 2020, 71(22): 7364-7381. |
[26] | CANAVAL E, MILLET DB, ZIMMER I, et al. Rapid conversion of isoprene photooxidation products in terrestrial plants[J]. Communications Earth & Environment, 2020, 1(1): 44. |
[27] | EDTBAUER A, PFANNERSTILL E Y, PIRES FLORENTINO A P, et al. Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region[J]. Communications Earth & Environment, 2021, 2(1): 258. |
[28] |
WANG B, SHUGART H H, LERDAU M T. Complexities between plants and the atmosphere[J]. Nature Geoscience, 2019, 12(9): 693-694.
DOI |
[29] |
DI CARLO P, BRUNE W H, MARTINEZ M, et al. Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs[J]. Science, 2004, 304(5671): 722-725.
PMID |
[30] | DADA L, STOLZENBURG D, SIMON M, et al. Role of sesquiterpenes in biogenic new particle formation[J]. Science Advances, 2023, 9(36): eadi5297. |
[31] | TSIGARIDIS K, DASKALAKIS N, KANAKIDOU M, et al. The AeroCom evaluation and intercomparison of organic aerosol in global models[J]. Atmospheric Chemistry and Physics, 2014, 14(19): 10845-10895. |
[32] | SPORRE M K, BLICHNER S M, SCHRÖDNER R, et al. Large difference in aerosol radiative effects from BVOC-SOA treatment in three earth system models[J]. Atmospheric Chemistry and Physics, 2020, 20(14): 8953-8973. |
[33] |
CLAEYS M, GRAHAM B, VAS G, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 2004, 303(5661): 1173-1176.
PMID |
[34] | CAO J, SITU S, HAO Y, et al. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981-2018 in China[J]. Atmospheric Chemistry and Physics, 2022, 22( 4): 2351-2364. |
[35] |
SCOTT C E, MONKS S A, SPRACKLEN D V, et al. Impact on short-lived climate forcers increases projected warming due to deforestation[J]. Nature Communications, 2018, 9(1): 157.
DOI PMID |
[36] | FU B, GASSER T, LI B, et al. Short-lived climate forcers have long-term climate impacts via the carbon-climate feedback[J]. Nature Climate Change, 2020, 10(9): 851-855. |
[37] |
TUNVED P, HANSSON H-C, KERMINEN V-M, et al. High natural aerosol loading over boreal forests[J]. Science, 2006, 312(5771): 261-263.
PMID |
[38] | TANG J, ZHOU P, MILLER P A, et al. High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols[J]. NPJ Climate and Atmospheric Science, 2023, 6(1): 147. |
[39] | MACHADO L A T, UNFER G R, BRILL S, et al. Frequent rainfall-induced new particle formation within the canopy in the Amazon rainforest[J]. Nature Geoscience, 2024, 17: 1225-1232. |
[40] | UNGER N. Human land-use-driven reduction of forest volatiles cools global climate[J]. Nature Climate Change, 2014, 4(10): 907-910. |
[41] |
XU L, GUO H, BOYD C M, et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 37-42.
DOI PMID |
[42] |
PYE H O T, WARD-CAVINESS C K, MURPHY B N, et al. Secondary organic aerosol association with cardiorespiratory disease mortality in the United States[J]. Nature Communications, 2021, 12(1): 7215.
DOI PMID |
[43] |
ZHU J, PENNER J E, YU F, et al. Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change[J]. Nature Communications, 2019, 10(1): 423.
DOI PMID |
[44] | WANG N, HUANG X, XU J, et al. Typhoon-boosted biogenic emission aggravates cross-regional ozone pollution in China[J]. Science Advances, 2022, 8(2): eabl6166. |
[45] | WANG H, WU K, LIU Y, et al. Role of heat wave-induced biogenic VOC enhancements in persistent ozone episodes formation in Pearl River Delta[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(12): e2020JD034317. |
[46] | CAO Y, YUE X, LEI Y, et al. Identifying the drivers of modeling uncertainties in isoprene emissions: schemes versus meteorological forcings[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(18): 2020JD034242. |
[47] | GE J, HUANG X, ZAN B, et al. Local surface cooling from afforestation amplified by lower aerosol pollution[J]. Nature Geoscience, 2023, 16(9): 781-788. |
[48] | KRAMSHØJ M, VEDEL-PETERSEN I, SCHOLLERT M, et al. Large increases in Arctic biogenic volatile emissions are a direct effect of warming[J]. Nature Geoscience, 2016, 9(5): 349-352. |
[49] | JUNNINEN H, AHONEN L, BIANCHI F, et al. Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests[J]. Communications Earth & Environment, 2022, 3(1): 93. |
[50] | KRAMSHØJ M, ALBERS C N, HOLST T, et al. Biogenic volatile release from permafrost thaw is determined by the soil microbial sink[J]. Nature Communications, 2018, 9(1): 3412. |
[51] | SECO R, NAGALINGAM S, JOO E, et al. The UCI Fluxtron: a versatile dynamic chamber and software system for biosphere-atmosphere exchange research[J]. Chemosphere, 2024, 364: 143061. |
[52] | MATERIC D, BRUHN D, TURNER C, et al. Methods in plant foliar volatile organic compounds research[J]. Applications in Plant Sciences, 2015, 3(12): 1500044. |
[53] | ZENG J, ZHANG Y, ZHANG H, et al. Design and characterization of a semi-open dynamic chamber for measuring biogenic volatile organic compound (BVOC) emissions from plants[J]. Atmospheric Measurement Techniques, 2022, 15(1): 79-93. |
[54] | ACTON W J F, JUD W, GHIRARDO A, et al. The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground[J]. Plos One, 2018, 13(12): e0208825. |
[55] |
LUPKE M, STEINBRECHER R, LEUCHNER M, et al. The tree drought emission MONitor (Tree DEMON), an innovative system for assessing biogenic volatile organic compounds emission from plants[J]. Plant Methods, 2017, 13: 14.
DOI PMID |
[56] | MCKINNEY K A, WANG D, YE J, et al. A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles[J]. Atmospheric Measurement Techniques, 2019, 12(6): 3123-3135. |
[57] | ARCHIBALD A T. Wake-up call for isoprene emissions[J]. Nature Geoscience, 2011, 4: 659-660. |
[58] |
PFANNERSTILL E Y, ARATA C, ZHU Q, et al. Temperature-dependent emissions dominate aerosol and ozone formation in Los Angeles[J]. Science, 2024, 384(6702): 1324-1329.
DOI PMID |
[59] |
FARMER D K, RICHES M. Measuring biosphere-atmosphere exchange of short-lived climate forcers and their precursors[J]. Accounts of Chemical Research, 2020, 53(8): 1427-1435.
DOI PMID |
[60] | THOLL D, BOLAND W, HANSEL A, et al. Practical approaches to plant volatile analysis[J]. The Plant Journal, 2006, 45(4): 540-560. |
[61] | ORTEGA J, HELMIG D. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques: part A[J]. Chemosphere, 2008, 72(3): 343-364. |
[62] | GUENTHER A B, JIANG X, HEALD C L, et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions[J]. Geoscientific Model Development, 2012, 5(6): 1471-1492. |
[63] | NIINEMETS U, KUHN U, HARLEY P C, et al. Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols[J]. Biogeosciences, 2011, 8(8): 2209-2246. |
[64] | SONG W, STAUDT M, BOURGEOIS I, et al. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature[J]. Biogeosciences, 2014, 11(5): 1435-1447. |
[65] | RICHES M, LEE D, FARMER D K. Simultaneous leaf-level measurement of trace gas emissions and photosynthesis with a portable photosynthesis system[J]. Atmospheric Measurement Techniques, 2020, 13(8): 4123-4139. |
[66] | HELMIG D, BOCQUET F, POLLMANN J, et al. Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments[J]. Atmospheric Environment, 2004, 38(4): 557-572. |
[67] | ORTEGA J, HELMIG D, DALY R W, et al. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques: part B: applications[J]. Chemosphere, 2008, 72(3): 365-380. |
[68] | KOLARI P, BACK J, TAIPALE R, et al. Evaluation of accuracy in measurements of VOC emissions with dynamic chamber system[J]. Atmospheric Environment, 2012, 62: 344-351. |
[69] | DINDORF T, KUHN U, GANZEVELD L, et al. Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D16): D16305. |
[70] | SCHAUB A, BLANDE J D, GRAUS M, et al. Real-time monitoring of herbivore induced volatile emissions in the field[J]. Physiologia Plantarum, 2010, 138(2): 123-133. |
[71] | FENG Z, YUAN X, FARES S, et al. Isoprene is more affected by climate drivers than monoterpenes: a meta-analytic review on plant isoprenoid emissions[J]. Plant, Cell & Environment, 2019, 42(6): 1939-1949. |
[72] | POLLMANN J, ORTEGA J, HELMIG D. Analysis of atmospheric sesquiterpenes: sampling losses and mitigation of ozone interferences[J]. Environmental Science & Technology, 2005, 39(24): 9620-9629. |
[73] | PACIFICO F, HARRISON S P, JONES C D, et al. Isoprene emissions and climate[J]. Atmospheric Environment, 2009, 43(39): 6121-6135. |
[74] | GU D, GUENTHER A B, SHILLING J E, et al. Airborne observations reveal elevational gradient in tropical forest isoprene emissions[J]. Nature Communications, 2017, 8(1): 15541. |
[75] | GUENTHER A B, HILLS A J. Eddy covariance measurement of isoprene fluxes[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D11): 13145-13152. |
[76] | FISCHER L, BREITENLECHNER M, CANAVAL E, et al. First eddy covariance flux measurements of semi-volatile organic compounds with the PTR3-TOF-MS[J]. Atmospheric Measurement Techniques, 2021, 14(12): 8019-8039. |
[77] | POTOSNAK M J, LESTOURGEON L, PALLARDY S G, et al. Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress[J]. Atmospheric Environment, 2014, 84: 314-322. |
[78] | SECO R, HOLST T, DAVIE-MARTIN C L, et al. Strong isoprene emission response to temperature in tundra vegetation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(38): e2118014119. |
[79] | JARDINE K, SERRANO A Y, ARNETH A, et al. Within-canopy sesquiterpene ozonolysis in Amazonia[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D19): D19301. |
[80] |
BATISTA C E, YE J, RIBEIRO I O, et al. Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19318-19323.
DOI PMID |
[81] | YE J, BATISTA C E, ZHAO T, et al. River winds and transport of forest volatiles in the Amazonian riparian ecoregion[J]. Environmental Science & Technology, 2022, 56(17): 12667-12677. |
[82] | NIINEMETS U, MONSON R K, ARNETH A, et al. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling[J]. Biogeosciences, 2010, 7(6): 1809-1832. |
[83] | GUENTHER A B, KARL T, HARLEY P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature)[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3181-3210. |
[84] | HARLEY P, GUENTHER A, ZIMMERMAN P. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves[J]. Tree Physiology, 1996, 16(1/2): 25-32. |
[85] | HARLEY P, VASCONCELLOS P, VIERLING L, et al. Variation in potential for isoprene emissions among Neotropical forest sites[J]. Global Change Biology, 2004, 10(5): 630-650. |
[86] | KUHN U, ROTTENBERGER S, BIESENTHAL T, et al. Isoprene and monoterpene emissions of Amazonian tree species during the wet season: direct and indirect investigations on controlling environmental functions[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D20): 8071. |
[87] | KARL T, GUENTHER A, YOKELSON R J, et al. The tropical forest and fire emissions experiment: emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D18): D18302. |
[88] | SARKAR C, GUENTHER A B, PARK J H, et al. PTR-TOF-MS eddy covariance measurements of isoprene and monoterpene fluxes from an eastern Amazonian rainforest[J]. Atmospheric Chemistry and Physics, 2020, 20(12): 7179-7191. |
[89] | ZENG J, ZHANG Y, MU Z, et al. Temperature and light dependency of isoprene and monoterpene emissions from tropical and subtropical trees: field observations in south China[J]. Applied Geochemistry, 2023, 155: 105727. |
[90] | GERON C, OWEN S, GUENTHER A, et al. Volatile organic compounds from vegetation in southern Yunnan Province, China: emission rates and some potential regional implications[J]. Atmospheric Environment, 2006, 40(10): 1759-1773. |
[91] | OKU H, FUKUTA M, IWASAKI H, et al. Modification of the isoprene emission model G93 for tropical tree Ficus virgata[J]. Atmospheric Environment, 2008, 42(38), 8747-8754, 2008. |
[92] | JARDINE A B, JARDINE K J, FUENTES J D, et al. Highly reactive light-dependent monoterpenes in the Amazon[J]. Geophysical Research Letters, 2015, 42(5): 1576-1583. |
[93] | JARDINE K J, JARDINE A B, HOLM J A, et al. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming[J]. Plant, Cell & Environment, 2017, 40(3): 441-452. |
[94] | MU Z, LLUSIÀ J, ZENG J, et al. An overview of the isoprenoid emissions from tropical plant species[J]. Frontiers in Plant Science, 2022, 13: 833030. |
[95] | BYRON J, KREUZWIESER J, PURSER G, et al. Chiral monoterpenes reveal forest emission mechanisms and drought responses[J]. Nature, 2022, 609(7926): 307-312. |
[96] |
TINGEY D T, MANNING M, GROTHAUS L C, et al. Influence of light and temperature on monoterpene emission rates from slash pine[J]. Plant Physiology, 1980, 65(5): 797-801.
DOI PMID |
[97] | ZENG J, SONG W, ZHANG Y, et al. Emissions of isoprenoids from dominant tree species in subtropical China[J]. Frontiers in Forests and Global Change, 2022, 5: 1089676. |
[98] | SAKULYANONTVITTAYA T, DUHL T, WIEDINMYER C, et al. Monoterpene and sesquiterpene emission estimates for the United States[J]. Environmental Science & Technology, 2008, 42(5): 1623-1629. |
[99] | WANG Y-F, OWEN S M, LI Q-J, et al. Monoterpene emissions from rubber trees (Hevea brasiliensis) in a changing landscape and climate: chemical speciation and environmental control[J]. Global Change Biology, 2007, 13(11): 2270-2282. |
[100] | WILSKE B, CAO K F, SCHEBESKE G, et al. Isoprenoid emissions of trees in a tropical rainforest in Xishuangbanna, SW China[J]. Atmospheric Environment, 2007, 41(18): 3748-3757. |
[101] | SCHUH G, HEIDEN A C, HOFFMANN T, et al. Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity[J]. Journal of Atmospheric Chemistry, 1997, 27(3): 291-318. |
[102] | HELMIG D, ORTEGA J, GUENTHER A, et al. Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US[J]. Atmospheric Environment, 2006, 40(22), 4150-4157. |
[103] | TARVAINEN V, HAKOLA H, HELLEN H, et al. Temperature and light dependence of the VOC emissions of Scots pine[J]. Atmospheric Chemistry and Physics, 2005, 5(4): 989-998. |
[104] | STAUDT M, BOURGEOIS I, AL HALABI R, et al. New insights into the parametrization of temperature and light responses of mono- and sesquiterpene emissions from Aleppo pine and rosemary[J]. Atmospheric Environment, 2017, 152: 212-221. |
[105] |
NIINEMETS U, LORETO F, REICHSTEIN M. Physiological and physicochemical controls on foliar volatile organic compound emissions[J]. Trends in Plant Science, 2004, 9(4): 180-186.
PMID |
[106] | OWEN S M, HARLEY P, GUENTHER A, et al. Light dependency of VOC emissions from selected Mediterranean plant species[J]. Atmospheric Environment, 2002, 36(19): 3147-3159. |
[107] | OTU-LARBI F, BOLAS C G, FERRACCI V, et al. Modelling the effect of the 2018 summer heatwave and drought on isoprene emissions in a UK woodland[J]. Global Change Biology, 2020, 26(4): 2320-2335. |
[108] | FERRACCI V, BOLAS C G, FRESHWATER R A, et al. Continuous isoprene measurements in a UK temperate forest for a whole growing season: effects of drought stress during the 2018 heatwave[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088885. |
[109] | WANG H, WELCH A, NAGALINGAM S, et al. Arctic heatwaves could significantly influence the isoprene emissions from shrubs[J]. Geophysical Research Letters, 2024, 51(2): e2023GL107599. |
[110] |
WANG H, WELCH A M, NAGALINGAM S, et al. High temperature sensitivity of Arctic isoprene emissions explained by sedges[J]. Nature Communications, 2024, 15(1): 6144.
DOI PMID |
[111] | WANG H, NAGALINGAM S, WELCH A M, et al. Heat waves may trigger unexpected surge in aerosol and ozone precursor emissions from sedges in urban landscapes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(45): e2412817121. |
[112] | KIVIMAENPAA M, GHIMIRE R P, SUTINEN S, et al. Increases in volatile organic compound emissions of Scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availability[J]. European Journal of Forest Research, 2016, 135: 343-360. |
[113] | PIKKARAINEN L, NISSINEN K, GHIMIRE R P, et al. Responses in growth and emissions of biogenic volatile organic compounds in Scots pine, Norway spruce and silver birch seedlings to different warming treatments in a controlled field experiment[J]. Science of the Total Environment, 2022, 821: 153277. |
[114] | TANG J, VALOLAHTI H, KIVIMAENPAA M, et al. Acclimation of biogenic volatile organic compound emission from subarctic heath under long-term moderate warming[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(1): 95-105. |
[115] | LINDWALL F, SCHOLLERT M, MICHELSEN A, et al. Fourfold higher tundra volatile emissions due to arctic summer warming[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 895-902. |
[116] | WILKINSON M J, MONSON R K, TRAHAN N, et al. Leaf isoprene emission rate as a function of atmospheric CO2 concentration[J]. Global Change Biology, 2009, 15(5): 1189-1200. |
[117] |
PEñUELAS J, STAUDT M. BVOCs and global change[J]. Trends in Plant Science, 2010, 15(3): 133-144.
DOI PMID |
[118] | VUORINEN T, NERG A M, VAPAAVUORI E, et al. Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations[J]. Atmospheric Environment, 2005, 39(7): 1185-1197. |
[119] | LORETO F, FISCHBACH R J, SCHNITZLER J P, et al. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations[J]. Global Change Biology, 2001, 7(6): 709-717. |
[120] | ARNETH A, NIINEMETS Ü, PRESSLEY S, et al. Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction[J]. Atmospheric Chemistry and Physics, 2007, 7(1): 31-53. |
[121] |
PEÑUELAS J, LLUSIÀ J. BVOCs: plant defense against climate warming?[J]. Trends in Plant Science, 2003, 8(3): 105-109.
PMID |
[122] | CALFAPIETRA C, MUGNOZZA G S, KARNOSKY D F, et al. Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3[J]. New Phytologist, 2008, 179(1): 55-61. |
[123] | CALFAPIETRA C, WIBERLEY A E, FALBEL T G, et al. Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees[J]. Plant Cell and Environment, 2007, 30(5): 654-661. |
[124] |
LI T, TIIVA P, RINNAN A, et al. Long-term effects of elevated CO2, nighttime warming and drought on plant secondary metabolites in a temperate heath ecosystem[J]. Annals of Botany, 2020, 125(7): 1065-1075.
DOI PMID |
[125] | SCHOLEFIELD P A, DOICK K J, HERBERT B M J, et al. Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring[J]. Plant, Cell & Environment, 2004, 27(4): 393-401. |
[126] |
DARBAH J N, SHARKEY T D, CALFAPIETRA C, et al. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide[J]. Environmental Pollution, 2010, 158(4): 1008-1014.
DOI PMID |
[127] | MONSON R K, TRAHAN N, ROSENSTIEL T N, et al. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations[J]. Philosophical Transactions of The Royal Society A: Mathematical Physical and Engineering Sciences, 2007, 365(1856): 1677-1695. |
[128] | POSSELL M, HEWITT C N. Isoprene emissions from plants are mediated by atmospheric CO2 concentrations[J]. Global Change Biology, 2011, 17(4): 1595-1610. |
[129] | POSSELL M, HEWITT C N, BEERLING D J. The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants[J]. Global Change Biology, 2005, 11(1): 60-69. |
[130] | RAPPARINI F, BARALDI R, MIGLIETTA F, et al. Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment[J]. Plant, Cell & Environment, 2004, 27(4): 381-391. |
[131] | VURRO E, BRUNI R, BIANCHI A, et al. Elevated atmospheric CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system[J]. Environmental and Experimental Botany, 2009, 65(1): 99-106. |
[132] | MOCHIZUKI T, WATANABE M, KOIKE T, et al. Monoterpene emissions from needles of hybrid larch F1 (Larix gmelinii var. japonica × Larix kaempferi) grown under elevated carbon dioxide and ozone[J]. Atmospheric Environment, 2017, 148: 197-202. |
[133] | GUIDOLOTTI G, CALFAPIETRA C, LORETO F. The relationship between isoprene emission, CO2 assimilation and water use efficiency across a range of poplar genotypes[J]. Physiologia Plantarum, 2011, 142(3): 297-304. |
[134] |
RASULOV B, HUEVE K, VAELBE M, et al. Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen[J]. Plant Physiology, 2009, 151(1): 448-460.
DOI PMID |
[135] | TIIVA P, TANG J, MICHELSEN A, et al. Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem[J]. Science of the Total Environment, 2017, 580: 1056-1067. |
[136] | SUN Z, NIINEMETS Ü, HÜVE K, et al. Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration[J]. Global Change Biology, 2012, 18(11): 3423-3440. |
[137] | SUN Z, NIINEMETS Ü, HUEVE K, et al. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides)[J]. New Phytologist, 2013, 198(3): 788-800. |
[138] |
AUSTEN N, WALKER H J, LAKE J A, et al. The regulation of plant secondary metabolism in response to abiotic stress: interactions between heat shock and elevated CO2[J]. Frontiers in Plant Science, 2019, 10: 1463.
DOI PMID |
[139] | POTOSNAK M J, LESTOURGEON L, NUNEZ O. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO2 concentration[J]. Science of the Total Environment, 2014, 481: 352-359. |
[140] | STAUDT M, DAUSSY J, INGABIRE J, et al. Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways[J]. Biogeosciences, 2022, 19(20): 4945-4963. |
[141] | LANTZ A T, ALLMAN J, WERADUWAGE S M, et al. Isoprene: new insights into the control of emission and mediation of stress tolerance by gene expression[J]. Plant, Cell & Environment, 2019, 42(10): 2808-2826. |
[142] | LANTZ A T, SOLOMON C, GOG L, et al. Isoprene suppression by CO2 is not due to triose phosphate utilization (TPU) limitation[J]. Frontiers in Forests and Global Change, 2019, 2: 8. |
[143] | YANG W, CAO J, WU Y, et al. Review on plant terpenoid emissions worldwide and in China[J]. Science of the Total Environment, 2021, 787: 147454. |
[144] | ROSENSTIEL T N, POTOSNAK M J, GRIFFIN K L, et al. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem[J]. Nature, 2003, 421(6920): 256-259. |
[145] |
AFFEK H P, YAKIR D. Protection by isoprene against singlet oxygen in leaves[J]. Plant Physiology, 2002, 129(1): 269-277.
PMID |
[146] | MONSON R K, NEICE A A, TRAHAN N A, et al. Interactions between temperature and intercellular CO2 concentration in controlling leaf isoprene emission rates[J]. Plant, Cell & Environment, 2016, 39(11): 2404-2413. |
[147] | NIINEMETS Ü, RASULOV B, TALTS E. CO2-responsiveness of leaf isoprene emission: why do species differ?[J]. Plant, Cell & Environment, 2021, 44(9): 3049-3063. |
[148] | SAHU A, MOSTOFA M G, WERADUWAGE S M, et al. Hydroxymethylbutenyl diphosphate accumulation reveals MEP pathway regulation for high CO2-induced suppression of isoprene emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(41): e2309536120. |
[149] | GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70: 153-226. |
[150] | LIN Q, ZHU J, WANG Q, et al. Patterns and drivers of atmospheric nitrogen deposition retention in global forests[J]. Global Change Biology, 2024, 30(7): e17410. |
[151] |
MAO J, XING Y, MA H, et al. Research progress of nitrogen deposition effect on plant growth[J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 42-48.
DOI |
[152] |
LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379.
PMID |
[153] |
ELSER J J, FAGAN W F, KERKHOFF A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3): 593-608.
DOI PMID |
[154] |
LAOTHAWORNKITKUL J, TAYLOR J E, PAUL N D, et al. Biogenic volatile organic compounds in the Earth system[J]. New Phytologist, 2009, 183(1): 27-51.
DOI PMID |
[155] | LITVAK M E, LORETO F, HARLEY P C, et al. The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees[J]. Plant, Cell & Environment, 1996, 19(5): 549-559. |
[156] | YUAN X, FENG Z, SHANG B, et al. Ozone exposure, nitrogen addition and moderate drought dynamically interact to affect isoprene emission in poplar[J]. Science of the Total Environment, 2020, 734: 139368. |
[157] |
SHARKEY T D, WIBERLEY A E, DONOHUE A R. Isoprene emission from plants: why and how[J]. Annals of Botany, 2008, 101(1): 5-18.
DOI PMID |
[158] | LLUSIA J, BERMEJO-BERMEJO V, CALVETE-SOGO H, et al. Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization[J]. Environmental Pollution, 2014, 194: 69-77. |
[159] | HUANG X, LAI J, LIU Y, et al. Biogenic volatile organic compound emissions from Pinus massoniana and Schima superba seedlings: their responses to foliar and soil application of nitrogen[J]. Science of the Total Environment, 2020, 705: 135761. |
[160] | BRYANT J P, CHAPIN F S, KLEIN D R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory[J]. Oikos, 1983, 40: 357-368. |
[161] | NUNES-NESI A, FERNIE A R, STITT M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions[J]. Molecular Plant, 2010, 3(6): 973-996. |
[162] |
NAGEGOWDA D A. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation[J]. FEBS Letters, 2010, 584(14): 2965-2973.
DOI PMID |
[163] | CAMPOS F G, VIEIRA M A R, AMARO A C E, et al. Nitrogen in the defense system of Annona emarginata (Schltdl.) H. Rainer[J]. Plos One, 2019, 14(6): e0217930. |
[164] |
NEILL S, BARROS R, BRIGHT J, et al. Nitric oxide, stomatal closure, and abiotic stress[J]. Journal of Experimental Botany, 2008, 59(2): 165-176.
DOI PMID |
[165] |
ROSALES E P, IANNONE M F, GROPPA M D, et al. Nitric oxide inhibits nitrate reductase activity in wheat leaves[J]. Plant Physiology and Biochemistry, 2011, 49(2): 124-130.
DOI PMID |
[166] | MANNINEN A M, UTRIAINEN J, HOLOPAINEN T, et al. Terpenoids in the wood of Scots pine and Norway spruce seedlings exposed to ozone at different nitrogen availability[J]. Canadian Journal of Forest Research, 2002, 32(12): 2140-2145. |
[167] | SINGH A, SINGH R, MINA U, et al. Effects of different doses of nitrogen treatments on isoprene emission from Ficus glomerata[J]. Journal of Applied and Natural Science, 2010, 2(1): 13-16. |
[168] | ODAK J A, OWUOR P O, MANG’URO L O A, et al. Influence of nitrogen fertilisation on red spider mites (Oligonychus coffeae Nietner) and overhead volatile organic compounds in tea (Camellia sinensis)[J]. International Journal of Tea Science, 2017, 13(1/2): 52-59. |
[169] | YUAN X, SHANG B, XU Y, et al. No significant interactions between nitrogen stimulation and ozone inhibition of isoprene emission in Cathay poplar[J]. Science of the Total Environment, 2017, 601: 222-229. |
[170] | 俞飞. 模拟氮沉降对雌雄美洲黑杨光合特性和异戊二烯释放的影响[J]. 林业科技通讯, 2018(5): 3-6. |
[171] | HU B, JAROSCH A-M, GAUDER M, et al. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: a comparison of Miscanthus and Salix[J]. Environmental Pollution, 2018, 237: 205-217. |
[172] | PäIVI T, ELINA H, ANNE K. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings[J]. Tree Physiology, 2018, 38(10): 1461-1475. |
[173] | MU Z, LLUSIA J, LIU D, et al. Profile of foliar isoprenoid emissions from Mediterranean dominant shrub and tree species under experimental nitrogen deposition[J]. Atmospheric Environment, 2019, 216: 116951. |
[174] | HOSHIKA Y, BRILLI F, BARALDI R, et al. Ozone impairs the response of isoprene emission to foliar nitrogen and phosphorus in poplar[J]. Environmental Pollution, 2020, 267: 115679. |
[175] | Y.C. D, J.B. Y, H.A. G, et al. Volatile organic compound profiling of Capsicum annuum var. longum grown under different concentrations of nitrogen[J]. Hellenic Plant Protection Journal, 2021, 14: 77-88. |
[176] | MA H, WU Q, FU Y, et al. Short-term response of BVOCs emissions from several dominant tropical rainforest tree species in Hainan Island to simulated nitrogen deposition[J]. Acta Ecologica Sinica, 2023, 43(3): 1073-1089. |
[177] | YANG W, ZHANG B, WU Y, et al. Effects of soil drought and nitrogen deposition on BVOC emissions and their O3 and SOA formation for Pinus thunbergii[J]. Environmental Pollution, 2023, 316: 120693. |
[178] | LIU S, GONG D, WANG Y, et al. Responses of plant volatile emissions to increasing nitrogen deposition: a pilot study on Eucalyptus urophylla[J]. Science of the Total Environment, 2024, 952: 175887. |
[179] | SONG X, HE H, XIE X, et al. Effects of simulated nitrogen deposition on BVOCs emission dynamics and O3 and SOA production potentials in seedlings of three Ficus species[J]. Atmospheric Pollution Research, 2024, 15(9): 102202. |
[180] |
HOULE D, MARTY C, DUCHESNE L. Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests[J]. Oecologia, 2015, 177: 29-37.
DOI PMID |
[181] | GAIGE E, DAIL D B, HOLLINGER D Y, et al. Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest[J]. Ecosystems, 2007, 10: 1133-1147. |
[182] | ORMEñO E, GOLDSTEIN A, NIINEMETS Ü. Extracting and trapping biogenic volatile organic compounds stored in plant species[J]. TrAC Trends in Analytical Chemistry, 2011, 30(7): 978-989. |
[183] | BRUMME R, LEIMCKE U, MATZNER E. Interception and uptake of NH4 and NO3 from wet deposition by above-ground parts of young beech (Fagus silvatica L.) trees[J]. Plant and Soil, 1992, 142: 273-279. |
[184] | HOBBIE E A, WERNER R A. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis[J]. New Phytologist, 2004, 161(2): 371-385. |
[185] | COUSINS A B, BLOOM A J. Oxygen consumption during leaf nitrate assimilation in a C3 and C4 plant: the role of mitochondrial respiration[J]. Plant, Cell & Environment, 2004, 27(12): 1537-1545. |
[186] | BOND W J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence[J]. Biological Journal of the Linnean Society, 1989, 36(3): 227-249. |
[187] | CARSLAW K, BOUCHER O, SPRACKLEN D, et al. A review of natural aerosol interactions and feedbacks within the Earth system[J]. Atmospheric Chemistry and Physics, 2010, 10(4): 1701-1737. |
[188] | KOOPERMAN G J, PRITCHARD M S, GHAN S J, et al. Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the community atmosphere model 5[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D23): D23204. |
[189] |
SPORRE M K, BLICHNER S M, KARSET I H, et al. BVOC-aerosol-climate feedbacks investigated using NorESM[J]. Atmospheric Chemistry and Physics, 2019, 19(7): 4763-4782.
DOI |
[190] |
RODERICK M L, FARQUHAR G D, BERRY S L, et al. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation[J]. Oecologia, 2001, 129: 21-30.
DOI PMID |
[191] | MENTEL T F, KLEIST E, ANDRES S, et al. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks[J]. Atmospheric Chemistry and Physics, 2013, 13(17): 8755-8770. |
[192] | MAKKONEN R, ASMI A, KERMINEN V M, et al. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2[J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10077-10096. |
[193] | 冯兆忠, 袁相洋. 臭氧浓度升高对植物源挥发性有机化合物(BVOCs)影响的研究进展[J]. 环境科学, 2018, 39(11): 5257-5265. |
[194] | AGATHOKLEOUS E, FENG Z, OKSANEN E, et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity[J]. Science Advances, 2020, 6(33): eabc1176. |
[195] | LLUSIA J, PENUELAS J, GIMENO B. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations[J]. Atmospheric Environment, 2002, 36(24): 3931-3938. |
[196] | NIINEMETS Ü, MONSON R K. Biology, controls and models of tree volatile organic compound emissions[M]. Dordrecht: Springer, 2013. |
[197] | WITTIG V E, AINSWORTH E A, NAIDU S L, et al. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis[J]. Global Change Biology, 2009, 15(2): 396-424. |
[198] | WILKINSON S, DAVIES W J. Drought, ozone, ABA and ethylene: new insights from cell to plant to community[J]. Plant, Cell & Environment, 2010, 33(4): 510-525. |
[199] |
BEHNKE K, KLEIST E, UERLINGS R, et al. RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance[J]. Tree Physiology, 2009, 29(5): 725-736.
DOI PMID |
[1] | GONG Yaoqi, YUE Fujun, LIU Xin, GUO Tianli, WANG Haoyang, LI Siliang. Research progress of coupled hydrological and water environment models in nitrogen cycle of watershed system [J]. Earth Science Frontiers, 2025, 32(3): 183-195. |
[2] | WU Libin, BAI Jingqi, ZHAO Qingzi, FU Pingqing. Research progress and prospects of amino acids in the atmosphere [J]. Earth Science Frontiers, 2025, 32(3): 196-206. |
[3] | XIAO Yunting, CAI Chenkang, HUANG Yixin, ZHU Jialei. Study on the impact of daily sea surface temperature variation characteristics on the simulation of sea land breeze [J]. Earth Science Frontiers, 2025, 32(3): 218-230. |
[4] | SUN Yiyang, ZHANG Bei, ZHAO Xi, ZHU Jialei. A study on the impact of clean fuel application on the radiative effects of shipping sulfate aerosols [J]. Earth Science Frontiers, 2025, 32(3): 263-273. |
[5] | WANG Guocan, ZHAO Zihao, SHEN Tianyi, MA Cheng, ZHOU Yabo. A brief analysis on the dynamic sources of the uplift and exhumation of the Tianshan Mountains during the Meso-Cenozoic based on the spatio-temporal differences of rock cooling in the Central Asia [J]. Earth Science Frontiers, 2025, 32(1): 322-342. |
[6] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[7] | WENG Wei, WU Shuo, HE Yunchao, LIN Wenjing, FENG Meigui, GAN Haonan, LI Xiaodong. New technologies, methodology and application in directional high-temperature hard rock drilling—a critical review [J]. Earth Science Frontiers, 2024, 31(6): 120-129. |
[8] | LONG Xiting, LI Shuheng, XIE Heping, SUN Licheng, GAO Tianyi, XIA Entong, LI Biao, WANG Jun, LI Cunbao, MO Zhengyu, DU Min. System design and performance analysis of a modular thermoelectric generator for low- and medium-temperature geothermal resource [J]. Earth Science Frontiers, 2024, 31(6): 215-223. |
[9] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[10] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[11] | ZHOU Wei, MA Xiao, CHEN Wenyi, GAO Rui, WANG Yan, HU Dawei. Carbonates of the Wumishan Formation, Jixian System in the North China Plain: Mechanical properties under in-situ geothermal conditions [J]. Earth Science Frontiers, 2024, 31(6): 95-103. |
[12] | LI Keran, YANG Di, SONG Jinmin, LI Zhiwu, JIN Xin, LIU Fang, YANG Xiong, LIU Shugen, YE Yuehao, FAN Jianping, REN Jiaxin, ZHAO Lingli, XIA Shun, CHEN Wei. Dolomitization in the Lower Cambrian Longwangmiao Formation in northeastern Yunnan: Insights from a simulation study [J]. Earth Science Frontiers, 2024, 31(2): 313-326. |
[13] | HU Ruizhong, GAO Wei, FU Shanling, SU Wenchao, PENG Jiantang, BI Xianwu. Mesozoic intraplate metallogenesis in South China [J]. Earth Science Frontiers, 2024, 31(1): 226-238. |
[14] | LI Dan, CHANG Jian, QIU Nansheng, XIONG Yujie. Thermal analysis of ultra-deep layers and its influence on reservoir utilization in platform area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 135-149. |
[15] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||